Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

686 lines
20 KiB

/*
LIGHT MODULE
Copyright (C) 2016-2017 by Xose Pérez <xose dot perez at gmail dot com>
*/
#if LIGHT_PROVIDER != LIGHT_PROVIDER_NONE
#ifndef LIGHT_PROVIDER_EXPERIMENTAL_RGB_ONLY_HSV_IR
#include <Ticker.h>
#include <ArduinoJson.h>
#include <vector>
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
#define PWM_CHANNEL_NUM_MAX LIGHT_CHANNELS
extern "C" {
#include "pwm.h"
}
#endif
Ticker colorTicker;
typedef struct {
unsigned char pin;
bool reverse;
unsigned char value;
unsigned char shadow;
} channel_t;
std::vector<channel_t> _channels;
bool _lightState = false;
unsigned int _brightness = LIGHT_MAX_BRIGHTNESS;
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY9192
#include <my9291.h>
my9291 * _my9291;
#endif
// Gamma Correction lookup table (8 bit)
// TODO: move to PROGMEM
const unsigned char gamma_table[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11,
12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19,
19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28,
29, 30, 30, 31, 32, 33, 33, 34, 35, 35, 36, 37, 38, 39, 39, 40,
41, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71,
72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 89,
91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105, 106, 108, 109, 110,
112, 113, 115, 116, 118, 119, 121, 122, 123, 125, 126, 128, 130, 131, 133, 134,
136, 137, 139, 140, 142, 144, 145, 147, 149, 150, 152, 154, 155, 157, 159, 160,
162, 164, 166, 167, 169, 171, 173, 175, 176, 178, 180, 182, 184, 186, 187, 189,
191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221,
223, 225, 227, 229, 231, 233, 235, 238, 240, 242, 244, 246, 248, 251, 253, 255
};
// -----------------------------------------------------------------------------
// UTILS
// -----------------------------------------------------------------------------
void _fromLong(unsigned long value, bool brightness) {
if (brightness) {
_channels[0].value = (value >> 24) & 0xFF;
_channels[1].value = (value >> 16) & 0xFF;
_channels[2].value = (value >> 8) & 0xFF;
_brightness = (value & 0xFF) * LIGHT_MAX_BRIGHTNESS / 255;
} else {
_channels[0].value = (value >> 16) & 0xFF;
_channels[1].value = (value >> 8) & 0xFF;
_channels[2].value = (value) & 0xFF;
}
}
void _fromRGB(const char * rgb) {
char * p = (char *) rgb;
if (strlen(p) == 0) return;
// if color begins with a # then assume HEX RGB
if (p[0] == '#') {
if (lightHasColor()) {
++p;
unsigned long value = strtoul(p, NULL, 16);
// RGBA values are interpreted like RGB + brightness
_fromLong(value, strlen(p) > 7);
}
// it's a temperature in mireds
} else if (p[0] == 'M') {
if (lightHasColor()) {
unsigned long mireds = atol(p + 1);
_fromMireds(mireds);
}
// it's a temperature in kelvin
} else if (p[0] == 'K') {
if (lightHasColor()) {
unsigned long kelvin = atol(p + 1);
_fromKelvin(kelvin);
}
// otherwise assume decimal values separated by commas
} else {
char * tok;
unsigned char count = 0;
unsigned char channels = _channels.size();
tok = strtok(p, ",");
while (tok != NULL) {
_channels[count].value = atoi(tok);
if (++count == channels) break;
tok = strtok(NULL, ",");
}
// RGB but less than 3 values received
if (lightHasColor() && (count < 3)) {
_channels[1].value = _channels[0].value;
_channels[2].value = _channels[0].value;
}
}
}
void _toRGB(char * rgb, size_t len, bool applyBrightness) {
if (!lightHasColor()) return;
float b = applyBrightness ? (float) _brightness / LIGHT_MAX_BRIGHTNESS : 1;
unsigned long value = 0;
value += _channels[0].value * b;
value <<= 8;
value += _channels[1].value * b;
value <<= 8;
value += _channels[2].value * b;
snprintf_P(rgb, len, PSTR("#%06X"), value);
}
void _toRGB(char * rgb, size_t len) {
_toRGB(rgb, len, false);
}
void _toLong(char * color, size_t len, bool applyBrightness) {
if (!lightHasColor()) return;
float b = applyBrightness ? (float) _brightness / LIGHT_MAX_BRIGHTNESS : 1;
snprintf_P(color, len, PSTR("%d,%d,%d"),
(int) (_channels[0].value * b),
(int) (_channels[1].value * b),
(int) (_channels[2].value * b)
);
}
void _toLong(char * color, size_t len) {
_toLong(color, len, false);
}
// Thanks to Sacha Telgenhof for sharing this code in his AiLight library
// https://github.com/stelgenhof/AiLight
void _fromKelvin(unsigned long kelvin) {
// Check we have RGB channels
if (!lightHasColor()) return;
// Calculate colors
unsigned int red = (kelvin <= 66)
? LIGHT_MAX_VALUE
: 329.698727446 * pow((kelvin - 60), -0.1332047592);
unsigned int green = (kelvin <= 66)
? 99.4708025861 * log(kelvin) - 161.1195681661
: 288.1221695283 * pow(kelvin, -0.0755148492);
unsigned int blue = (kelvin >= 66)
? LIGHT_MAX_VALUE
: ((kelvin <= 19)
? 0
: 138.5177312231 * log(kelvin - 10) - 305.0447927307);
// Save values
_channels[0].value = constrain(red, 0, LIGHT_MAX_VALUE);
_channels[1].value = constrain(green, 0, LIGHT_MAX_VALUE);
_channels[2].value = constrain(blue, 0, LIGHT_MAX_VALUE);
}
// Color temperature is measured in mireds (kelvin = 1e6/mired)
void _fromMireds(unsigned long mireds) {
if (mireds == 0) mireds = 1;
unsigned long kelvin = constrain(1000000UL / mireds, 1000, 40000) / 100;
_fromKelvin(kelvin);
}
unsigned int _toPWM(unsigned long value, bool bright, bool gamma, bool reverse) {
value = constrain(value, 0, LIGHT_MAX_VALUE);
if (bright) value *= ((float) _brightness / LIGHT_MAX_BRIGHTNESS);
if (gamma) value = gamma_table[value];
if (LIGHT_MAX_VALUE != LIGHT_LIMIT_PWM) value = map(value, 0, LIGHT_MAX_VALUE, 0, LIGHT_LIMIT_PWM);
if (reverse) value = LIGHT_LIMIT_PWM - value;
return value;
}
// Returns a PWM valule for the given channel ID
unsigned int _toPWM(unsigned char id) {
if (id < _channels.size()) {
bool isColor = lightHasColor() && (id < 3);
bool bright = isColor;
bool gamma = isColor & (getSetting("useGamma", LIGHT_USE_GAMMA).toInt() == 1);
return _toPWM(_channels[id].shadow, bright, gamma, _channels[id].reverse);
}
return 0;
}
// -----------------------------------------------------------------------------
// PROVIDER
// -----------------------------------------------------------------------------
void _shadow() {
for (unsigned int i=0; i < _channels.size(); i++) {
_channels[i].shadow = _lightState ? _channels[i].value : 0;
}
if (lightHasColor()) {
bool useWhite = getSetting("useWhite", LIGHT_USE_WHITE).toInt() == 1;
if (_lightState && useWhite && (_channels.size() > 3)) {
if (_channels[0].shadow == _channels[1].shadow && _channels[1].shadow == _channels[2].shadow ) {
_channels[3].shadow = _channels[0].shadow * ((float) _brightness / LIGHT_MAX_BRIGHTNESS);
_channels[2].shadow = 0;
_channels[1].shadow = 0;
_channels[0].shadow = 0;
}
}
}
}
void _lightProviderUpdate() {
_shadow();
#ifdef LIGHT_ENABLE_PIN
digitalWrite(LIGHT_ENABLE_PIN, _lightState);
#endif
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY9192
if (_lightState) {
unsigned int red = _toPWM(0);
unsigned int green = _toPWM(1);
unsigned int blue = _toPWM(2);
unsigned int white = _toPWM(3)
unsigned int warm = _toPWM(4);
_my9291->setColor((my9291_color_t) { red, green, blue, white, warm });
_my9291->setState(true);
} else {
_my9291->setColor((my9291_color_t) { 0, 0, 0, 0, 0 });
_my9291->setState(false);
}
#endif
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
for (unsigned int i=0; i < _channels.size(); i++) {
pwm_set_duty(_toPWM(i), i);
}
pwm_start();
#endif
}
// -----------------------------------------------------------------------------
// PERSISTANCE
// -----------------------------------------------------------------------------
void _lightColorSave() {
for (unsigned int i=0; i < _channels.size(); i++) {
setSetting("ch", i, _channels[i].value);
}
setSetting("brightness", _brightness);
saveSettings();
}
void _lightColorRestore() {
for (unsigned int i=0; i < _channels.size(); i++) {
_channels[i].value = getSetting("ch", i, i==0 ? 255 : 0).toInt();
}
_brightness = getSetting("brightness", LIGHT_MAX_BRIGHTNESS).toInt();
lightUpdate(false, false);
}
// -----------------------------------------------------------------------------
// MQTT
// -----------------------------------------------------------------------------
void _lightMQTTCallback(unsigned int type, const char * topic, const char * payload) {
if (type == MQTT_CONNECT_EVENT) {
if (lightHasColor()) {
mqttSubscribe(MQTT_TOPIC_BRIGHTNESS);
mqttSubscribe(MQTT_TOPIC_MIRED);
mqttSubscribe(MQTT_TOPIC_KELVIN);
mqttSubscribe(MQTT_TOPIC_COLOR);
}
char buffer[strlen(MQTT_TOPIC_CHANNEL) + 3];
snprintf_P(buffer, sizeof(buffer), PSTR("%s/+"), MQTT_TOPIC_CHANNEL);
mqttSubscribe(buffer);
}
if (type == MQTT_MESSAGE_EVENT) {
// Match topic
String t = mqttSubtopic((char *) topic);
// Color temperature in mireds
if (t.equals(MQTT_TOPIC_MIRED)) {
_fromMireds(atol(payload));
lightUpdate(true, mqttForward());
}
// Color temperature in kelvins
if (t.equals(MQTT_TOPIC_KELVIN)) {
_fromKelvin(atol(payload));
lightUpdate(true, mqttForward());
}
// Color
if (t.equals(MQTT_TOPIC_COLOR)) {
lightColor(payload);
lightUpdate(true, mqttForward());
}
// Brightness
if (t.equals(MQTT_TOPIC_BRIGHTNESS)) {
_brightness = constrain(atoi(payload), 0, LIGHT_MAX_BRIGHTNESS);
lightUpdate(true, mqttForward());
}
// Channel
if (t.startsWith(MQTT_TOPIC_CHANNEL)) {
unsigned int channelID = t.substring(strlen(MQTT_TOPIC_CHANNEL)+1).toInt();
if (channelID >= _channels.size()) {
DEBUG_MSG_P(PSTR("[LIGHT] Wrong channelID (%d)\n"), channelID);
return;
}
lightChannel(channelID, atoi(payload));
lightUpdate(true, mqttForward());
}
}
}
// -----------------------------------------------------------------------------
// API
// -----------------------------------------------------------------------------
unsigned char lightChannels() {
return _channels.size();
}
bool lightHasColor() {
bool useColor = getSetting("useColor", LIGHT_USE_COLOR).toInt() == 1;
return useColor && (_channels.size() > 2);
}
unsigned char lightWhiteChannels() {
return _channels.size() % 3;
}
void lightMQTT() {
char buffer[12];
if (lightHasColor()) {
// Color
if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) {
_toRGB(buffer, 12, false);
} else {
_toLong(buffer, 12, false);
}
mqttSend(MQTT_TOPIC_COLOR, buffer);
// Brightness
snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _brightness);
mqttSend(MQTT_TOPIC_BRIGHTNESS, buffer);
}
// Channels
for (unsigned int i=0; i < _channels.size(); i++) {
snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _channels[i].value);
mqttSend(MQTT_TOPIC_CHANNEL, i, buffer);
}
}
void lightUpdate(bool save, bool forward) {
_lightProviderUpdate();
// Report color & brightness to MQTT broker
if (forward) lightMQTT();
// Report color to WS clients (using current brightness setting)
#if WEB_SUPPORT
{
DynamicJsonBuffer jsonBuffer;
JsonObject& root = jsonBuffer.createObject();
root["colorVisible"] = 1;
root["useColor"] = getSetting("useColor", LIGHT_USE_COLOR).toInt() == 1;
root["useWhite"] = getSetting("useWhite", LIGHT_USE_WHITE).toInt() == 1;
root["useGamma"] = getSetting("useGamma", LIGHT_USE_GAMMA).toInt() == 1;
if (lightHasColor()) {
root["color"] = lightColor();
root["brightness"] = lightBrightness();
}
JsonArray& channels = root.createNestedArray("channels");
for (unsigned char id=0; id < lightChannels(); id++) {
channels.add(lightChannel(id));
}
String output;
root.printTo(output);
wsSend(output.c_str());
}
#endif
#if LIGHT_SAVE_ENABLED
// Delay saving to EEPROM 5 seconds to avoid wearing it out unnecessarily
if (save) colorTicker.once(LIGHT_SAVE_DELAY, _lightColorSave);
#endif
};
#if LIGHT_SAVE_ENABLED == 0
void lightSave() {
_lightColorSave();
}
#endif
void lightState(bool state) {
_lightState = state;
}
bool lightState() {
return _lightState;
}
void lightColor(const char * color) {
_fromRGB(color);
}
void lightColor(unsigned long color) {
_fromLong(color, false);
}
String lightColor() {
char rgb[8];
_toRGB(rgb, 8, false);
return String(rgb);
}
unsigned int lightChannel(unsigned char id) {
if (id <= _channels.size()) {
return _channels[id].value;
}
return 0;
}
void lightChannel(unsigned char id, unsigned int value) {
if (id <= _channels.size()) {
_channels[id].value = constrain(value, 0, LIGHT_MAX_VALUE);
}
}
unsigned int lightBrightness() {
return _brightness;
}
void lightBrightness(int b) {
_brightness = constrain(b, 0, LIGHT_MAX_BRIGHTNESS);
}
void lightBrightnessStep(int steps) {
lightBrightness(_brightness + steps * LIGHT_STEP);
}
// -----------------------------------------------------------------------------
// SETUP
// -----------------------------------------------------------------------------
void _lightAPISetup() {
#if WEB_SUPPORT
// API entry points (protected with apikey)
if (lightHasColor()) {
apiRegister(MQTT_TOPIC_COLOR, MQTT_TOPIC_COLOR,
[](char * buffer, size_t len) {
if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) {
_toRGB(buffer, len, false);
} else {
_toLong(buffer, len, false);
}
},
[](const char * payload) {
lightColor(payload);
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_BRIGHTNESS, MQTT_TOPIC_BRIGHTNESS,
[](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), _brightness);
},
[](const char * payload) {
lightBrightness(atoi(payload));
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_KELVIN, MQTT_TOPIC_KELVIN,
[](char * buffer, size_t len) {},
[](const char * payload) {
_fromKelvin(atol(payload));
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_MIRED, MQTT_TOPIC_MIRED,
[](char * buffer, size_t len) {},
[](const char * payload) {
_fromMireds(atol(payload));
lightUpdate(true, true);
}
);
}
for (unsigned int id=0; id<lightChannels(); id++) {
char url[15];
snprintf_P(url, sizeof(url), PSTR("%s/%d"), MQTT_TOPIC_CHANNEL, id);
char key[10];
snprintf_P(key, sizeof(key), PSTR("%s%d"), MQTT_TOPIC_CHANNEL, id);
apiRegister(url, key,
[id](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), lightChannel(id));
},
[id](const char * payload) {
lightChannel(id, atoi(payload));
lightUpdate(true, true);
}
);
}
#endif // WEB_SUPPORT
}
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
unsigned long getIOMux(unsigned long gpio) {
unsigned long muxes[16] = {
PERIPHS_IO_MUX_GPIO0_U, PERIPHS_IO_MUX_U0TXD_U, PERIPHS_IO_MUX_GPIO2_U, PERIPHS_IO_MUX_U0RXD_U,
PERIPHS_IO_MUX_GPIO4_U, PERIPHS_IO_MUX_GPIO5_U, PERIPHS_IO_MUX_SD_CLK_U, PERIPHS_IO_MUX_SD_DATA0_U,
PERIPHS_IO_MUX_SD_DATA1_U, PERIPHS_IO_MUX_SD_DATA2_U, PERIPHS_IO_MUX_SD_DATA3_U, PERIPHS_IO_MUX_SD_CMD_U,
PERIPHS_IO_MUX_MTDI_U, PERIPHS_IO_MUX_MTCK_U, PERIPHS_IO_MUX_MTMS_U, PERIPHS_IO_MUX_MTDO_U
};
return muxes[gpio];
}
unsigned long getIOFunc(unsigned long gpio) {
unsigned long funcs[16] = {
FUNC_GPIO0, FUNC_GPIO1, FUNC_GPIO2, FUNC_GPIO3,
FUNC_GPIO4, FUNC_GPIO5, FUNC_GPIO6, FUNC_GPIO7,
FUNC_GPIO8, FUNC_GPIO9, FUNC_GPIO10, FUNC_GPIO11,
FUNC_GPIO12, FUNC_GPIO13, FUNC_GPIO14, FUNC_GPIO15
};
return funcs[gpio];
}
#endif
void lightSetup() {
#ifdef LIGHT_ENABLE_PIN
pinMode(LIGHT_ENABLE_PIN, OUTPUT);
#endif
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY9192
_my9291 = new my9291(MY9291_DI_PIN, MY9291_DCKI_PIN, MY9291_COMMAND, MY9291_CHANNELS);
for (unsigned char i=0; i<MY9291_CHANNELS; i++) {
_channels.push_back((channel_t) {0, false, 0});
}
#endif
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
#ifdef LIGHT_CH1_PIN
_channels.push_back((channel_t) {LIGHT_CH1_PIN, LIGHT_CH1_INVERSE, 0});
#endif
#ifdef LIGHT_CH2_PIN
_channels.push_back((channel_t) {LIGHT_CH2_PIN, LIGHT_CH2_INVERSE, 0});
#endif
#ifdef LIGHT_CH3_PIN
_channels.push_back((channel_t) {LIGHT_CH3_PIN, LIGHT_CH3_INVERSE, 0});
#endif
#ifdef LIGHT_CH4_PIN
_channels.push_back((channel_t) {LIGHT_CH4_PIN, LIGHT_CH4_INVERSE, 0});
#endif
#ifdef LIGHT_CH5_PIN
_channels.push_back((channel_t) {LIGHT_CH5_PIN, LIGHT_CH5_INVERSE, 0});
#endif
uint32 pwm_duty_init[PWM_CHANNEL_NUM_MAX];
uint32 io_info[PWM_CHANNEL_NUM_MAX][3];
for (unsigned int i=0; i < _channels.size(); i++) {
pwm_duty_init[i] = 0;
io_info[i][0] = getIOMux(_channels[i].pin);
io_info[i][1] = getIOFunc(_channels[i].pin);
io_info[i][2] = _channels[i].pin;
pinMode(_channels[i].pin, OUTPUT);
}
pwm_init(LIGHT_MAX_PWM, pwm_duty_init, PWM_CHANNEL_NUM_MAX, io_info);
pwm_start();
#endif
DEBUG_MSG_P(PSTR("[LIGHT] LIGHT_PROVIDER = %d\n"), LIGHT_PROVIDER);
DEBUG_MSG_P(PSTR("[LIGHT] Number of channels: %d\n"), _channels.size());
_lightColorRestore();
_lightAPISetup();
mqttRegister(_lightMQTTCallback);
}
void lightLoop(){
}
#endif // LIGHT_PROVIDER_EXPERIMENTAL_RGB_ONLY_HSV_IR
#endif // LIGHT_PROVIDER != LIGHT_PROVIDER_NONE