Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

384 lines
13 KiB

/*
POWER MODULE
Copyright (C) 2016-2017 by Xose Pérez <xose dot perez at gmail dot com>
*/
#if POWER_PROVIDER != POWER_PROVIDER_NONE
// -----------------------------------------------------------------------------
// MODULE GLOBALS AND CACHE
// -----------------------------------------------------------------------------
#include "power.h"
#include <Hash.h>
#include <ArduinoJson.h>
bool _power_enabled = false;
bool _power_newdata = false;
bool _power_realtime = API_REAL_TIME_VALUES;
unsigned long _power_read_interval = POWER_READ_INTERVAL;
unsigned long _power_report_interval = POWER_REPORT_INTERVAL;
double _power_current = 0;
double _power_voltage = 0;
double _power_apparent = 0;
double _power_energy = 0;
MedianFilter _filter_current = MedianFilter();
#if POWER_HAS_ACTIVE
double _power_active = 0;
double _power_reactive = 0;
double _power_factor = 0;
MedianFilter _filter_voltage = MedianFilter();
MedianFilter _filter_active = MedianFilter();
MedianFilter _filter_apparent = MedianFilter();
#endif
#if POWER_HAS_ENERGY
double _power_last_energy = 0;
#endif
// -----------------------------------------------------------------------------
// PRIVATE METHODS
// -----------------------------------------------------------------------------
#if WEB_SUPPORT
void _powerAPISetup() {
apiRegister(MQTT_TOPIC_CURRENT, MQTT_TOPIC_CURRENT, [](char * buffer, size_t len) {
dtostrf(_power_realtime ? _powerCurrent() : getCurrent(), 1-len, POWER_CURRENT_DECIMALS, buffer);
});
apiRegister(MQTT_TOPIC_VOLTAGE, MQTT_TOPIC_VOLTAGE, [](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), (int) (_power_realtime ? _powerVoltage() : getVoltage()));
});
apiRegister(MQTT_TOPIC_POWER_APPARENT, MQTT_TOPIC_POWER_APPARENT, [](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), (int) (_power_realtime ? _powerApparentPower() : getApparentPower()));
});
#if POWER_HAS_ENERGY
apiRegister(MQTT_TOPIC_ENERGY_TOTAL, MQTT_TOPIC_ENERGY_TOTAL, [](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%lu"), (int) (_power_realtime ? _powerEnergy() : getPowerEnergy()));
});
#endif
#if POWER_HAS_ACTIVE
apiRegister(MQTT_TOPIC_POWER_ACTIVE, MQTT_TOPIC_POWER_ACTIVE, [](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), (int) (_power_realtime ? _powerActivePower() : getActivePower()));
});
apiRegister(MQTT_TOPIC_POWER_FACTOR, MQTT_TOPIC_POWER_FACTOR, [](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), (int) (100 * (_power_realtime ? _powerPowerFactor() : getPowerFactor())));
});
#endif
}
#endif // WEB_SUPPORT
void _powerReset() {
_filter_current.reset();
#if POWER_HAS_ACTIVE
_filter_apparent.reset();
_filter_voltage.reset();
_filter_active.reset();
#endif
}
void _powerRead() {
// Get instantaneous values from HAL
double current = _powerCurrent();
double voltage = _powerVoltage();
double apparent = _powerApparentPower();
#if POWER_HAS_ACTIVE
double active = _powerActivePower();
double reactive = (apparent > active) ? sqrt(apparent * apparent - active * active) : 0;
double factor = (apparent > 0) ? active / apparent : 1;
if (factor > 1) factor = 1;
#endif
#if POWER_HAS_ENERGY
_power_energy = _powerEnergy(); // Due to its nature this value doesn't have to be filtered
#endif
// Filters
_filter_current.add(current);
#if POWER_HAS_ACTIVE
_filter_apparent.add(apparent);
_filter_voltage.add(voltage);
_filter_active.add(active);
#endif
// Debug
/*
char current_buffer[10];
dtostrf(current, 1-sizeof(current_buffer), POWER_CURRENT_DECIMALS, current_buffer);
DEBUG_MSG_P(PSTR("[POWER] Current: %sA\n"), current_buffer);
DEBUG_MSG_P(PSTR("[POWER] Voltage: %dV\n"), (int) voltage);
DEBUG_MSG_P(PSTR("[POWER] Apparent Power: %dW\n"), (int) apparent);
DEBUG_MSG_P(PSTR("[POWER] Energy: %dJ\n"), (int) _power_energy);
#if POWER_HAS_ACTIVE
DEBUG_MSG_P(PSTR("[POWER] Active Power: %dW\n"), (int) active);
DEBUG_MSG_P(PSTR("[POWER] Reactive Power: %dW\n"), (int) reactive);
DEBUG_MSG_P(PSTR("[POWER] Power Factor: %d%%\n"), (int) (100 * factor));
#endif
*/
// Update websocket clients
#if WEB_SUPPORT
if (wsConnected()) {
DynamicJsonBuffer jsonBuffer;
JsonObject& root = jsonBuffer.createObject();
root["pwrVisible"] = 1;
root["pwrCurrent"] = roundTo(current, POWER_CURRENT_DECIMALS);
root["pwrVoltage"] = roundTo(voltage, POWER_VOLTAGE_DECIMALS);
root["pwrApparent"] = roundTo(apparent, POWER_POWER_DECIMALS);
root["pwrEnergy"] = roundTo(_power_energy, POWER_ENERGY_DECIMALS);
#if POWER_HAS_ACTIVE
root["pwrActive"] = roundTo(active, POWER_POWER_DECIMALS);
root["pwrReactive"] = roundTo(reactive, POWER_POWER_DECIMALS);
root["pwrFactor"] = int(100 * factor);
#endif
#if (POWER_PROVIDER == POWER_PROVIDER_EMON_ANALOG) || (POWER_PROVIDER == POWER_PROVIDER_EMON_ADC121)
root["emonVisible"] = 1;
#endif
#if POWER_PROVIDER == POWER_PROVIDER_HLW8012
root["hlwVisible"] = 1;
#endif
#if POWER_PROVIDER == POWER_PROVIDER_V9261F
root["v9261fVisible"] = 1;
#endif
#if POWER_PROVIDER == POWER_PROVIDER_ECH1560
root["ech1560Visible"] = 1;
#endif
String output;
root.printTo(output);
wsSend(output.c_str());
}
#endif
}
void _powerReport() {
// Get the fitered values
_power_current = _filter_current.median(true);
#if POWER_HAS_ACTIVE
_power_apparent = _filter_apparent.median(true);
_power_voltage = _filter_voltage.median(true);
_power_active = _filter_active.median(true);
if (_power_active > _power_apparent) _power_apparent = _power_active;
_power_reactive = (_power_apparent > _power_active) ? sqrt(_power_apparent * _power_apparent - _power_active * _power_active) : 0;
_power_factor = (_power_apparent > 0) ? _power_active / _power_apparent : 1;
if (_power_factor > 1) _power_factor = 1;
double power = _power_active;
#else
_power_apparent = _power_current * _power_voltage;
double power = _power_apparent;
#endif
#if POWER_HAS_ENERGY
double energy_delta = _power_energy - _power_last_energy;
_power_last_energy = _power_energy;
#else
double energy_delta = power * (_power_report_interval / 1000.);
_power_energy += energy_delta;
#endif
char buf_current[10];
char buf_energy_delta[10];
char buf_energy_total[10];
dtostrf(_power_current, 1-sizeof(buf_current), POWER_CURRENT_DECIMALS, buf_current);
dtostrf(energy_delta * POWER_ENERGY_FACTOR, 1-sizeof(buf_energy_delta), POWER_ENERGY_DECIMALS, buf_energy_delta);
dtostrf(_power_energy * POWER_ENERGY_FACTOR, 1-sizeof(buf_energy_total), POWER_ENERGY_DECIMALS, buf_energy_total);
{
mqttSend(MQTT_TOPIC_CURRENT, buf_current);
mqttSend(MQTT_TOPIC_POWER_APPARENT, String((int) _power_apparent).c_str());
mqttSend(MQTT_TOPIC_ENERGY_DELTA, buf_energy_delta);
mqttSend(MQTT_TOPIC_ENERGY_TOTAL, buf_energy_total);
#if POWER_HAS_ACTIVE
mqttSend(MQTT_TOPIC_POWER_ACTIVE, String((int) _power_active).c_str());
mqttSend(MQTT_TOPIC_POWER_REACTIVE, String((int) _power_reactive).c_str());
mqttSend(MQTT_TOPIC_VOLTAGE, String((int) _power_voltage).c_str());
mqttSend(MQTT_TOPIC_POWER_FACTOR, String((int) 100 * _power_factor).c_str());
#endif
}
#if DOMOTICZ_SUPPORT
if (domoticzEnabled()) {
// Domoticz expects energy in kWh
char buf_energy_kwh[10];
dtostrf(energy_delta * POWER_ENERGY_FACTOR_KWH, 1-sizeof(buf_energy_kwh), POWER_ENERGY_DECIMALS_KWH, buf_energy_kwh);
char buffer[20];
snprintf_P(buffer, sizeof(buffer), PSTR("%d;%s"), (int) power, buf_energy_kwh);
domoticzSend("dczPowIdx", 0, buffer);
domoticzSend("dczCurrentIdx", 0, buf_current);
domoticzSend("dczEnergyIdx", 0, buf_energy_kwh);
#if POWER_HAS_ACTIVE
snprintf_P(buffer, sizeof(buffer), PSTR("%d"), (int) _power_voltage);
domoticzSend("dczVoltIdx", 0, buffer);
#endif
}
#endif
#if INFLUXDB_SUPPORT
if (influxdbEnabled()) {
influxDBSend(MQTT_TOPIC_CURRENT, buf_current);
influxDBSend(MQTT_TOPIC_POWER_APPARENT, String((int) _power_apparent).c_str());
influxDBSend(MQTT_TOPIC_ENERGY_DELTA, buf_energy_delta);
influxDBSend(MQTT_TOPIC_ENERGY_TOTAL, buf_energy_total);
#if POWER_HAS_ACTIVE
influxDBSend(MQTT_TOPIC_POWER_ACTIVE, String((int) _power_active).c_str());
influxDBSend(MQTT_TOPIC_POWER_REACTIVE, String((int) _power_reactive).c_str());
influxDBSend(MQTT_TOPIC_VOLTAGE, String((int) _power_voltage).c_str());
influxDBSend(MQTT_TOPIC_POWER_FACTOR, String((int) 100 * _power_factor).c_str());
#endif
}
#endif
}
// -----------------------------------------------------------------------------
// MAGNITUDE API
// -----------------------------------------------------------------------------
bool hasActivePower() {
return POWER_HAS_ACTIVE;
}
double getCurrent() {
return roundTo(_power_current, POWER_CURRENT_DECIMALS);
}
double getVoltage() {
return roundTo(_power_voltage, POWER_VOLTAGE_DECIMALS);
}
double getApparentPower() {
return roundTo(_power_apparent, POWER_POWER_DECIMALS);
}
double getPowerEnergy() {
roundTo(_power_energy, POWER_ENERGY_DECIMALS);
}
#if POWER_HAS_ACTIVE
double getActivePower() {
return roundTo(_power_active, POWER_POWER_DECIMALS);
}
double getReactivePower() {
return roundTo(_power_reactive, POWER_POWER_DECIMALS);
}
double getPowerFactor() {
return roundTo(_power_factor, 2);
}
#endif
// -----------------------------------------------------------------------------
// PUBLIC API
// -----------------------------------------------------------------------------
unsigned long powerReadInterval() {
return _power_read_interval;
}
unsigned long powerReportInterval() {
return _power_report_interval;
}
bool powerEnabled() {
return _power_enabled;
}
void powerEnabled(bool enabled) {
if (enabled & !_power_enabled) _powerReset();
_power_enabled = enabled;
_powerEnabledProvider();
}
void powerCalibrate(unsigned char magnitude, double value) {
_powerCalibrateProvider(magnitude, value);
}
void powerResetCalibration() {
_powerResetCalibrationProvider();
}
void powerConfigure() {
_power_realtime = getSetting("apiRealTime", API_REAL_TIME_VALUES).toInt() == 1;
_power_read_interval = atol(getSetting("pwrReadEvery", POWER_READ_INTERVAL).c_str());
_power_report_interval = atol(getSetting("pwrReportEvery", POWER_REPORT_INTERVAL).c_str());
if (_power_read_interval < POWER_MIN_READ_INTERVAL) {
_power_read_interval = POWER_MIN_READ_INTERVAL;
setSetting("pwrReadEvery", _power_read_interval);
}
if (_power_report_interval < _power_read_interval) {
_power_report_interval = _power_read_interval;
setSetting("pwrReportEvery", _power_report_interval);
}
_powerConfigureProvider();
}
void powerSetup() {
// backwards compatibility
moveSetting("pwMainsVoltage", "pwrVoltage");
moveSetting("emonMains", "pwrVoltage");
moveSetting("emonVoltage", "pwrVoltage");
moveSetting("pwCurrentRatio", "pwrRatioC");
moveSetting("emonRatio", "pwrRatioC");
moveSetting("powPowerMult", "pwrRatioP");
moveSetting("powCurrentMult", "pwrRatioC");
moveSetting("powVoltageMult", "pwrRatioV");
moveSetting("powerVoltage", "pwrVoltage");
moveSetting("powerRatioC", "pwrRatioC");
moveSetting("powerRatioV", "pwrRatioV");
moveSetting("powerRatioP", "pwrRatioP");
_powerSetupProvider();
powerConfigure();
// API
#if WEB_SUPPORT
_powerAPISetup();
#endif
DEBUG_MSG_P(PSTR("[POWER] POWER_PROVIDER = %d\n"), POWER_PROVIDER);
}
void powerLoop() {
_powerLoopProvider(true);
if (_power_newdata) {
_power_newdata = false;
_powerRead();
}
static unsigned long last = 0;
if (millis() - last > _power_report_interval) {
last = millis();
_powerReport();
}
_powerLoopProvider(false);
}
#endif // POWER_PROVIDER != POWER_PROVIDER_NONE