/*
|
|
|
|
SENSOR MODULE
|
|
|
|
Copyright (C) 2016-2019 by Xose Pérez <xose dot perez at gmail dot com>
|
|
|
|
*/
|
|
|
|
#if SENSOR_SUPPORT
|
|
|
|
#include <vector>
|
|
#include "filters/LastFilter.h"
|
|
#include "filters/MaxFilter.h"
|
|
#include "filters/MedianFilter.h"
|
|
#include "filters/MovingAverageFilter.h"
|
|
#include "sensors/BaseSensor.h"
|
|
|
|
#include <float.h>
|
|
|
|
typedef struct {
|
|
BaseSensor * sensor; // Sensor object
|
|
BaseFilter * filter; // Filter object
|
|
unsigned char local; // Local index in its provider
|
|
unsigned char type; // Type of measurement
|
|
unsigned char decimals; // Number of decimals in textual representation
|
|
unsigned char global; // Global index in its type
|
|
double current; // Current (last) value, unfiltered
|
|
double reported; // Last reported value
|
|
double min_change; // Minimum value change to report
|
|
double max_change; // Maximum value change to report
|
|
} sensor_magnitude_t;
|
|
|
|
std::vector<BaseSensor *> _sensors;
|
|
std::vector<sensor_magnitude_t> _magnitudes;
|
|
bool _sensors_ready = false;
|
|
|
|
unsigned char _counts[MAGNITUDE_MAX];
|
|
bool _sensor_realtime = API_REAL_TIME_VALUES;
|
|
unsigned long _sensor_read_interval = 1000 * SENSOR_READ_INTERVAL;
|
|
unsigned char _sensor_report_every = SENSOR_REPORT_EVERY;
|
|
unsigned char _sensor_save_every = SENSOR_SAVE_EVERY;
|
|
unsigned char _sensor_power_units = SENSOR_POWER_UNITS;
|
|
unsigned char _sensor_energy_units = SENSOR_ENERGY_UNITS;
|
|
unsigned char _sensor_temperature_units = SENSOR_TEMPERATURE_UNITS;
|
|
double _sensor_temperature_correction = SENSOR_TEMPERATURE_CORRECTION;
|
|
double _sensor_humidity_correction = SENSOR_HUMIDITY_CORRECTION;
|
|
|
|
#if PZEM004T_SUPPORT
|
|
PZEM004TSensor *pzem004t_sensor;
|
|
#endif
|
|
|
|
String _sensor_energy_reset_ts = String();
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Private
|
|
// -----------------------------------------------------------------------------
|
|
|
|
unsigned char _magnitudeDecimals(unsigned char type) {
|
|
|
|
// Hardcoded decimals (these should be linked to the unit, instead of the magnitude)
|
|
|
|
if (type == MAGNITUDE_ANALOG) return ANALOG_DECIMALS;
|
|
if (type == MAGNITUDE_ENERGY ||
|
|
type == MAGNITUDE_ENERGY_DELTA) {
|
|
if (_sensor_energy_units == ENERGY_KWH) return 3;
|
|
}
|
|
if (type == MAGNITUDE_POWER_ACTIVE ||
|
|
type == MAGNITUDE_POWER_APPARENT ||
|
|
type == MAGNITUDE_POWER_REACTIVE) {
|
|
if (_sensor_power_units == POWER_KILOWATTS) return 3;
|
|
}
|
|
if (type < MAGNITUDE_MAX) return pgm_read_byte(magnitude_decimals + type);
|
|
return 0;
|
|
|
|
}
|
|
|
|
double _magnitudeProcess(unsigned char type, unsigned char decimals, double value) {
|
|
|
|
// Hardcoded conversions (these should be linked to the unit, instead of the magnitude)
|
|
|
|
if (type == MAGNITUDE_TEMPERATURE) {
|
|
if (_sensor_temperature_units == TMP_FAHRENHEIT) value = value * 1.8 + 32;
|
|
value = value + _sensor_temperature_correction;
|
|
}
|
|
|
|
if (type == MAGNITUDE_HUMIDITY) {
|
|
value = constrain(value + _sensor_humidity_correction, 0, 100);
|
|
}
|
|
|
|
if (type == MAGNITUDE_ENERGY ||
|
|
type == MAGNITUDE_ENERGY_DELTA) {
|
|
if (_sensor_energy_units == ENERGY_KWH) value = value / 3600000;
|
|
}
|
|
if (type == MAGNITUDE_POWER_ACTIVE ||
|
|
type == MAGNITUDE_POWER_APPARENT ||
|
|
type == MAGNITUDE_POWER_REACTIVE) {
|
|
if (_sensor_power_units == POWER_KILOWATTS) value = value / 1000;
|
|
}
|
|
|
|
return roundTo(value, decimals);
|
|
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
#if WEB_SUPPORT
|
|
|
|
template<typename T> void _sensorWebSocketMagnitudes(JsonObject& root, T prefix) {
|
|
|
|
// ws produces flat list <prefix>Magnitudes
|
|
String ws_name = String(prefix);
|
|
ws_name.concat("Magnitudes");
|
|
|
|
// config uses <prefix>Magnitude<index> (cut 's')
|
|
String conf_name = ws_name.substring(0, ws_name.length() - 1);
|
|
|
|
JsonObject& list = root.createNestedObject(ws_name);
|
|
list["size"] = magnitudeCount();
|
|
|
|
JsonArray& name = list.createNestedArray("name");
|
|
JsonArray& type = list.createNestedArray("type");
|
|
JsonArray& index = list.createNestedArray("index");
|
|
JsonArray& idx = list.createNestedArray("idx");
|
|
|
|
for (unsigned char i=0; i<magnitudeCount(); ++i) {
|
|
name.add(magnitudeName(i));
|
|
type.add(magnitudeType(i));
|
|
index.add(magnitudeIndex(i));
|
|
idx.add(getSetting(conf_name, i, 0).toInt());
|
|
}
|
|
}
|
|
|
|
bool _sensorWebSocketOnReceive(const char * key, JsonVariant& value) {
|
|
if (strncmp(key, "pwr", 3) == 0) return true;
|
|
if (strncmp(key, "sns", 3) == 0) return true;
|
|
if (strncmp(key, "tmp", 3) == 0) return true;
|
|
if (strncmp(key, "hum", 3) == 0) return true;
|
|
if (strncmp(key, "ene", 3) == 0) return true;
|
|
return false;
|
|
}
|
|
|
|
void _sensorWebSocketSendData(JsonObject& root) {
|
|
|
|
char buffer[10];
|
|
bool hasTemperature = false;
|
|
bool hasHumidity = false;
|
|
bool hasMICS = false;
|
|
|
|
JsonObject& magnitudes = root.createNestedObject("magnitudes");
|
|
uint8_t size = 0;
|
|
|
|
JsonArray& index = magnitudes.createNestedArray("index");
|
|
JsonArray& type = magnitudes.createNestedArray("type");
|
|
JsonArray& value = magnitudes.createNestedArray("value");
|
|
JsonArray& units = magnitudes.createNestedArray("units");
|
|
JsonArray& error = magnitudes.createNestedArray("error");
|
|
JsonArray& description = magnitudes.createNestedArray("description");
|
|
|
|
for (unsigned char i=0; i<magnitudeCount(); i++) {
|
|
|
|
sensor_magnitude_t magnitude = _magnitudes[i];
|
|
if (magnitude.type == MAGNITUDE_EVENT) continue;
|
|
++size;
|
|
|
|
unsigned char decimals = magnitude.decimals;
|
|
dtostrf(magnitude.current, 1-sizeof(buffer), decimals, buffer);
|
|
|
|
index.add<uint8_t>(magnitude.global);
|
|
type.add<uint8_t>(magnitude.type);
|
|
value.add(buffer);
|
|
units.add(magnitudeUnits(magnitude.type));
|
|
error.add(magnitude.sensor->error());
|
|
|
|
if (magnitude.type == MAGNITUDE_ENERGY) {
|
|
if (_sensor_energy_reset_ts.length() == 0) _sensorResetTS();
|
|
description.add(magnitude.sensor->slot(magnitude.local) + String(" (since ") + _sensor_energy_reset_ts + String(")"));
|
|
} else {
|
|
description.add(magnitude.sensor->slot(magnitude.local));
|
|
}
|
|
|
|
if (magnitude.type == MAGNITUDE_TEMPERATURE) hasTemperature = true;
|
|
if (magnitude.type == MAGNITUDE_HUMIDITY) hasHumidity = true;
|
|
#if MICS2710_SUPPORT || MICS5525_SUPPORT
|
|
if (magnitude.type == MAGNITUDE_CO || magnitude.type == MAGNITUDE_NO2) hasMICS = true;
|
|
#endif
|
|
}
|
|
|
|
magnitudes["size"] = size;
|
|
|
|
if (hasTemperature) root["temperatureVisible"] = 1;
|
|
if (hasHumidity) root["humidityVisible"] = 1;
|
|
if (hasMICS) root["micsVisible"] = 1;
|
|
|
|
}
|
|
|
|
void _sensorWebSocketStart(JsonObject& root) {
|
|
|
|
for (unsigned char i=0; i<_sensors.size(); i++) {
|
|
|
|
BaseSensor * sensor = _sensors[i];
|
|
|
|
#if EMON_ANALOG_SUPPORT
|
|
if (sensor->getID() == SENSOR_EMON_ANALOG_ID) {
|
|
root["emonVisible"] = 1;
|
|
root["pwrVisible"] = 1;
|
|
root["pwrVoltage"] = ((EmonAnalogSensor *) sensor)->getVoltage();
|
|
}
|
|
#endif
|
|
|
|
#if HLW8012_SUPPORT
|
|
if (sensor->getID() == SENSOR_HLW8012_ID) {
|
|
root["hlwVisible"] = 1;
|
|
root["pwrVisible"] = 1;
|
|
}
|
|
#endif
|
|
|
|
#if CSE7766_SUPPORT
|
|
if (sensor->getID() == SENSOR_CSE7766_ID) {
|
|
root["cseVisible"] = 1;
|
|
root["pwrVisible"] = 1;
|
|
}
|
|
#endif
|
|
|
|
#if V9261F_SUPPORT
|
|
if (sensor->getID() == SENSOR_V9261F_ID) {
|
|
root["pwrVisible"] = 1;
|
|
}
|
|
#endif
|
|
|
|
#if ECH1560_SUPPORT
|
|
if (sensor->getID() == SENSOR_ECH1560_ID) {
|
|
root["pwrVisible"] = 1;
|
|
}
|
|
#endif
|
|
|
|
#if PZEM004T_SUPPORT
|
|
if (sensor->getID() == SENSOR_PZEM004T_ID) {
|
|
root["pzemVisible"] = 1;
|
|
root["pwrVisible"] = 1;
|
|
}
|
|
#endif
|
|
|
|
#if PULSEMETER_SUPPORT
|
|
if (sensor->getID() == SENSOR_PULSEMETER_ID) {
|
|
root["pmVisible"] = 1;
|
|
root["pwrRatioE"] = ((PulseMeterSensor *) sensor)->getEnergyRatio();
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
if (magnitudeCount()) {
|
|
root["snsVisible"] = 1;
|
|
//root["apiRealTime"] = _sensor_realtime;
|
|
root["pwrUnits"] = _sensor_power_units;
|
|
root["eneUnits"] = _sensor_energy_units;
|
|
root["tmpUnits"] = _sensor_temperature_units;
|
|
root["tmpCorrection"] = _sensor_temperature_correction;
|
|
root["humCorrection"] = _sensor_humidity_correction;
|
|
root["snsRead"] = _sensor_read_interval / 1000;
|
|
root["snsReport"] = _sensor_report_every;
|
|
root["snsSave"] = _sensor_save_every;
|
|
}
|
|
|
|
/*
|
|
// Sensors manifest
|
|
JsonArray& manifest = root.createNestedArray("manifest");
|
|
#if BMX280_SUPPORT
|
|
BMX280Sensor::manifest(manifest);
|
|
#endif
|
|
|
|
// Sensors configuration
|
|
JsonArray& sensors = root.createNestedArray("sensors");
|
|
for (unsigned char i; i<_sensors.size(); i++) {
|
|
JsonObject& sensor = sensors.createNestedObject();
|
|
sensor["index"] = i;
|
|
sensor["id"] = _sensors[i]->getID();
|
|
_sensors[i]->getConfig(sensor);
|
|
}
|
|
*/
|
|
|
|
}
|
|
|
|
#endif // WEB_SUPPORT
|
|
|
|
#if API_SUPPORT
|
|
|
|
void _sensorAPISetup() {
|
|
|
|
for (unsigned char magnitude_id=0; magnitude_id<_magnitudes.size(); magnitude_id++) {
|
|
|
|
sensor_magnitude_t magnitude = _magnitudes[magnitude_id];
|
|
|
|
String topic = magnitudeTopic(magnitude.type);
|
|
if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) topic = topic + "/" + String(magnitude.global);
|
|
|
|
apiRegister(topic.c_str(), [magnitude_id](char * buffer, size_t len) {
|
|
sensor_magnitude_t magnitude = _magnitudes[magnitude_id];
|
|
unsigned char decimals = magnitude.decimals;
|
|
double value = _sensor_realtime ? magnitude.current : magnitude.reported;
|
|
dtostrf(value, 1-len, decimals, buffer);
|
|
});
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif // API_SUPPORT
|
|
|
|
#if TERMINAL_SUPPORT
|
|
|
|
void _sensorInitCommands() {
|
|
terminalRegisterCommand(F("MAGNITUDES"), [](Embedis* e) {
|
|
for (unsigned char i=0; i<_magnitudes.size(); i++) {
|
|
sensor_magnitude_t magnitude = _magnitudes[i];
|
|
DEBUG_MSG_P(PSTR("[SENSOR] * %2d: %s @ %s (%s/%d)\n"),
|
|
i,
|
|
magnitudeTopic(magnitude.type).c_str(),
|
|
magnitude.sensor->slot(magnitude.local).c_str(),
|
|
magnitudeTopic(magnitude.type).c_str(),
|
|
magnitude.global
|
|
);
|
|
}
|
|
terminalOK();
|
|
});
|
|
#if PZEM004T_SUPPORT
|
|
terminalRegisterCommand(F("PZ.ADDRESS"), [](Embedis* e) {
|
|
if (e->argc == 1) {
|
|
DEBUG_MSG_P(PSTR("[SENSOR] PZEM004T\n"));
|
|
unsigned char dev_count = pzem004t_sensor->getAddressesCount();
|
|
for(unsigned char dev = 0; dev < dev_count; dev++) {
|
|
DEBUG_MSG_P(PSTR("Device %d/%s\n"), dev, pzem004t_sensor->getAddress(dev).c_str());
|
|
}
|
|
terminalOK();
|
|
} else if(e->argc == 2) {
|
|
IPAddress addr;
|
|
if (addr.fromString(String(e->argv[1]))) {
|
|
if(pzem004t_sensor->setDeviceAddress(&addr)) {
|
|
terminalOK();
|
|
}
|
|
} else {
|
|
terminalError(F("Invalid address argument"));
|
|
}
|
|
} else {
|
|
terminalError(F("Wrong arguments"));
|
|
}
|
|
});
|
|
terminalRegisterCommand(F("PZ.RESET"), [](Embedis* e) {
|
|
if(e->argc > 2) {
|
|
terminalError(F("Wrong arguments"));
|
|
} else {
|
|
unsigned char init = e->argc == 2 ? String(e->argv[1]).toInt() : 0;
|
|
unsigned char limit = e->argc == 2 ? init +1 : pzem004t_sensor->getAddressesCount();
|
|
DEBUG_MSG_P(PSTR("[SENSOR] PZEM004T\n"));
|
|
for(unsigned char dev = init; dev < limit; dev++) {
|
|
float offset = pzem004t_sensor->resetEnergy(dev);
|
|
setSetting("pzEneTotal", dev, offset);
|
|
DEBUG_MSG_P(PSTR("Device %d/%s - Offset: %s\n"), dev, pzem004t_sensor->getAddress(dev).c_str(), String(offset).c_str());
|
|
}
|
|
terminalOK();
|
|
}
|
|
});
|
|
terminalRegisterCommand(F("PZ.VALUE"), [](Embedis* e) {
|
|
if(e->argc > 2) {
|
|
terminalError(F("Wrong arguments"));
|
|
} else {
|
|
unsigned char init = e->argc == 2 ? String(e->argv[1]).toInt() : 0;
|
|
unsigned char limit = e->argc == 2 ? init +1 : pzem004t_sensor->getAddressesCount();
|
|
DEBUG_MSG_P(PSTR("[SENSOR] PZEM004T\n"));
|
|
for(unsigned char dev = init; dev < limit; dev++) {
|
|
DEBUG_MSG_P(PSTR("Device %d/%s - Current: %s Voltage: %s Power: %s Energy: %s\n"), //
|
|
dev,
|
|
pzem004t_sensor->getAddress(dev).c_str(),
|
|
String(pzem004t_sensor->value(dev * PZ_MAGNITUDE_CURRENT_INDEX)).c_str(),
|
|
String(pzem004t_sensor->value(dev * PZ_MAGNITUDE_VOLTAGE_INDEX)).c_str(),
|
|
String(pzem004t_sensor->value(dev * PZ_MAGNITUDE_POWER_ACTIVE_INDEX)).c_str(),
|
|
String(pzem004t_sensor->value(dev * PZ_MAGNITUDE_ENERGY_INDEX)).c_str());
|
|
}
|
|
terminalOK();
|
|
}
|
|
});
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
void _sensorTick() {
|
|
for (unsigned char i=0; i<_sensors.size(); i++) {
|
|
_sensors[i]->tick();
|
|
}
|
|
}
|
|
|
|
void _sensorPre() {
|
|
for (unsigned char i=0; i<_sensors.size(); i++) {
|
|
_sensors[i]->pre();
|
|
if (!_sensors[i]->status()) {
|
|
DEBUG_MSG_P(PSTR("[SENSOR] Error reading data from %s (error: %d)\n"),
|
|
_sensors[i]->description().c_str(),
|
|
_sensors[i]->error()
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
void _sensorPost() {
|
|
for (unsigned char i=0; i<_sensors.size(); i++) {
|
|
_sensors[i]->post();
|
|
}
|
|
}
|
|
|
|
void _sensorResetTS() {
|
|
#if NTP_SUPPORT
|
|
if (ntpSynced()) {
|
|
if (_sensor_energy_reset_ts.length() == 0) {
|
|
_sensor_energy_reset_ts = ntpDateTime(now() - millis() / 1000);
|
|
} else {
|
|
_sensor_energy_reset_ts = ntpDateTime(now());
|
|
}
|
|
} else {
|
|
_sensor_energy_reset_ts = String();
|
|
}
|
|
setSetting("snsResetTS", _sensor_energy_reset_ts);
|
|
#endif
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Sensor initialization
|
|
// -----------------------------------------------------------------------------
|
|
|
|
void _sensorLoad() {
|
|
|
|
/*
|
|
|
|
This is temporal, in the future sensors will be initialized based on
|
|
soft configuration (data stored in EEPROM config) so you will be able
|
|
to define and configure new sensors on the fly
|
|
|
|
At the time being, only enabled sensors (those with *_SUPPORT to 1) are being
|
|
loaded and initialized here. If you want to add new sensors of the same type
|
|
just duplicate the block and change the arguments for the set* methods.
|
|
Check the DHT block below for an example
|
|
|
|
*/
|
|
|
|
#if AM2320_SUPPORT
|
|
{
|
|
AM2320Sensor * sensor = new AM2320Sensor();
|
|
sensor->setAddress(AM2320_ADDRESS);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if ANALOG_SUPPORT
|
|
{
|
|
AnalogSensor * sensor = new AnalogSensor();
|
|
sensor->setSamples(ANALOG_SAMPLES);
|
|
sensor->setDelay(ANALOG_DELAY);
|
|
//CICM For analog scaling
|
|
sensor->setFactor(ANALOG_FACTOR);
|
|
sensor->setOffset(ANALOG_OFFSET);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if BH1750_SUPPORT
|
|
{
|
|
BH1750Sensor * sensor = new BH1750Sensor();
|
|
sensor->setAddress(BH1750_ADDRESS);
|
|
sensor->setMode(BH1750_MODE);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if BMP180_SUPPORT
|
|
{
|
|
BMP180Sensor * sensor = new BMP180Sensor();
|
|
sensor->setAddress(BMP180_ADDRESS);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if BMX280_SUPPORT
|
|
{
|
|
BMX280Sensor * sensor = new BMX280Sensor();
|
|
sensor->setAddress(BMX280_ADDRESS);
|
|
_sensors.push_back(sensor);
|
|
|
|
#if (BMX280_NUMBER == 2)
|
|
// Up to two BME sensors allowed on one I2C bus
|
|
BMX280Sensor * sensor2 = new BMX280Sensor();
|
|
// For second sensor, if BMX280_ADDRESS is 0x00 then auto-discover
|
|
// otherwise choose the other unnamed sensor address
|
|
sensor->setAddress( (BMX280_ADDRESS == 0x00) ? 0x00 : (0x76 + 0x77 - BMX280_ADDRESS));
|
|
_sensors.push_back(sensor2);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if CSE7766_SUPPORT
|
|
{
|
|
CSE7766Sensor * sensor = new CSE7766Sensor();
|
|
sensor->setRX(CSE7766_PIN);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if DALLAS_SUPPORT
|
|
{
|
|
DallasSensor * sensor = new DallasSensor();
|
|
sensor->setGPIO(DALLAS_PIN);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if DHT_SUPPORT
|
|
{
|
|
DHTSensor * sensor = new DHTSensor();
|
|
sensor->setGPIO(DHT_PIN);
|
|
sensor->setType(DHT_TYPE);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
// Example on how to add a second DHT sensor
|
|
// DHT2_PIN and DHT2_TYPE should be defined in sensors.h file
|
|
#if DHT_SUPPORT
|
|
{
|
|
DHTSensor * sensor = new DHTSensor();
|
|
sensor->setGPIO(DHT2_PIN);
|
|
sensor->setType(DHT2_TYPE);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
*/
|
|
|
|
#if DIGITAL_SUPPORT
|
|
{
|
|
DigitalSensor * sensor = new DigitalSensor();
|
|
sensor->setGPIO(DIGITAL_PIN);
|
|
sensor->setMode(DIGITAL_PIN_MODE);
|
|
sensor->setDefault(DIGITAL_DEFAULT_STATE);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if ECH1560_SUPPORT
|
|
{
|
|
ECH1560Sensor * sensor = new ECH1560Sensor();
|
|
sensor->setCLK(ECH1560_CLK_PIN);
|
|
sensor->setMISO(ECH1560_MISO_PIN);
|
|
sensor->setInverted(ECH1560_INVERTED);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if EMON_ADC121_SUPPORT
|
|
{
|
|
EmonADC121Sensor * sensor = new EmonADC121Sensor();
|
|
sensor->setAddress(EMON_ADC121_I2C_ADDRESS);
|
|
sensor->setVoltage(EMON_MAINS_VOLTAGE);
|
|
sensor->setReference(EMON_REFERENCE_VOLTAGE);
|
|
sensor->setCurrentRatio(0, EMON_CURRENT_RATIO);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if EMON_ADS1X15_SUPPORT
|
|
{
|
|
EmonADS1X15Sensor * sensor = new EmonADS1X15Sensor();
|
|
sensor->setAddress(EMON_ADS1X15_I2C_ADDRESS);
|
|
sensor->setType(EMON_ADS1X15_TYPE);
|
|
sensor->setMask(EMON_ADS1X15_MASK);
|
|
sensor->setGain(EMON_ADS1X15_GAIN);
|
|
sensor->setVoltage(EMON_MAINS_VOLTAGE);
|
|
sensor->setCurrentRatio(0, EMON_CURRENT_RATIO);
|
|
sensor->setCurrentRatio(1, EMON_CURRENT_RATIO);
|
|
sensor->setCurrentRatio(2, EMON_CURRENT_RATIO);
|
|
sensor->setCurrentRatio(3, EMON_CURRENT_RATIO);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if EMON_ANALOG_SUPPORT
|
|
{
|
|
EmonAnalogSensor * sensor = new EmonAnalogSensor();
|
|
sensor->setVoltage(EMON_MAINS_VOLTAGE);
|
|
sensor->setReference(EMON_REFERENCE_VOLTAGE);
|
|
sensor->setCurrentRatio(0, EMON_CURRENT_RATIO);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if EVENTS_SUPPORT
|
|
{
|
|
EventSensor * sensor = new EventSensor();
|
|
sensor->setGPIO(EVENTS_PIN);
|
|
sensor->setTrigger(EVENTS_TRIGGER);
|
|
sensor->setPinMode(EVENTS_PIN_MODE);
|
|
sensor->setDebounceTime(EVENTS_DEBOUNCE);
|
|
sensor->setInterruptMode(EVENTS_INTERRUPT_MODE);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if GEIGER_SUPPORT
|
|
{
|
|
GeigerSensor * sensor = new GeigerSensor(); // Create instance of thr Geiger module.
|
|
sensor->setGPIO(GEIGER_PIN); // Interrupt pin of the attached geiger counter board.
|
|
sensor->setMode(GEIGER_PIN_MODE); // This pin is an input.
|
|
sensor->setDebounceTime(GEIGER_DEBOUNCE); // Debounce time 25ms, because https://github.com/Trickx/espurna/wiki/Geiger-counter
|
|
sensor->setInterruptMode(GEIGER_INTERRUPT_MODE); // Interrupt triggering: edge detection rising.
|
|
sensor->setCPM2SievertFactor(GEIGER_CPM2SIEVERT); // Conversion factor from counts per minute to µSv/h
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if GUVAS12SD_SUPPORT
|
|
{
|
|
GUVAS12SDSensor * sensor = new GUVAS12SDSensor();
|
|
sensor->setGPIO(GUVAS12SD_PIN);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if SONAR_SUPPORT
|
|
{
|
|
SonarSensor * sensor = new SonarSensor();
|
|
sensor->setEcho(SONAR_ECHO);
|
|
sensor->setIterations(SONAR_ITERATIONS);
|
|
sensor->setMaxDistance(SONAR_MAX_DISTANCE);
|
|
sensor->setTrigger(SONAR_TRIGGER);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if HLW8012_SUPPORT
|
|
{
|
|
HLW8012Sensor * sensor = new HLW8012Sensor();
|
|
sensor->setSEL(HLW8012_SEL_PIN);
|
|
sensor->setCF(HLW8012_CF_PIN);
|
|
sensor->setCF1(HLW8012_CF1_PIN);
|
|
sensor->setSELCurrent(HLW8012_SEL_CURRENT);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if MHZ19_SUPPORT
|
|
{
|
|
MHZ19Sensor * sensor = new MHZ19Sensor();
|
|
sensor->setRX(MHZ19_RX_PIN);
|
|
sensor->setTX(MHZ19_TX_PIN);
|
|
if (getSetting("mhz19CalibrateAuto", 0).toInt() == 1)
|
|
sensor->setCalibrateAuto(true);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if MICS2710_SUPPORT
|
|
{
|
|
MICS2710Sensor * sensor = new MICS2710Sensor();
|
|
sensor->setAnalogGPIO(MICS2710_NOX_PIN);
|
|
sensor->setPreHeatGPIO(MICS2710_PRE_PIN);
|
|
sensor->setRL(MICS2710_RL);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if MICS5525_SUPPORT
|
|
{
|
|
MICS5525Sensor * sensor = new MICS5525Sensor();
|
|
sensor->setAnalogGPIO(MICS5525_RED_PIN);
|
|
sensor->setRL(MICS5525_RL);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if NTC_SUPPORT
|
|
{
|
|
NTCSensor * sensor = new NTCSensor();
|
|
sensor->setSamples(NTC_SAMPLES);
|
|
sensor->setDelay(NTC_DELAY);
|
|
sensor->setUpstreamResistor(NTC_R_UP);
|
|
sensor->setDownstreamResistor(NTC_R_DOWN);
|
|
sensor->setBeta(NTC_BETA);
|
|
sensor->setR0(NTC_R0);
|
|
sensor->setT0(NTC_T0);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if PMSX003_SUPPORT
|
|
{
|
|
PMSX003Sensor * sensor = new PMSX003Sensor();
|
|
#if PMS_USE_SOFT
|
|
sensor->setRX(PMS_RX_PIN);
|
|
sensor->setTX(PMS_TX_PIN);
|
|
#else
|
|
sensor->setSerial(& PMS_HW_PORT);
|
|
#endif
|
|
sensor->setType(PMS_TYPE);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if PULSEMETER_SUPPORT
|
|
{
|
|
PulseMeterSensor * sensor = new PulseMeterSensor();
|
|
sensor->setGPIO(PULSEMETER_PIN);
|
|
sensor->setEnergyRatio(PULSEMETER_ENERGY_RATIO);
|
|
sensor->setDebounceTime(PULSEMETER_DEBOUNCE);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if PZEM004T_SUPPORT
|
|
{
|
|
PZEM004TSensor * sensor = pzem004t_sensor = new PZEM004TSensor();
|
|
#if PZEM004T_USE_SOFT
|
|
sensor->setRX(PZEM004T_RX_PIN);
|
|
sensor->setTX(PZEM004T_TX_PIN);
|
|
#else
|
|
sensor->setSerial(& PZEM004T_HW_PORT);
|
|
#endif
|
|
sensor->setAddresses(PZEM004T_ADDRESSES);
|
|
// Read saved energy offset
|
|
unsigned char dev_count = sensor->getAddressesCount();
|
|
for(unsigned char dev = 0; dev < dev_count; dev++) {
|
|
float value = getSetting("pzEneTotal", dev, 0).toFloat();
|
|
if (value > 0) sensor->resetEnergy(dev, value);
|
|
}
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if SENSEAIR_SUPPORT
|
|
{
|
|
SenseAirSensor * sensor = new SenseAirSensor();
|
|
sensor->setRX(SENSEAIR_RX_PIN);
|
|
sensor->setTX(SENSEAIR_TX_PIN);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if SDS011_SUPPORT
|
|
{
|
|
SDS011Sensor * sensor = new SDS011Sensor();
|
|
sensor->setRX(SDS011_RX_PIN);
|
|
sensor->setTX(SDS011_TX_PIN);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if SHT3X_I2C_SUPPORT
|
|
{
|
|
SHT3XI2CSensor * sensor = new SHT3XI2CSensor();
|
|
sensor->setAddress(SHT3X_I2C_ADDRESS);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if SI7021_SUPPORT
|
|
{
|
|
SI7021Sensor * sensor = new SI7021Sensor();
|
|
sensor->setAddress(SI7021_ADDRESS);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if TMP3X_SUPPORT
|
|
{
|
|
TMP3XSensor * sensor = new TMP3XSensor();
|
|
sensor->setType(TMP3X_TYPE);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if V9261F_SUPPORT
|
|
{
|
|
V9261FSensor * sensor = new V9261FSensor();
|
|
sensor->setRX(V9261F_PIN);
|
|
sensor->setInverted(V9261F_PIN_INVERSE);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if MAX6675_SUPPORT
|
|
{
|
|
MAX6675Sensor * sensor = new MAX6675Sensor();
|
|
sensor->setCS(MAX6675_CS_PIN);
|
|
sensor->setSO(MAX6675_SO_PIN);
|
|
sensor->setSCK(MAX6675_SCK_PIN);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if VEML6075_SUPPORT
|
|
{
|
|
VEML6075Sensor * sensor = new VEML6075Sensor();
|
|
sensor->setIntegrationTime(VEML6075_INTEGRATION_TIME);
|
|
sensor->setDynamicMode(VEML6075_DYNAMIC_MODE);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if VL53L1X_SUPPORT
|
|
{
|
|
VL53L1XSensor * sensor = new VL53L1XSensor();
|
|
sensor->setInterMeasurementPeriod(VL53L1X_INTER_MEASUREMENT_PERIOD);
|
|
sensor->setDistanceMode(VL53L1X_DISTANCE_MODE);
|
|
sensor->setMeasurementTimingBudget(VL53L1X_MEASUREMENT_TIMING_BUDGET);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
|
|
#if EZOPH_SUPPORT
|
|
{
|
|
EZOPHSensor * sensor = new EZOPHSensor();
|
|
sensor->setRX(EZOPH_RX_PIN);
|
|
sensor->setTX(EZOPH_TX_PIN);
|
|
_sensors.push_back(sensor);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void _sensorCallback(unsigned char i, unsigned char type, double value) {
|
|
|
|
DEBUG_MSG_P(PSTR("[SENSOR] Sensor #%u callback, type %u, payload: '%s'\n"), i, type, String(value).c_str());
|
|
|
|
for (unsigned char k=0; k<_magnitudes.size(); k++) {
|
|
if ((_sensors[i] == _magnitudes[k].sensor) && (type == _magnitudes[k].type)) {
|
|
_sensorReport(k, value);
|
|
return;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void _sensorInit() {
|
|
|
|
_sensors_ready = true;
|
|
_sensor_save_every = getSetting("snsSave", 0).toInt();
|
|
|
|
for (unsigned char i=0; i<_sensors.size(); i++) {
|
|
|
|
// Do not process an already initialized sensor
|
|
if (_sensors[i]->ready()) continue;
|
|
DEBUG_MSG_P(PSTR("[SENSOR] Initializing %s\n"), _sensors[i]->description().c_str());
|
|
|
|
// Force sensor to reload config
|
|
_sensors[i]->begin();
|
|
if (!_sensors[i]->ready()) {
|
|
if (_sensors[i]->error() != 0) DEBUG_MSG_P(PSTR("[SENSOR] -> ERROR %d\n"), _sensors[i]->error());
|
|
_sensors_ready = false;
|
|
continue;
|
|
}
|
|
|
|
// Initialize magnitudes
|
|
for (unsigned char k=0; k<_sensors[i]->count(); k++) {
|
|
|
|
unsigned char type = _sensors[i]->type(k);
|
|
signed char decimals = _sensors[i]->decimals(type);
|
|
if (decimals < 0) decimals = _magnitudeDecimals(type);
|
|
|
|
sensor_magnitude_t new_magnitude;
|
|
new_magnitude.sensor = _sensors[i];
|
|
new_magnitude.local = k;
|
|
new_magnitude.type = type;
|
|
new_magnitude.decimals = (unsigned char) decimals;
|
|
new_magnitude.global = _counts[type];
|
|
new_magnitude.current = 0;
|
|
new_magnitude.reported = 0;
|
|
new_magnitude.min_change = 0;
|
|
new_magnitude.max_change = 0;
|
|
|
|
// TODO: find a proper way to extend this to min/max of any magnitude
|
|
if (MAGNITUDE_ENERGY == type) {
|
|
new_magnitude.max_change = getSetting("eneMaxDelta", ENERGY_MAX_CHANGE).toFloat();
|
|
} else if (MAGNITUDE_TEMPERATURE == type) {
|
|
new_magnitude.min_change = getSetting("tmpMinDelta", TEMPERATURE_MIN_CHANGE).toFloat();
|
|
} else if (MAGNITUDE_HUMIDITY == type) {
|
|
new_magnitude.min_change = getSetting("humMinDelta", HUMIDITY_MIN_CHANGE).toFloat();
|
|
}
|
|
|
|
if (MAGNITUDE_ENERGY == type) {
|
|
new_magnitude.filter = new LastFilter();
|
|
} else if (MAGNITUDE_DIGITAL == type) {
|
|
new_magnitude.filter = new MaxFilter();
|
|
} else if (MAGNITUDE_COUNT == type || MAGNITUDE_GEIGER_CPM == type || MAGNITUDE_GEIGER_SIEVERT == type) { // For geiger counting moving average filter is the most appropriate if needed at all.
|
|
new_magnitude.filter = new MovingAverageFilter();
|
|
} else {
|
|
new_magnitude.filter = new MedianFilter();
|
|
}
|
|
new_magnitude.filter->resize(_sensor_report_every);
|
|
|
|
_magnitudes.push_back(new_magnitude);
|
|
|
|
DEBUG_MSG_P(PSTR("[SENSOR] -> %s:%d\n"), magnitudeTopic(type).c_str(), _counts[type]);
|
|
|
|
_counts[type] = _counts[type] + 1;
|
|
|
|
}
|
|
|
|
// Hook callback
|
|
_sensors[i]->onEvent([i](unsigned char type, double value) {
|
|
_sensorCallback(i, type, value);
|
|
});
|
|
|
|
// Custom initializations
|
|
|
|
#if MICS2710_SUPPORT
|
|
if (_sensors[i]->getID() == SENSOR_MICS2710_ID) {
|
|
MICS2710Sensor * sensor = (MICS2710Sensor *) _sensors[i];
|
|
sensor->setR0(getSetting("snsR0", MICS2710_R0).toInt());
|
|
}
|
|
#endif // MICS2710_SUPPORT
|
|
|
|
#if MICS5525_SUPPORT
|
|
if (_sensors[i]->getID() == SENSOR_MICS5525_ID) {
|
|
MICS5525Sensor * sensor = (MICS5525Sensor *) _sensors[i];
|
|
sensor->setR0(getSetting("snsR0", MICS5525_R0).toInt());
|
|
}
|
|
#endif // MICS5525_SUPPORT
|
|
|
|
#if EMON_ANALOG_SUPPORT
|
|
|
|
if (_sensors[i]->getID() == SENSOR_EMON_ANALOG_ID) {
|
|
EmonAnalogSensor * sensor = (EmonAnalogSensor *) _sensors[i];
|
|
sensor->setCurrentRatio(0, getSetting("pwrRatioC", EMON_CURRENT_RATIO).toFloat());
|
|
sensor->setVoltage(getSetting("pwrVoltage", EMON_MAINS_VOLTAGE).toInt());
|
|
double value = (_sensor_save_every > 0) ? getSetting("eneTotal", 0).toInt() : 0;
|
|
if (value > 0) sensor->resetEnergy(0, value);
|
|
}
|
|
|
|
#endif // EMON_ANALOG_SUPPORT
|
|
|
|
#if HLW8012_SUPPORT
|
|
|
|
if (_sensors[i]->getID() == SENSOR_HLW8012_ID) {
|
|
|
|
HLW8012Sensor * sensor = (HLW8012Sensor *) _sensors[i];
|
|
|
|
double value;
|
|
|
|
value = getSetting("pwrRatioC", HLW8012_CURRENT_RATIO).toFloat();
|
|
if (value > 0) sensor->setCurrentRatio(value);
|
|
|
|
value = getSetting("pwrRatioV", HLW8012_VOLTAGE_RATIO).toFloat();
|
|
if (value > 0) sensor->setVoltageRatio(value);
|
|
|
|
value = getSetting("pwrRatioP", HLW8012_POWER_RATIO).toFloat();
|
|
if (value > 0) sensor->setPowerRatio(value);
|
|
|
|
value = (_sensor_save_every > 0) ? getSetting("eneTotal", 0).toInt() : 0;
|
|
if (value > 0) sensor->resetEnergy(value);
|
|
|
|
}
|
|
|
|
#endif // HLW8012_SUPPORT
|
|
|
|
#if CSE7766_SUPPORT
|
|
|
|
if (_sensors[i]->getID() == SENSOR_CSE7766_ID) {
|
|
|
|
CSE7766Sensor * sensor = (CSE7766Sensor *) _sensors[i];
|
|
|
|
double value;
|
|
|
|
value = getSetting("pwrRatioC", 0).toFloat();
|
|
if (value > 0) sensor->setCurrentRatio(value);
|
|
|
|
value = getSetting("pwrRatioV", 0).toFloat();
|
|
if (value > 0) sensor->setVoltageRatio(value);
|
|
|
|
value = getSetting("pwrRatioP", 0).toFloat();
|
|
if (value > 0) sensor->setPowerRatio(value);
|
|
|
|
value = (_sensor_save_every > 0) ? getSetting("eneTotal", 0).toInt() : 0;
|
|
if (value > 0) sensor->resetEnergy(value);
|
|
|
|
}
|
|
|
|
#endif // CSE7766_SUPPORT
|
|
|
|
#if PULSEMETER_SUPPORT
|
|
if (_sensors[i]->getID() == SENSOR_PULSEMETER_ID) {
|
|
PulseMeterSensor * sensor = (PulseMeterSensor *) _sensors[i];
|
|
sensor->setEnergyRatio(getSetting("pwrRatioE", PULSEMETER_ENERGY_RATIO).toInt());
|
|
}
|
|
#endif // PULSEMETER_SUPPORT
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void _sensorConfigure() {
|
|
|
|
// General sensor settings
|
|
_sensor_read_interval = 1000 * constrain(getSetting("snsRead", SENSOR_READ_INTERVAL).toInt(), SENSOR_READ_MIN_INTERVAL, SENSOR_READ_MAX_INTERVAL);
|
|
_sensor_report_every = constrain(getSetting("snsReport", SENSOR_REPORT_EVERY).toInt(), SENSOR_REPORT_MIN_EVERY, SENSOR_REPORT_MAX_EVERY);
|
|
_sensor_save_every = getSetting("snsSave", SENSOR_SAVE_EVERY).toInt();
|
|
_sensor_realtime = getSetting("apiRealTime", API_REAL_TIME_VALUES).toInt() == 1;
|
|
_sensor_power_units = getSetting("pwrUnits", SENSOR_POWER_UNITS).toInt();
|
|
_sensor_energy_units = getSetting("eneUnits", SENSOR_ENERGY_UNITS).toInt();
|
|
_sensor_temperature_units = getSetting("tmpUnits", SENSOR_TEMPERATURE_UNITS).toInt();
|
|
_sensor_temperature_correction = getSetting("tmpCorrection", SENSOR_TEMPERATURE_CORRECTION).toFloat();
|
|
_sensor_humidity_correction = getSetting("humCorrection", SENSOR_HUMIDITY_CORRECTION).toFloat();
|
|
_sensor_energy_reset_ts = getSetting("snsResetTS", "");
|
|
|
|
// Specific sensor settings
|
|
for (unsigned char i=0; i<_sensors.size(); i++) {
|
|
|
|
#if MICS2710_SUPPORT
|
|
|
|
if (_sensors[i]->getID() == SENSOR_MICS2710_ID) {
|
|
if (getSetting("snsResetCalibration", 0).toInt() == 1) {
|
|
MICS2710Sensor * sensor = (MICS2710Sensor *) _sensors[i];
|
|
sensor->calibrate();
|
|
setSetting("snsR0", sensor->getR0());
|
|
}
|
|
}
|
|
|
|
#endif // MICS2710_SUPPORT
|
|
|
|
#if MICS5525_SUPPORT
|
|
|
|
if (_sensors[i]->getID() == SENSOR_MICS5525_ID) {
|
|
if (getSetting("snsResetCalibration", 0).toInt() == 1) {
|
|
MICS5525Sensor * sensor = (MICS5525Sensor *) _sensors[i];
|
|
sensor->calibrate();
|
|
setSetting("snsR0", sensor->getR0());
|
|
}
|
|
}
|
|
|
|
#endif // MICS5525_SUPPORT
|
|
|
|
#if EMON_ANALOG_SUPPORT
|
|
|
|
if (_sensors[i]->getID() == SENSOR_EMON_ANALOG_ID) {
|
|
|
|
double value;
|
|
EmonAnalogSensor * sensor = (EmonAnalogSensor *) _sensors[i];
|
|
|
|
if ((value = getSetting("pwrExpectedP", 0).toInt())) {
|
|
sensor->expectedPower(0, value);
|
|
setSetting("pwrRatioC", sensor->getCurrentRatio(0));
|
|
}
|
|
|
|
if (getSetting("pwrResetCalibration", 0).toInt() == 1) {
|
|
sensor->setCurrentRatio(0, EMON_CURRENT_RATIO);
|
|
delSetting("pwrRatioC");
|
|
}
|
|
|
|
if (getSetting("pwrResetE", 0).toInt() == 1) {
|
|
sensor->resetEnergy();
|
|
delSetting("eneTotal");
|
|
_sensorResetTS();
|
|
}
|
|
|
|
sensor->setVoltage(getSetting("pwrVoltage", EMON_MAINS_VOLTAGE).toInt());
|
|
|
|
}
|
|
|
|
#endif // EMON_ANALOG_SUPPORT
|
|
|
|
#if EMON_ADC121_SUPPORT
|
|
if (_sensors[i]->getID() == SENSOR_EMON_ADC121_ID) {
|
|
EmonADC121Sensor * sensor = (EmonADC121Sensor *) _sensors[i];
|
|
if (getSetting("pwrResetE", 0).toInt() == 1) {
|
|
sensor->resetEnergy();
|
|
delSetting("eneTotal");
|
|
_sensorResetTS();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if EMON_ADS1X15_SUPPORT
|
|
if (_sensors[i]->getID() == SENSOR_EMON_ADS1X15_ID) {
|
|
EmonADS1X15Sensor * sensor = (EmonADS1X15Sensor *) _sensors[i];
|
|
if (getSetting("pwrResetE", 0).toInt() == 1) {
|
|
sensor->resetEnergy();
|
|
delSetting("eneTotal");
|
|
_sensorResetTS();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if HLW8012_SUPPORT
|
|
|
|
|
|
if (_sensors[i]->getID() == SENSOR_HLW8012_ID) {
|
|
|
|
double value;
|
|
HLW8012Sensor * sensor = (HLW8012Sensor *) _sensors[i];
|
|
|
|
if (value = getSetting("pwrExpectedC", 0).toFloat()) {
|
|
sensor->expectedCurrent(value);
|
|
setSetting("pwrRatioC", sensor->getCurrentRatio());
|
|
}
|
|
|
|
if (value = getSetting("pwrExpectedV", 0).toInt()) {
|
|
sensor->expectedVoltage(value);
|
|
setSetting("pwrRatioV", sensor->getVoltageRatio());
|
|
}
|
|
|
|
if (value = getSetting("pwrExpectedP", 0).toInt()) {
|
|
sensor->expectedPower(value);
|
|
setSetting("pwrRatioP", sensor->getPowerRatio());
|
|
}
|
|
|
|
if (getSetting("pwrResetE", 0).toInt() == 1) {
|
|
sensor->resetEnergy();
|
|
delSetting("eneTotal");
|
|
_sensorResetTS();
|
|
}
|
|
|
|
if (getSetting("pwrResetCalibration", 0).toInt() == 1) {
|
|
sensor->resetRatios();
|
|
delSetting("pwrRatioC");
|
|
delSetting("pwrRatioV");
|
|
delSetting("pwrRatioP");
|
|
}
|
|
|
|
}
|
|
|
|
#endif // HLW8012_SUPPORT
|
|
|
|
#if CSE7766_SUPPORT
|
|
|
|
if (_sensors[i]->getID() == SENSOR_CSE7766_ID) {
|
|
|
|
double value;
|
|
CSE7766Sensor * sensor = (CSE7766Sensor *) _sensors[i];
|
|
|
|
if ((value = getSetting("pwrExpectedC", 0).toFloat())) {
|
|
sensor->expectedCurrent(value);
|
|
setSetting("pwrRatioC", sensor->getCurrentRatio());
|
|
}
|
|
|
|
if ((value = getSetting("pwrExpectedV", 0).toInt())) {
|
|
sensor->expectedVoltage(value);
|
|
setSetting("pwrRatioV", sensor->getVoltageRatio());
|
|
}
|
|
|
|
if ((value = getSetting("pwrExpectedP", 0).toInt())) {
|
|
sensor->expectedPower(value);
|
|
setSetting("pwrRatioP", sensor->getPowerRatio());
|
|
}
|
|
|
|
if (getSetting("pwrResetE", 0).toInt() == 1) {
|
|
sensor->resetEnergy();
|
|
delSetting("eneTotal");
|
|
_sensorResetTS();
|
|
}
|
|
|
|
if (getSetting("pwrResetCalibration", 0).toInt() == 1) {
|
|
sensor->resetRatios();
|
|
delSetting("pwrRatioC");
|
|
delSetting("pwrRatioV");
|
|
delSetting("pwrRatioP");
|
|
}
|
|
|
|
}
|
|
|
|
#endif // CSE7766_SUPPORT
|
|
|
|
#if PULSEMETER_SUPPORT
|
|
if (_sensors[i]->getID() == SENSOR_PULSEMETER_ID) {
|
|
PulseMeterSensor * sensor = (PulseMeterSensor *) _sensors[i];
|
|
if (getSetting("pwrResetE", 0).toInt() == 1) {
|
|
sensor->resetEnergy();
|
|
delSetting("eneTotal");
|
|
_sensorResetTS();
|
|
}
|
|
|
|
sensor->setEnergyRatio(getSetting("pwrRatioE", PULSEMETER_ENERGY_RATIO).toInt());
|
|
}
|
|
#endif // PULSEMETER_SUPPORT
|
|
|
|
#if PZEM004T_SUPPORT
|
|
|
|
if (_sensors[i]->getID() == SENSOR_PZEM004T_ID) {
|
|
PZEM004TSensor * sensor = (PZEM004TSensor *) _sensors[i];
|
|
if (getSetting("pwrResetE", 0).toInt() == 1) {
|
|
unsigned char dev_count = sensor->getAddressesCount();
|
|
for(unsigned char dev = 0; dev < dev_count; dev++) {
|
|
sensor->resetEnergy(dev, 0);
|
|
delSetting("pzEneTotal", dev);
|
|
}
|
|
_sensorResetTS();
|
|
}
|
|
}
|
|
|
|
#endif // PZEM004T_SUPPORT
|
|
|
|
}
|
|
|
|
// Update filter sizes
|
|
for (unsigned char i=0; i<_magnitudes.size(); i++) {
|
|
_magnitudes[i].filter->resize(_sensor_report_every);
|
|
}
|
|
|
|
// General processing
|
|
if (0 == _sensor_save_every) {
|
|
delSetting("eneTotal");
|
|
}
|
|
|
|
// Save settings
|
|
delSetting("snsResetCalibration");
|
|
delSetting("pwrExpectedP");
|
|
delSetting("pwrExpectedC");
|
|
delSetting("pwrExpectedV");
|
|
delSetting("pwrResetCalibration");
|
|
delSetting("pwrResetE");
|
|
saveSettings();
|
|
|
|
}
|
|
|
|
void _sensorReport(unsigned char index, double value) {
|
|
|
|
sensor_magnitude_t magnitude = _magnitudes[index];
|
|
unsigned char decimals = magnitude.decimals;
|
|
|
|
char buffer[10];
|
|
dtostrf(value, 1-sizeof(buffer), decimals, buffer);
|
|
|
|
#if BROKER_SUPPORT
|
|
brokerPublish(BROKER_MSG_TYPE_SENSOR ,magnitudeTopic(magnitude.type).c_str(), magnitude.local, buffer);
|
|
#endif
|
|
|
|
#if MQTT_SUPPORT
|
|
|
|
mqttSend(magnitudeTopicIndex(index).c_str(), buffer);
|
|
|
|
#if SENSOR_PUBLISH_ADDRESSES
|
|
char topic[32];
|
|
snprintf(topic, sizeof(topic), "%s/%s", SENSOR_ADDRESS_TOPIC, magnitudeTopic(magnitude.type).c_str());
|
|
if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) {
|
|
mqttSend(topic, magnitude.global, magnitude.sensor->address(magnitude.local).c_str());
|
|
} else {
|
|
mqttSend(topic, magnitude.sensor->address(magnitude.local).c_str());
|
|
}
|
|
#endif // SENSOR_PUBLISH_ADDRESSES
|
|
|
|
#endif // MQTT_SUPPORT
|
|
|
|
#if THINGSPEAK_SUPPORT
|
|
tspkEnqueueMeasurement(index, buffer);
|
|
#endif
|
|
|
|
#if DOMOTICZ_SUPPORT
|
|
{
|
|
char key[15];
|
|
snprintf_P(key, sizeof(key), PSTR("dczMagnitude%d"), index);
|
|
if (magnitude.type == MAGNITUDE_HUMIDITY) {
|
|
int status;
|
|
if (value > 70) {
|
|
status = HUMIDITY_WET;
|
|
} else if (value > 45) {
|
|
status = HUMIDITY_COMFORTABLE;
|
|
} else if (value > 30) {
|
|
status = HUMIDITY_NORMAL;
|
|
} else {
|
|
status = HUMIDITY_DRY;
|
|
}
|
|
char status_buf[5];
|
|
itoa(status, status_buf, 10);
|
|
domoticzSend(key, buffer, status_buf);
|
|
} else {
|
|
domoticzSend(key, 0, buffer);
|
|
}
|
|
}
|
|
#endif // DOMOTICZ_SUPPORT
|
|
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Public
|
|
// -----------------------------------------------------------------------------
|
|
|
|
unsigned char sensorCount() {
|
|
return _sensors.size();
|
|
}
|
|
|
|
unsigned char magnitudeCount() {
|
|
return _magnitudes.size();
|
|
}
|
|
|
|
String magnitudeName(unsigned char index) {
|
|
if (index < _magnitudes.size()) {
|
|
sensor_magnitude_t magnitude = _magnitudes[index];
|
|
return magnitude.sensor->slot(magnitude.local);
|
|
}
|
|
return String();
|
|
}
|
|
|
|
unsigned char magnitudeType(unsigned char index) {
|
|
if (index < _magnitudes.size()) {
|
|
return int(_magnitudes[index].type);
|
|
}
|
|
return MAGNITUDE_NONE;
|
|
}
|
|
|
|
double magnitudeValue(unsigned char index) {
|
|
if (index < _magnitudes.size()) {
|
|
return _sensor_realtime ? _magnitudes[index].current : _magnitudes[index].reported;
|
|
}
|
|
return DBL_MIN;
|
|
}
|
|
|
|
unsigned char magnitudeIndex(unsigned char index) {
|
|
if (index < _magnitudes.size()) {
|
|
return int(_magnitudes[index].global);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
String magnitudeTopic(unsigned char type) {
|
|
char buffer[16] = {0};
|
|
if (type < MAGNITUDE_MAX) strncpy_P(buffer, magnitude_topics[type], sizeof(buffer));
|
|
return String(buffer);
|
|
}
|
|
|
|
String magnitudeTopicIndex(unsigned char index) {
|
|
char topic[32] = {0};
|
|
if (index < _magnitudes.size()) {
|
|
sensor_magnitude_t magnitude = _magnitudes[index];
|
|
if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) {
|
|
snprintf(topic, sizeof(topic), "%s/%u", magnitudeTopic(magnitude.type).c_str(), magnitude.global);
|
|
} else {
|
|
snprintf(topic, sizeof(topic), "%s", magnitudeTopic(magnitude.type).c_str());
|
|
}
|
|
}
|
|
return String(topic);
|
|
}
|
|
|
|
|
|
String magnitudeUnits(unsigned char type) {
|
|
char buffer[8] = {0};
|
|
if (type < MAGNITUDE_MAX) {
|
|
if ((type == MAGNITUDE_TEMPERATURE) && (_sensor_temperature_units == TMP_FAHRENHEIT)) {
|
|
strncpy_P(buffer, magnitude_fahrenheit, sizeof(buffer));
|
|
} else if (
|
|
(type == MAGNITUDE_ENERGY || type == MAGNITUDE_ENERGY_DELTA) &&
|
|
(_sensor_energy_units == ENERGY_KWH)) {
|
|
strncpy_P(buffer, magnitude_kwh, sizeof(buffer));
|
|
} else if (
|
|
(type == MAGNITUDE_POWER_ACTIVE || type == MAGNITUDE_POWER_APPARENT || type == MAGNITUDE_POWER_REACTIVE) &&
|
|
(_sensor_power_units == POWER_KILOWATTS)) {
|
|
strncpy_P(buffer, magnitude_kw, sizeof(buffer));
|
|
} else {
|
|
strncpy_P(buffer, magnitude_units[type], sizeof(buffer));
|
|
}
|
|
}
|
|
return String(buffer);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
void sensorSetup() {
|
|
|
|
// Backwards compatibility
|
|
moveSetting("powerUnits", "pwrUnits");
|
|
moveSetting("energyUnits", "eneUnits");
|
|
|
|
// Load sensors
|
|
_sensorLoad();
|
|
_sensorInit();
|
|
|
|
// Configure stored values
|
|
_sensorConfigure();
|
|
|
|
// Websockets
|
|
#if WEB_SUPPORT
|
|
wsOnSendRegister(_sensorWebSocketStart);
|
|
wsOnReceiveRegister(_sensorWebSocketOnReceive);
|
|
wsOnSendRegister(_sensorWebSocketSendData);
|
|
#endif
|
|
|
|
// API
|
|
#if API_SUPPORT
|
|
_sensorAPISetup();
|
|
#endif
|
|
|
|
// Terminal
|
|
#if TERMINAL_SUPPORT
|
|
_sensorInitCommands();
|
|
#endif
|
|
|
|
// Main callbacks
|
|
espurnaRegisterLoop(sensorLoop);
|
|
espurnaRegisterReload(_sensorConfigure);
|
|
|
|
}
|
|
|
|
void sensorLoop() {
|
|
|
|
// Check if we still have uninitialized sensors
|
|
static unsigned long last_init = 0;
|
|
if (!_sensors_ready) {
|
|
if (millis() - last_init > SENSOR_INIT_INTERVAL) {
|
|
last_init = millis();
|
|
_sensorInit();
|
|
}
|
|
}
|
|
|
|
if (_magnitudes.size() == 0) return;
|
|
|
|
// Tick hook
|
|
_sensorTick();
|
|
|
|
// Check if we should read new data
|
|
static unsigned long last_update = 0;
|
|
static unsigned long report_count = 0;
|
|
static unsigned long save_count = 0;
|
|
if (millis() - last_update > _sensor_read_interval) {
|
|
|
|
last_update = millis();
|
|
report_count = (report_count + 1) % _sensor_report_every;
|
|
|
|
double current;
|
|
double filtered;
|
|
|
|
// Pre-read hook
|
|
_sensorPre();
|
|
|
|
// Get the first relay state
|
|
#if SENSOR_POWER_CHECK_STATUS
|
|
bool relay_off = (relayCount() == 1) && (relayStatus(0) == 0);
|
|
#endif
|
|
|
|
// Get readings
|
|
for (unsigned char i=0; i<_magnitudes.size(); i++) {
|
|
|
|
sensor_magnitude_t magnitude = _magnitudes[i];
|
|
|
|
if (magnitude.sensor->status()) {
|
|
|
|
// -------------------------------------------------------------
|
|
// Instant value
|
|
// -------------------------------------------------------------
|
|
|
|
current = magnitude.sensor->value(magnitude.local);
|
|
|
|
// Completely remove spurious values if relay is OFF
|
|
#if SENSOR_POWER_CHECK_STATUS
|
|
if (relay_off) {
|
|
if (magnitude.type == MAGNITUDE_POWER_ACTIVE ||
|
|
magnitude.type == MAGNITUDE_POWER_REACTIVE ||
|
|
magnitude.type == MAGNITUDE_POWER_APPARENT ||
|
|
magnitude.type == MAGNITUDE_CURRENT ||
|
|
magnitude.type == MAGNITUDE_ENERGY_DELTA
|
|
) {
|
|
current = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// -------------------------------------------------------------
|
|
// Processing (filters)
|
|
// -------------------------------------------------------------
|
|
|
|
magnitude.filter->add(current);
|
|
|
|
// Special case for MovingAvergaeFilter
|
|
if (MAGNITUDE_COUNT == magnitude.type ||
|
|
MAGNITUDE_GEIGER_CPM ==magnitude. type ||
|
|
MAGNITUDE_GEIGER_SIEVERT == magnitude.type) {
|
|
current = magnitude.filter->result();
|
|
}
|
|
|
|
current = _magnitudeProcess(magnitude.type, magnitude.decimals, current);
|
|
_magnitudes[i].current = current;
|
|
|
|
// -------------------------------------------------------------
|
|
// Debug
|
|
// -------------------------------------------------------------
|
|
|
|
#if SENSOR_DEBUG
|
|
{
|
|
char buffer[64];
|
|
dtostrf(current, 1-sizeof(buffer), magnitude.decimals, buffer);
|
|
DEBUG_MSG_P(PSTR("[SENSOR] %s - %s: %s%s\n"),
|
|
magnitude.sensor->slot(magnitude.local).c_str(),
|
|
magnitudeTopic(magnitude.type).c_str(),
|
|
buffer,
|
|
magnitudeUnits(magnitude.type).c_str()
|
|
);
|
|
}
|
|
#endif // SENSOR_DEBUG
|
|
|
|
// -------------------------------------------------------------
|
|
// Report
|
|
// (we do it every _sensor_report_every readings)
|
|
// -------------------------------------------------------------
|
|
|
|
bool report = (0 == report_count);
|
|
if ((MAGNITUDE_ENERGY == magnitude.type) && (magnitude.max_change > 0)) {
|
|
// for MAGNITUDE_ENERGY, filtered value is last value
|
|
double value = _magnitudeProcess(magnitude.type, magnitude.decimals, current);
|
|
report = (fabs(value - magnitude.reported) >= magnitude.max_change);
|
|
} // if ((MAGNITUDE_ENERGY == magnitude.type) && (magnitude.max_change > 0))
|
|
|
|
if (report) {
|
|
|
|
filtered = magnitude.filter->result();
|
|
filtered = _magnitudeProcess(magnitude.type, magnitude.decimals, filtered);
|
|
magnitude.filter->reset();
|
|
|
|
// Check if there is a minimum change threshold to report
|
|
if (fabs(filtered - magnitude.reported) >= magnitude.min_change) {
|
|
_magnitudes[i].reported = filtered;
|
|
_sensorReport(i, filtered);
|
|
} // if (fabs(filtered - magnitude.reported) >= magnitude.min_change)
|
|
|
|
// -------------------------------------------------------------
|
|
// Saving to EEPROM
|
|
// (we do it every _sensor_save_every readings)
|
|
// -------------------------------------------------------------
|
|
|
|
if (_sensor_save_every > 0) {
|
|
|
|
save_count = (save_count + 1) % _sensor_save_every;
|
|
|
|
if (0 == save_count) {
|
|
if (MAGNITUDE_ENERGY == magnitude.type) {
|
|
setSetting("eneTotal", current);
|
|
saveSettings();
|
|
}
|
|
} // if (0 == save_count)
|
|
|
|
} // if (_sensor_save_every > 0)
|
|
|
|
} // if (report_count == 0)
|
|
|
|
} // if (magnitude.sensor->status())
|
|
} // for (unsigned char i=0; i<_magnitudes.size(); i++)
|
|
|
|
// Post-read hook
|
|
_sensorPost();
|
|
|
|
#if WEB_SUPPORT
|
|
wsSend(_sensorWebSocketSendData);
|
|
#endif
|
|
|
|
#if THINGSPEAK_SUPPORT
|
|
if (report_count == 0) tspkFlush();
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif // SENSOR_SUPPORT
|