Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

147 lines
4.8 KiB

// -----------------------------------------------------------------------------
// Abstract sensor class (other sensor classes extend this class)
// Copyright (C) 2017-2019 by Xose Pérez <xose dot perez at gmail dot com>
// -----------------------------------------------------------------------------
#pragma once
#include <Arduino.h>
#include <ArduinoJson.h>
#include <functional>
#include "../sensor.h"
using TSensorCallback = std::function<void(unsigned char, double)>;
class BaseSensor {
public:
// Constructor
BaseSensor() {}
// Destructor
~BaseSensor() {}
// Initialization method, must be idempotent
virtual void begin() {}
// Loop-like method, call it in your main loop
virtual void tick() {}
// Pre-read hook (usually to populate registers with up-to-date data)
virtual void pre() {}
// Post-read hook (usually to reset things)
virtual void post() {}
// Descriptive name of the sensor
virtual String description() = 0;
// Address of the sensor (it could be the GPIO or I2C address)
virtual String address(unsigned char index) = 0;
// Descriptive name of the slot # index
virtual String slot(unsigned char index) = 0;
// Type of sensor
virtual unsigned char type() { return sensor::type::Base; }
// Type for slot # index
virtual unsigned char type(unsigned char index) = 0;
// Number of decimals for a unit (or -1 for default)
virtual signed char decimals(sensor::Unit) { return -1; }
// Current value for slot # index
virtual double value(unsigned char index) = 0;
// Generic calibration
virtual void calibrate() {};
// Retrieve current instance configuration
virtual void getConfig(JsonObject& root) {};
// Save current instance configuration
virtual void setConfig(JsonObject& root) {};
// Load the configuration manifest
static void manifest(JsonArray& root) {};
// Sensor ID
unsigned char getID() { return _sensor_id; };
// Return status (true if no errors)
bool status() { return 0 == _error; }
// Return ready status (true for ready)
bool ready() { return _ready; }
// Return sensor last internal error
int error() { return _error; }
// Number of available slots
unsigned char count() { return _count; }
// Hook for event callback
void onEvent(TSensorCallback fn) { _callback = fn; };
// Specify units attached to magnitudes
virtual sensor::Unit units(unsigned char type) {
switch (type) {
case MAGNITUDE_TEMPERATURE:
return sensor::Unit::Celcius;
case MAGNITUDE_HUMIDITY:
case MAGNITUDE_POWER_FACTOR:
return sensor::Unit::Percentage;
case MAGNITUDE_PRESSURE:
return sensor::Unit::Hectopascal;
case MAGNITUDE_CURRENT:
return sensor::Unit::Ampere;
case MAGNITUDE_VOLTAGE:
return sensor::Unit::Volt;
case MAGNITUDE_POWER_ACTIVE:
return sensor::Unit::Watt;
case MAGNITUDE_POWER_APPARENT:
return sensor::Unit::Voltampere;
case MAGNITUDE_POWER_REACTIVE:
return sensor::Unit::VoltampereReactive;
case MAGNITUDE_ENERGY_DELTA:
return sensor::Unit::Joule;
case MAGNITUDE_ENERGY:
return sensor::Unit::KilowattHour;
case MAGNITUDE_PM1dot0:
case MAGNITUDE_PM2dot5:
return sensor::Unit::MicrogrammPerCubicMeter;
case MAGNITUDE_CO2:
case MAGNITUDE_NO2:
case MAGNITUDE_CO:
return sensor::Unit::PartsPerMillion;
case MAGNITUDE_LUX:
return sensor::Unit::Lux;
case MAGNITUDE_RESISTANCE:
return sensor::Unit::Ohm;
case MAGNITUDE_HCHO:
return sensor::Unit::MilligrammPerCubicMeter;
case MAGNITUDE_GEIGER_CPM:
return sensor::Unit::CountsPerMinute;
case MAGNITUDE_GEIGER_SIEVERT:
return sensor::Unit::MicrosievertPerHour;
case MAGNITUDE_DISTANCE:
return sensor::Unit::Meter;
default:
return sensor::Unit::None;
}
}
protected:
TSensorCallback _callback = NULL;
unsigned char _sensor_id = 0x00;
int _error = 0;
bool _dirty = true;
unsigned char _count = 0;
bool _ready = false;
};