Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1055 lines
30 KiB

/*
RPN RULES MODULE
Use RPNLib library (https://github.com/xoseperez/rpnlib)
Copyright (C) 2019 by Xose Pérez <xose dot perez at gmail dot com>
*/
#include "rpnrules.h"
#if RPN_RULES_SUPPORT
#include <rpnlib.h>
#include "light.h"
#include "mqtt.h"
#include "ntp.h"
#include "ntp_timelib.h"
#include "relay.h"
#include "rfbridge.h"
#include "rpc.h"
#include "rtcmem.h"
#include "sensor.h"
#include "terminal.h"
#include "wifi.h"
#include "ws.h"
#include <list>
#include <type_traits>
#include <vector>
// -----------------------------------------------------------------------------
// Custom commands
// -----------------------------------------------------------------------------
rpn_context _rpn_ctxt;
bool _rpn_run = false;
unsigned long _rpn_delay = RPN_DELAY;
unsigned long _rpn_last = 0;
struct RpnRunner {
enum class Policy {
OneShot,
Periodic
};
RpnRunner(Policy policy_, uint32_t period_) :
policy(policy_),
period(period_),
last(millis())
{}
Policy policy { Policy::Periodic };
uint32_t period { 0ul };
uint32_t last { 0ul };
bool expired { false };
};
std::vector<RpnRunner> _rpn_runners;
rpn_operator_error _rpnRunnerHandler(rpn_context & ctxt, RpnRunner::Policy policy, uint32_t time) {
for (auto& runner : _rpn_runners) {
if ((policy == runner.policy) && (time == runner.period)) {
return runner.expired
? rpn_operator_error::Ok
: rpn_operator_error::CannotContinue;
}
}
_rpn_runners.emplace_back(policy, time);
return rpn_operator_error::CannotContinue;
}
// -----------------------------------------------------------------------------
bool _rpnWebSocketOnKeyCheck(const char * key, JsonVariant& value) {
return (strncmp(key, "rpn", 3) == 0);
}
void _rpnWebSocketOnConnected(JsonObject& root) {
root["rpnSticky"] = getSetting("rpnSticky", 1 == RPN_STICKY);
root["rpnDelay"] = getSetting("rpnDelay", RPN_DELAY);
JsonArray& rules = root.createNestedArray("rpnRules");
unsigned char i = 0;
String rule = getSetting({"rpnRule", i});
while (rule.length()) {
rules.add(rule);
rule = getSetting({"rpnRule", ++i});
}
#if MQTT_SUPPORT
i=0;
JsonArray& topics = root.createNestedArray("rpnTopics");
JsonArray& names = root.createNestedArray("rpnNames");
String rpn_topic = getSetting({"rpnTopic", i});
while (rpn_topic.length() > 0) {
String rpn_name = getSetting({"rpnName", i});
topics.add(rpn_topic);
names.add(rpn_name);
rpn_topic = getSetting({"rpnTopic", ++i});
}
#endif
}
#if MQTT_SUPPORT
void _rpnMQTTSubscribe() {
unsigned char i = 0;
String rpn_topic = getSetting({"rpnTopic", i});
while (rpn_topic.length()) {
mqttSubscribeRaw(rpn_topic.c_str());
rpn_topic = getSetting({"rpnTopic", ++i});
}
}
void _rpnMQTTCallback(unsigned int type, const char * topic, const char * payload) {
if (type == MQTT_CONNECT_EVENT) {
_rpnMQTTSubscribe();
}
if (type == MQTT_MESSAGE_EVENT) {
unsigned char i = 0;
String rpn_topic = getSetting({"rpnTopic", i});
while (rpn_topic.length()) {
if (rpn_topic.equals(topic)) {
String rpn_name = getSetting({"rpnName", i});
if (rpn_name.length()) {
rpn_value value { atof(payload) };
rpn_variable_set(_rpn_ctxt, rpn_name, value);
_rpn_run = true;
break;
}
}
rpn_topic = getSetting({"rpnTopic", ++i});
}
}
}
#endif // MQTT_SUPPORT
void _rpnConfigure() {
#if MQTT_SUPPORT
if (mqttConnected()) {
_rpnMQTTSubscribe();
}
#endif
_rpn_delay = getSetting("rpnDelay", RPN_DELAY);
}
void _rpnRelayStatus(size_t id, bool status) {
char name[32] = {0};
snprintf(name, sizeof(name), "relay%u", id);
rpn_variable_set(_rpn_ctxt, name, rpn_value(status));
_rpn_run = true;
}
void _rpnLightStatus() {
auto channels = lightChannels();
char name[32] = {0};
for (decltype(channels) channel = 0; channel < channels; ++channel) {
auto value = rpn_value(static_cast<rpn_int>(lightChannel(channel)));
snprintf(name, sizeof(name), "channel%u", channel);
rpn_variable_set(_rpn_ctxt, name, std::move(value));
}
_rpn_run = true;
}
#if SENSOR_SUPPORT
void _rpnSensorMagnitudeRead(const String& topic, unsigned char index, double reading, const char*) {
static_assert(sizeof(double) == sizeof(rpn_float), "");
String name;
name.reserve(topic.length() + 3);
name += topic;
name += index;
rpn_variable_set(_rpn_ctxt, name, rpn_value(static_cast<rpn_float>(reading)));
}
#endif
#if NTP_SUPPORT
namespace {
constexpr bool time_t_is_32bit { sizeof(time_t) == 4 };
constexpr bool time_t_is_64bit { sizeof(time_t) == 8 };
static_assert(time_t_is_32bit || time_t_is_64bit, "");
template <typename T>
using split_t = std::integral_constant<bool, sizeof(T) == 8>;
using RpnNtpFunc = rpn_int(*)(time_t);
rpn_error _rpnNtpPopTimestampPair(rpn_context& ctxt, RpnNtpFunc func) {
rpn_value rhs = rpn_stack_pop(ctxt);
rpn_value lhs = rpn_stack_pop(ctxt);
auto timestamp = (static_cast<long long>(lhs.toInt()) << 32ll)
| (static_cast<long long>(rhs.toInt()));
rpn_value value(func(timestamp));
rpn_stack_push(ctxt, value);
return 0;
}
rpn_error _rpnNtpPopTimestampSingle(rpn_context& ctxt, RpnNtpFunc func) {
rpn_value input = rpn_stack_pop(ctxt);
rpn_value result(func(input.toInt()));
rpn_stack_push(ctxt, result);
return 0;
}
void _rpnNtpPushTimestampPair(rpn_context& ctxt, time_t timestamp) {
rpn_value lhs(static_cast<rpn_int>((static_cast<long long>(timestamp) >> 32ll) & 0xffffffffll));
rpn_value rhs(static_cast<rpn_int>(static_cast<long long>(timestamp) & 0xffffffffll));
rpn_stack_push(ctxt, lhs);
rpn_stack_push(ctxt, rhs);
}
void _rpnNtpPushTimestampSingle(rpn_context& ctxt, time_t timestamp) {
rpn_value result(static_cast<rpn_int>(timestamp));
rpn_stack_push(ctxt, result);
}
inline rpn_error _rpnNtpPopTimestamp(const std::true_type&, rpn_context& ctxt, RpnNtpFunc func) {
return _rpnNtpPopTimestampPair(ctxt, func);
}
inline rpn_error _rpnNtpPopTimestamp(const std::false_type&, rpn_context& ctxt, RpnNtpFunc func) {
return _rpnNtpPopTimestampSingle(ctxt, func);
}
rpn_error _rpnNtpPopTimestamp(rpn_context& ctxt, RpnNtpFunc func) {
return _rpnNtpPopTimestamp(split_t<time_t>{}, ctxt, func);
}
inline void _rpnNtpPushTimestamp(const std::true_type&, rpn_context& ctxt, time_t timestamp) {
_rpnNtpPushTimestampPair(ctxt, timestamp);
}
inline void _rpnNtpPushTimestamp(const std::false_type&, rpn_context& ctxt, time_t timestamp) {
_rpnNtpPushTimestampSingle(ctxt, timestamp);
}
void _rpnNtpPushTimestamp(rpn_context& ctxt, time_t timestamp) {
_rpnNtpPushTimestamp(split_t<time_t>{}, ctxt, timestamp);
}
rpn_error _rpnNtpNow(rpn_context & ctxt) {
if (ntpSynced()) {
_rpnNtpPushTimestamp(ctxt, now());
return 0;
}
return rpn_operator_error::CannotContinue;
}
rpn_error _rpnNtpFunc(rpn_context & ctxt, RpnNtpFunc func) {
return _rpnNtpPopTimestamp(ctxt, func);
}
bool _rpn_ntp_tick_minute { false };
bool _rpn_ntp_tick_hour { false };
rpn_error _rpnNtpTickMinute(rpn_context& ctxt) {
if (_rpn_ntp_tick_minute) {
_rpn_ntp_tick_minute = false;
return 0;
}
return rpn_operator_error::CannotContinue;
}
rpn_error _rpnNtpTickHour(rpn_context& ctxt) {
if (_rpn_ntp_tick_hour) {
_rpn_ntp_tick_hour = false;
return 0;
}
return rpn_operator_error::CannotContinue;
}
} // namespace
#endif // NTP_SUPPORT
String _rpnValueToString(const rpn_value& value) {
String out;
if (value.isString()) {
out = value.toString();
} else if (value.isFloat()) {
out = String(value.toFloat(), 10);
} else if (value.isInt()) {
out = String(value.toInt(), 10);
} else if (value.isUint()) {
out = String(value.toUint(), 10);
} else if (value.isBoolean()) {
out = String(value.toBoolean() ? "true" : "false");
} else if (value.isNull()) {
out = F("(null)");
}
return out;
}
char _rpnStackTypeTag(rpn_stack_value::Type type) {
switch (type) {
case rpn_stack_value::Type::None:
return 'N';
case rpn_stack_value::Type::Variable:
return '$';
case rpn_stack_value::Type::Array:
return 'A';
case rpn_stack_value::Type::Value:
default:
return ' ';
}
}
#if RELAY_SUPPORT
rpn_error _rpnRelayStatus(rpn_context & ctxt, bool force) {
rpn_value id;
rpn_value status;
rpn_stack_pop(ctxt, id);
rpn_stack_pop(ctxt, status);
rpn_uint value = status.toUint();
if (value == 2) {
relayToggle(id.toUint());
} else if (relayStatusTarget(id.toUint()) != (value == 1)) {
relayStatus(id.toUint(), value == 1);
}
return 0;
}
#endif // RELAY_SUPPORT
#if RFB_SUPPORT
struct rpn_rfbridge_code {
unsigned char protocol;
String raw;
size_t count;
decltype(millis()) last;
};
// TODO: in theory, we could do with forward_list. however, this would require a more complicated removal process,
// as we would no longer know the previous element and would need to track 2 elements at a time
static std::list<rpn_rfbridge_code> _rfb_codes;
static uint32_t _rfb_code_repeat_window;
static uint32_t _rfb_code_stale_delay;
static uint32_t _rfb_code_match_window;
struct rpn_rfbridge_match {
unsigned char protocol;
String raw;
};
rpn_error _rpnRfbSequence(rpn_context& ctxt) {
auto raw_second = rpn_stack_pop(ctxt);
auto proto_second = rpn_stack_pop(ctxt);
auto raw_first = rpn_stack_pop(ctxt);
auto proto_first = rpn_stack_pop(ctxt);
// find 2 codes in the same order and save pointers
rpn_rfbridge_match match[2] {
{static_cast<unsigned char>(proto_first.toUint()), raw_first.toString()},
{static_cast<unsigned char>(proto_second.toUint()), raw_second.toString()}
};
rpn_rfbridge_code* refs[2] {nullptr, nullptr};
for (auto& recent : _rfb_codes) {
if ((refs[0] != nullptr) && (refs[1] != nullptr)) {
break;
}
for (int index = 0; index < 2; ++index) {
if ((refs[index] == nullptr)
&& (match[index].protocol == recent.protocol)
&& (match[index].raw == recent.raw)) {
refs[index] = &recent;
}
}
}
if ((refs[0] == nullptr) || (refs[1] == nullptr)) {
return rpn_operator_error::CannotContinue;
}
// purge codes to avoid matching again on the next rules run
if ((millis() - refs[0]->last) > (millis() - refs[1]->last)) {
_rfb_codes.remove_if([&refs](rpn_rfbridge_code& code) {
return (refs[0] == &code) || (refs[1] == &code);
});
return rpn_operator_error::Ok;
}
return rpn_operator_error::CannotContinue;
}
decltype(_rfb_codes)::iterator _rpnRfbFindCode(unsigned char protocol, const String& match) {
return std::find_if(_rfb_codes.begin(), _rfb_codes.end(), [protocol, &match](const rpn_rfbridge_code& code) {
return (code.protocol == protocol) && (code.raw == match);
});
}
rpn_error _rpnRfbSend(rpn_context& ctxt) {
auto code = rpn_stack_pop(ctxt);
if (!code.isString()) {
return rpn_operator_error::InvalidArgument;
}
rfbSend(code.toString());
return rpn_operator_error::Ok;
}
rpn_error _rpnRfbPop(rpn_context& ctxt) {
auto code = rpn_stack_pop(ctxt);
auto proto = rpn_stack_pop(ctxt);
auto result = _rpnRfbFindCode(proto.toUint(), code.toString());
if (result == _rfb_codes.end()) {
return rpn_operator_error::CannotContinue;
}
_rfb_codes.erase(result);
return rpn_operator_error::Ok;
}
rpn_error _rpnRfbInfo(rpn_context& ctxt) {
auto code = rpn_stack_pop(ctxt);
auto proto = rpn_stack_pop(ctxt);
auto result = _rpnRfbFindCode(proto.toUint(), code.toString());
if (result == _rfb_codes.end()) {
return rpn_operator_error::CannotContinue;
}
rpn_stack_push(ctxt, rpn_value(
static_cast<rpn_uint>((*result).count)));
rpn_stack_push(ctxt, rpn_value(
static_cast<rpn_uint>((*result).last)));
return rpn_operator_error::Ok;
}
rpn_error _rpnRfbWaitMatch(rpn_context& ctxt) {
auto code = rpn_stack_pop(ctxt);
auto proto = rpn_stack_pop(ctxt);
auto count = rpn_stack_pop(ctxt);
auto time = rpn_stack_pop(ctxt);
auto result = _rpnRfbFindCode(proto.toUint(), code.toString());
if (result == _rfb_codes.end()) {
return rpn_operator_error::CannotContinue;
}
if ((*result).count < count.toUint()) {
return rpn_operator_error::CannotContinue;
}
// purge code to avoid matching again on the next rules run
if (rpn_operator_error::Ok == _rpnRunnerHandler(ctxt, RpnRunner::Policy::OneShot, time.toUint())) {
_rfb_codes.erase(result);
return rpn_operator_error::Ok;
}
return rpn_operator_error::CannotContinue;
}
rpn_error _rpnRfbMatcher(rpn_context& ctxt) {
auto code = rpn_stack_pop(ctxt);
auto proto = rpn_stack_pop(ctxt);
auto count = rpn_stack_pop(ctxt);
auto result = _rpnRfbFindCode(proto.toUint(), code.toString());
if (result == _rfb_codes.end()) {
return rpn_operator_error::CannotContinue;
}
// only process recent codes, ignore when rule is processing outside of this small window
if (millis() - (*result).last >= _rfb_code_match_window) {
return rpn_operator_error::CannotContinue;
}
// purge code to avoid matching again on the next rules run
if ((*result).count == count.toUint()) {
_rfb_codes.erase(result);
return rpn_operator_error::Ok;
}
return rpn_operator_error::CannotContinue;
}
void _rpnRfbridgeCodeHandler(unsigned char protocol, const char* raw_code) {
// remove really old codes that we have not seen in a while to avoid memory exhaustion
auto ts = millis();
auto old = std::remove_if(_rfb_codes.begin(), _rfb_codes.end(), [ts](rpn_rfbridge_code& code) {
return (ts - code.last) >= _rfb_code_stale_delay;
});
if (old != _rfb_codes.end()) {
_rfb_codes.erase(old, _rfb_codes.end());
}
auto result = _rpnRfbFindCode(protocol, raw_code);
if (result != _rfb_codes.end()) {
// we also need to reset the counter at a certain point to allow next batch of repeats to go through
if (millis() - (*result).last >= _rfb_code_repeat_window) {
(*result).count = 0;
}
(*result).last = millis();
(*result).count += 1u;
} else {
_rfb_codes.push_back({protocol, raw_code, 1u, millis()});
}
_rpn_run = true;
}
void _rpnRfbSetup() {
// - Repeat window is an arbitrary time, just about 3-4 more times it takes for
// a code to be sent again when holding a generic remote button
// Code counter is reset to 0 when outside of the window.
// - Stale delay allows the handler to remove really old codes.
// (TODO: can this happen in loop() cb instead?)
_rfb_code_repeat_window = getSetting("rfbRepeatWindow", 2000ul);
_rfb_code_match_window = getSetting("rfbMatchWindow", 2000ul);
_rfb_code_stale_delay = getSetting("rfbStaleDelay", 10000ul);
#if TERMINAL_SUPPORT
terminalRegisterCommand(F("RFB.CODES"), [](const terminal::CommandContext& ctx) {
for (auto& code : _rfb_codes) {
char buffer[128] = {0};
snprintf_P(buffer, sizeof(buffer),
PSTR("proto=%u raw=\"%s\" count=%u last=%u"),
code.protocol,
code.raw.c_str(),
code.count,
code.last
);
ctx.output.println(buffer);
}
});
#endif
// Main bulk of the processing goes on in here
rfbSetCodeHandler(_rpnRfbridgeCodeHandler);
}
#endif // RFB_SUPPORT
void _rpnDeepSleep(uint64_t duration, RFMode mode);
void _rpnDeepSleepSchedule(uint64_t duration, RFMode mode) {
schedule_function([duration, mode]() {
_rpnDeepSleep(duration, mode);
});
}
void _rpnDeepSleep(uint64_t duration, RFMode mode) {
if (WiFi.getMode() != WIFI_OFF) {
wifiTurnOff();
_rpnDeepSleepSchedule(duration, mode);
return;
}
ESP.deepSleep(duration, mode);
}
void _rpnShowStack(Print& print) {
print.println(F("Stack:"));
auto index = rpn_stack_size(_rpn_ctxt);
if (!index) {
print.println(F(" (empty)"));
return;
}
rpn_stack_foreach(_rpn_ctxt, [&index, &print](rpn_stack_value::Type type, const rpn_value& value) {
print.printf("%c %02u: %s\n",
_rpnStackTypeTag(type), index--,
_rpnValueToString(value).c_str()
);
});
}
void _rpnInit() {
// Init context
rpn_init(_rpn_ctxt);
#if NTP_SUPPORT
{
constexpr size_t time_t_argc { split_t<time_t>{} ? 2 : 1 };
rpn_operator_set(_rpn_ctxt, "tick_1h", 0, _rpnNtpTickHour);
rpn_operator_set(_rpn_ctxt, "tick_1m", 0, _rpnNtpTickMinute);
rpn_operator_set(_rpn_ctxt, "utc", 0, _rpnNtpNow);
rpn_operator_set(_rpn_ctxt, "now", 0, _rpnNtpNow);
rpn_operator_set(_rpn_ctxt, "utc_month", time_t_argc, [](rpn_context & ctxt) {
return _rpnNtpFunc(ctxt, utc_month);
});
rpn_operator_set(_rpn_ctxt, "month", time_t_argc, [](rpn_context & ctxt) {
return _rpnNtpFunc(ctxt, month);
});
rpn_operator_set(_rpn_ctxt, "utc_day", time_t_argc, [](rpn_context & ctxt) {
return _rpnNtpFunc(ctxt, utc_day);
});
rpn_operator_set(_rpn_ctxt, "day", time_t_argc, [](rpn_context & ctxt) {
return _rpnNtpFunc(ctxt, day);
});
rpn_operator_set(_rpn_ctxt, "utc_dow", time_t_argc, [](rpn_context & ctxt) {
return _rpnNtpFunc(ctxt, utc_weekday);
});
rpn_operator_set(_rpn_ctxt, "dow", time_t_argc, [](rpn_context & ctxt) {
return _rpnNtpFunc(ctxt, weekday);
});
rpn_operator_set(_rpn_ctxt, "utc_hour", time_t_argc, [](rpn_context & ctxt) {
return _rpnNtpFunc(ctxt, utc_hour);
});
rpn_operator_set(_rpn_ctxt, "hour", time_t_argc, [](rpn_context & ctxt) {
return _rpnNtpFunc(ctxt, hour);
});
rpn_operator_set(_rpn_ctxt, "utc_minute", time_t_argc, [](rpn_context & ctxt) {
return _rpnNtpFunc(ctxt, utc_minute);
});
rpn_operator_set(_rpn_ctxt, "minute", time_t_argc, [](rpn_context & ctxt) {
return _rpnNtpFunc(ctxt, minute);
});
}
#endif
// Accept relay number and numeric API status value (0, 1 and 2)
#if RELAY_SUPPORT
// apply status and reset timers when called
rpn_operator_set(_rpn_ctxt, "relay_reset", 2, [](rpn_context & ctxt) {
return _rpnRelayStatus(ctxt, true);
});
// only update status when target status differs, keep running timers
rpn_operator_set(_rpn_ctxt, "relay", 2, [](rpn_context & ctxt) {
return _rpnRelayStatus(ctxt, false);
});
#endif // RELAY_SUPPORT == 1
// Channel operators
#if LIGHT_PROVIDER != LIGHT_PROVIDER_NONE
rpn_operator_set(_rpn_ctxt, "update", 0, [](rpn_context & ctxt) -> rpn_error {
lightUpdate();
return 0;
});
rpn_operator_set(_rpn_ctxt, "black", 0, [](rpn_context & ctxt) -> rpn_error {
lightColor(0ul);
return 0;
});
rpn_operator_set(_rpn_ctxt, "channel", 2, [](rpn_context & ctxt) -> rpn_error {
rpn_value value;
rpn_value id;
rpn_stack_pop(ctxt, id);
rpn_stack_pop(ctxt, value);
lightChannel(id.toUint(), id.toInt());
return 0;
});
#endif
#if RFB_SUPPORT
rpn_operator_set(_rpn_ctxt, "rfb_send", 1, _rpnRfbSend);
rpn_operator_set(_rpn_ctxt, "rfb_pop", 2, _rpnRfbPop);
rpn_operator_set(_rpn_ctxt, "rfb_info", 2, _rpnRfbInfo);
rpn_operator_set(_rpn_ctxt, "rfb_sequence", 4, _rpnRfbSequence);
rpn_operator_set(_rpn_ctxt, "rfb_match", 3, _rpnRfbMatcher);
rpn_operator_set(_rpn_ctxt, "rfb_match_wait", 4, _rpnRfbWaitMatch);
#endif
#if MQTT_SUPPORT
rpn_operator_set(_rpn_ctxt, "mqtt_send", 2, [](rpn_context & ctxt) -> rpn_error {
rpn_value message;
rpn_stack_pop(ctxt, message);
rpn_value topic;
rpn_stack_pop(ctxt, topic);
return mqttSendRaw(topic.toString().c_str(), message.toString().c_str())
? rpn_operator_error::Ok
: rpn_operator_error::CannotContinue;
});
#endif
// Some debugging. Dump stack contents
#if TERMINAL_SUPPORT
rpn_operator_set(_rpn_ctxt, "showstack", 0, [](rpn_context & ctxt) -> rpn_error {
_rpnShowStack(terminalDefaultStream());
return 0;
});
#endif
// And, simple string logging
#if DEBUG_SUPPORT
rpn_operator_set(_rpn_ctxt, "dbgmsg", 1, [](rpn_context & ctxt) -> rpn_error {
rpn_value message;
rpn_stack_pop(ctxt, message);
DEBUG_MSG_P(PSTR("[RPN] %s\n"), message.toString().c_str());
return 0;
});
#endif
rpn_operator_set(_rpn_ctxt, "mem?", 0, [](rpn_context & ctxt) -> rpn_error {
rpn_stack_push(ctxt, rpn_value(rtcmemStatus()));
return 0;
});
rpn_operator_set(_rpn_ctxt, "mem_write", 2, [](rpn_context & ctxt) -> rpn_error {
auto addr = rpn_stack_pop(ctxt).toUint();
auto value = rpn_stack_pop(ctxt).toUint();
if (addr < RTCMEM_BLOCKS) {
auto* rtcmem = reinterpret_cast<volatile uint32_t*>(RTCMEM_ADDR);
*(rtcmem + addr) = value;
return 0;
}
return rpn_operator_error::InvalidArgument;
});
rpn_operator_set(_rpn_ctxt, "mem_read", 1, [](rpn_context & ctxt) -> rpn_error {
auto addr = rpn_stack_pop(ctxt).toUint();
if (addr < RTCMEM_BLOCKS) {
auto* rtcmem = reinterpret_cast<volatile uint32_t*>(RTCMEM_ADDR);
rpn_uint result = *(rtcmem + addr);
rpn_stack_push(ctxt, rpn_value(result));
return 0;
}
return rpn_operator_error::InvalidArgument;
});
rpn_operator_set(_rpn_ctxt, "sleep", 2, [](rpn_context & ctxt) -> rpn_error {
static bool once { false };
if (once) {
return rpn_operator_error::CannotContinue;
}
auto value = rpn_stack_pop(ctxt).checkedToUint();
if (!value.ok()) {
return value.error();
}
uint64_t duration = value.value();
if (!duration) {
return rpn_operator_error::CannotContinue;
}
auto mode = rpn_stack_pop(ctxt).toUint();
once = true;
_rpnDeepSleep(duration * 1000000ull, static_cast<RFMode>(mode));
return 0;
});
rpn_operator_set(_rpn_ctxt, "stations", 0, [](rpn_context & ctxt) -> rpn_error {
rpn_uint out = (WiFi.getMode() & WIFI_AP)
? static_cast<rpn_uint>(WiFi.softAPgetStationNum())
: 0u;
rpn_stack_push(ctxt, rpn_value(out));
return 0;
});
rpn_operator_set(_rpn_ctxt, "disconnect", 0, [](rpn_context & ctxt) -> rpn_error {
wifiDisconnect();
yield();
return 0;
});
rpn_operator_set(_rpn_ctxt, "rssi", 0, [](rpn_context & ctxt) -> rpn_error {
if (wifiConnected()) {
rpn_stack_push(ctxt, rpn_value(static_cast<rpn_int>(WiFi.RSSI())));
return 0;
}
return rpn_operator_error::CannotContinue;
});
rpn_operator_set(_rpn_ctxt, "delay", 1, [](rpn_context & ctxt) -> rpn_error {
auto ms = rpn_stack_pop(ctxt);
delay(ms.toUint());
return 0;
});
rpn_operator_set(_rpn_ctxt, "yield", 0, [](rpn_context & ctxt) -> rpn_error {
yield();
return 0;
});
rpn_operator_set(_rpn_ctxt, "reset", 0, [](rpn_context & ctxt) -> rpn_error {
static bool once = ([]() {
deferredReset(100, CustomResetReason::Rule);
return true;
})();
return once
? rpn_operator_error::CannotContinue
: rpn_operator_error::Ok;
});
rpn_operator_set(_rpn_ctxt, "millis", 0, [](rpn_context & ctxt) -> rpn_error {
rpn_stack_push(ctxt, rpn_value(static_cast<uint32_t>(millis())));
return 0;
});
rpn_operator_set(_rpn_ctxt, "oneshot_ms", 1, [](rpn_context & ctxt) -> rpn_error {
auto every = rpn_stack_pop(ctxt);
return _rpnRunnerHandler(ctxt, RpnRunner::Policy::OneShot, every.toUint());
});
rpn_operator_set(_rpn_ctxt, "every_ms", 1, [](rpn_context & ctxt) -> rpn_error {
auto every = rpn_stack_pop(ctxt);
return _rpnRunnerHandler(ctxt, RpnRunner::Policy::Periodic, every.toUint());
});
// XXX: workaround for the vector 2x growth on push. will need to fix this in the rpnlib
_rpn_ctxt.operators.shrink_to_fit();
DEBUG_MSG_P(PSTR("[RPN] Registered %u operators\n"), _rpn_ctxt.operators.size());
}
#if TERMINAL_SUPPORT
void _rpnInitCommands() {
terminalRegisterCommand(F("RPN.RUNNERS"), [](const terminal::CommandContext& ctx) {
if (!_rpn_runners.size()) {
terminalError(ctx, F("No active runners"));
return;
}
for (auto& runner : _rpn_runners) {
char buffer[128] = {0};
snprintf_P(buffer, sizeof(buffer), PSTR("%p %s %u ms, last %u ms"),
&runner, (RpnRunner::Policy::Periodic == runner.policy) ? "every" : "one-shot",
runner.period, runner.last
);
ctx.output.println(buffer);
}
terminalOK(ctx);
});
terminalRegisterCommand(F("RPN.VARS"), [](const terminal::CommandContext& ctx) {
rpn_variables_foreach(_rpn_ctxt, [&ctx](const String& name, const rpn_value& value) {
char buffer[256] = {0};
snprintf_P(buffer, sizeof(buffer), PSTR(" %s: %s"), name.c_str(), _rpnValueToString(value).c_str());
ctx.output.println(buffer);
});
terminalOK(ctx);
});
terminalRegisterCommand(F("RPN.OPS"), [](const terminal::CommandContext& ctx) {
rpn_operators_foreach(_rpn_ctxt, [&ctx](const String& name, size_t argc, rpn_operator::callback_type) {
char buffer[128] = {0};
snprintf_P(buffer, sizeof(buffer), PSTR(" %s (%d)"), name.c_str(), argc);
ctx.output.println(buffer);
});
terminalOK(ctx);
});
terminalRegisterCommand(F("RPN.TEST"), [](const terminal::CommandContext& ctx) {
if (ctx.argc != 2) {
terminalError(F("Wrong arguments"));
return;
}
ctx.output.print(F("Running RPN expression: "));
ctx.output.println(ctx.argv[1].c_str());
if (!rpn_process(_rpn_ctxt, ctx.argv[1].c_str())) {
rpn_stack_clear(_rpn_ctxt);
char buffer[64] = {0};
snprintf_P(buffer, sizeof(buffer), PSTR("position=%u category=%d code=%d"),
_rpn_ctxt.error.position, static_cast<int>(_rpn_ctxt.error.category), _rpn_ctxt.error.code);
terminalError(ctx, buffer);
return;
}
_rpnShowStack(ctx.output);
rpn_stack_clear(_rpn_ctxt);
terminalOK(ctx);
});
}
#endif
// enables us to use rules without any events firing
// notice: requires rpnRun to trigger at least once so that we can install runners
void _rpnRunnersCheck() {
auto ts = millis();
for (auto& runner : _rpn_runners) {
if (ts - runner.last >= runner.period) {
runner.expired = true;
runner.last = ts;
_rpn_run = true;
}
}
}
void _rpnRunnersReset() {
auto old = std::remove_if(_rpn_runners.begin(), _rpn_runners.end(), [](RpnRunner& runner) {
return (RpnRunner::Policy::OneShot == runner.policy) && runner.expired;
});
if (old != _rpn_runners.end()) {
_rpn_runners.erase(old, _rpn_runners.end());
}
for (auto& runner : _rpn_runners) {
runner.expired = false;
}
}
void _rpnRun() {
if (!_rpn_run) {
return;
}
if (millis() - _rpn_last <= _rpn_delay) {
return;
}
_rpn_last = millis();
_rpn_run = false;
String rule;
unsigned char i = 0;
while ((rule = getSetting({"rpnRule", i++})).length()) {
rpn_process(_rpn_ctxt, rule.c_str());
rpn_stack_clear(_rpn_ctxt);
}
if (!getSetting("rpnSticky", 1 == RPN_STICKY)) {
rpn_variables_clear(_rpn_ctxt);
}
}
void _rpnLoop() {
_rpnRunnersCheck();
_rpnRun();
_rpnRunnersReset();
}
void rpnSetup() {
// Init context
_rpnInit();
// Load & cache settings
_rpnConfigure();
// Terminal commands
#if TERMINAL_SUPPORT
_rpnInitCommands();
#endif
// Websockets
#if WEB_SUPPORT
wsRegister()
.onVisible([](JsonObject& root) { root["rpnVisible"] = 1; })
.onConnected(_rpnWebSocketOnConnected)
.onKeyCheck(_rpnWebSocketOnKeyCheck);
#endif
// MQTT
#if MQTT_SUPPORT
mqttRegister(_rpnMQTTCallback);
#endif
#if NTP_SUPPORT
ntpOnTick([](NtpTick tick) {
switch (tick) {
case NtpTick::EveryMinute:
_rpn_ntp_tick_minute = true;
break;
case NtpTick::EveryHour:
_rpn_ntp_tick_hour = true;
break;
}
_rpn_run = true;
});
#endif
#if RELAY_SUPPORT
relaySetStatusChange(_rpnRelayStatus);
#endif
#if LIGHT_PROVIDER != LIGHT_PROVIDER_NONE
lightSetReportListener(_rpnLightStatus);
#endif
#if RFB_SUPPORT
_rpnRfbSetup();
#endif
#if SENSOR_SUPPORT
sensorSetMagnitudeRead(_rpnSensorMagnitudeRead);
#endif
espurnaRegisterReload(_rpnConfigure);
espurnaRegisterLoop(_rpnLoop);
_rpn_last = millis();
_rpn_run = true;
}
#endif // RPN_RULES_SUPPORT