Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

495 lines
14 KiB

/*
RELAY MODULE
Copyright (C) 2016-2017 by Xose Pérez <xose dot perez at gmail dot com>
*/
#include <EEPROM.h>
#include <Ticker.h>
#include <ArduinoJson.h>
#include <vector>
#include <functional>
typedef struct {
unsigned char pin;
bool reverse;
unsigned char led;
unsigned long delay_on;
unsigned long delay_off;
unsigned int floodWindowStart;
unsigned char floodWindowChanges;
unsigned int scheduledStatusTime;
bool scheduledStatus;
bool scheduledReport;
Ticker pulseTicker;
} relay_t;
std::vector<relay_t> _relays;
bool recursive = false;
#if RELAY_PROVIDER == RELAY_PROVIDER_DUAL
unsigned char _dual_status = 0;
#endif
// -----------------------------------------------------------------------------
// RELAY PROVIDERS
// -----------------------------------------------------------------------------
void relayProviderStatus(unsigned char id, bool status) {
if (id >= _relays.size()) return;
#if RELAY_PROVIDER == RELAY_PROVIDER_DUAL
_dual_status ^= (1 << id);
Serial.flush();
Serial.write(0xA0);
Serial.write(0x04);
Serial.write(_dual_status);
Serial.write(0xA1);
Serial.flush();
#endif
#if RELAY_PROVIDER == RELAY_PROVIDER_LIGHT
lightState(status);
#endif
#if RELAY_PROVIDER == RELAY_PROVIDER_RELAY
digitalWrite(_relays[id].pin, _relays[id].reverse ? !status : status);
#endif
}
bool relayProviderStatus(unsigned char id) {
if (id >= _relays.size()) return false;
#if RELAY_PROVIDER == RELAY_PROVIDER_DUAL
return ((_dual_status & (1 << id)) > 0);
#endif
#if RELAY_PROVIDER == RELAY_PROVIDER_LIGHT
return lightState();
#endif
#if RELAY_PROVIDER == RELAY_PROVIDER_RELAY
bool status = (digitalRead(_relays[id].pin) == HIGH);
return _relays[id].reverse ? !status : status;
#endif
}
// -----------------------------------------------------------------------------
// RELAY
// -----------------------------------------------------------------------------
void relayPulse(unsigned char id) {
byte relayPulseMode = getSetting("relayPulseMode", RELAY_PULSE_MODE).toInt();
if (relayPulseMode == RELAY_PULSE_NONE) return;
long relayPulseTime = 1000.0 * getSetting("relayPulseTime", RELAY_PULSE_TIME).toFloat();
if (relayPulseTime == 0) return;
bool status = relayStatus(id);
bool pulseStatus = (relayPulseMode == RELAY_PULSE_ON);
if (pulseStatus == status) {
_relays[id].pulseTicker.detach();
return;
}
_relays[id].pulseTicker.once_ms(relayPulseTime, relayToggle, id);
}
unsigned int relayPulseMode() {
unsigned int value = getSetting("relayPulseMode", RELAY_PULSE_MODE).toInt();
return value;
}
void relayPulseMode(unsigned int value, bool report) {
setSetting("relayPulseMode", value);
/*
if (report) {
char topic[strlen(MQTT_TOPIC_RELAY) + 10];
sprintf(topic, "%s/pulse", MQTT_TOPIC_RELAY);
char value[2];
sprintf(value, "%d", value);
mqttSend(topic, value);
}
*/
char message[20];
sprintf(message, "{\"relayPulseMode\": %d}", value);
wsSend(message);
}
void relayPulseMode(unsigned int value) {
relayPulseMode(value, true);
}
void relayPulseToggle() {
unsigned int value = relayPulseMode();
value = (value == RELAY_PULSE_NONE) ? RELAY_PULSE_OFF : RELAY_PULSE_NONE;
relayPulseMode(value);
}
bool relayStatus(unsigned char id, bool status, bool report) {
if (id >= _relays.size()) return false;
bool changed = false;
if (relayStatus(id) != status) {
unsigned int currentTime = millis();
unsigned int floodWindowEnd = _relays[id].floodWindowStart + 1000 * RELAY_FLOOD_WINDOW;
unsigned long delay = status ? _relays[id].delay_on : _relays[id].delay_off;
_relays[id].floodWindowChanges++;
_relays[id].scheduledStatusTime = currentTime + delay;
// If currentTime is off-limits the floodWindow...
if (currentTime < _relays[id].floodWindowStart || floodWindowEnd <= currentTime) {
// We reset the floodWindow
_relays[id].floodWindowStart = currentTime;
_relays[id].floodWindowChanges = 1;
// If currentTime is in the floodWindow and there have been too many requests...
} else if (_relays[id].floodWindowChanges >= RELAY_FLOOD_CHANGES) {
// We schedule the changes to the end of the floodWindow
// unless it's already delayed beyond that point
if (floodWindowEnd - delay > currentTime) {
_relays[id].scheduledStatusTime = floodWindowEnd;
}
}
_relays[id].scheduledStatus = status;
if (report) _relays[id].scheduledReport = true;
DEBUG_MSG_P(PSTR("[RELAY] #%d scheduled %s in %u ms\n"),
id, status ? "ON" : "OFF",
(_relays[id].scheduledStatusTime - currentTime));
changed = true;
}
return changed;
}
bool relayStatus(unsigned char id, bool status) {
return relayStatus(id, status, true);
}
bool relayStatus(unsigned char id) {
return relayProviderStatus(id);
}
void relaySync(unsigned char id) {
if (_relays.size() > 1) {
recursive = true;
byte relaySync = getSetting("relaySync", RELAY_SYNC).toInt();
bool status = relayStatus(id);
// If RELAY_SYNC_SAME all relays should have the same state
if (relaySync == RELAY_SYNC_SAME) {
for (unsigned short i=0; i<_relays.size(); i++) {
if (i != id) relayStatus(i, status);
}
// If NONE_OR_ONE or ONE and setting ON we should set OFF all the others
} else if (status) {
if (relaySync != RELAY_SYNC_ANY) {
for (unsigned short i=0; i<_relays.size(); i++) {
if (i != id) relayStatus(i, false);
}
}
// If ONLY_ONE and setting OFF we should set ON the other one
} else {
if (relaySync == RELAY_SYNC_ONE) {
unsigned char i = (id + 1) % _relays.size();
relayStatus(i, true);
}
}
recursive = false;
}
}
void relaySave() {
unsigned char bit = 1;
unsigned char mask = 0;
for (unsigned int i=0; i < _relays.size(); i++) {
if (relayStatus(i)) mask += bit;
bit += bit;
}
EEPROM.write(EEPROM_RELAY_STATUS, mask);
DEBUG_MSG_P(PSTR("[RELAY] Saving mask: %d\n"), mask);
EEPROM.commit();
}
void relayRetrieve(bool invert) {
recursive = true;
unsigned char bit = 1;
unsigned char mask = invert ? ~EEPROM.read(EEPROM_RELAY_STATUS) : EEPROM.read(EEPROM_RELAY_STATUS);
DEBUG_MSG_P(PSTR("[RELAY] Retrieving mask: %d\n"), mask);
for (unsigned int id=0; id < _relays.size(); id++) {
_relays[id].scheduledStatus = ((mask & bit) == bit);
_relays[id].scheduledReport = true;
bit += bit;
}
if (invert) {
EEPROM.write(EEPROM_RELAY_STATUS, mask);
EEPROM.commit();
}
recursive = false;
}
void relayToggle(unsigned char id) {
if (id >= _relays.size()) return;
relayStatus(id, !relayStatus(id));
}
unsigned char relayCount() {
return _relays.size();
}
//------------------------------------------------------------------------------
// REST API
//------------------------------------------------------------------------------
void relaySetupAPI() {
// API entry points (protected with apikey)
for (unsigned int relayID=0; relayID<relayCount(); relayID++) {
char url[15];
sprintf(url, "%s/%d", MQTT_TOPIC_RELAY, relayID);
char key[10];
sprintf(key, "%s%d", MQTT_TOPIC_RELAY, relayID);
apiRegister(url, key,
[relayID](char * buffer, size_t len) {
snprintf(buffer, len, "%d", relayStatus(relayID) ? 1 : 0);
},
[relayID](const char * payload) {
unsigned int value = payload[0] - '0';
if (value == 2) {
relayToggle(relayID);
} else {
relayStatus(relayID, value == 1);
}
}
);
}
}
//------------------------------------------------------------------------------
// WebSockets
//------------------------------------------------------------------------------
void relayWS() {
DynamicJsonBuffer jsonBuffer;
JsonObject& root = jsonBuffer.createObject();
JsonArray& relay = root.createNestedArray("relayStatus");
for (unsigned char i=0; i<relayCount(); i++) {
relay.add(relayStatus(i));
}
String output;
root.printTo(output);
wsSend(output.c_str());
}
//------------------------------------------------------------------------------
// MQTT
//------------------------------------------------------------------------------
void relayMQTT(unsigned char id) {
if (id >= _relays.size()) return;
mqttSend(MQTT_TOPIC_RELAY, id, relayStatus(id) ? "1" : "0");
}
void relayMQTT() {
for (unsigned int i=0; i < _relays.size(); i++) {
relayMQTT(i);
}
}
void relayMQTTCallback(unsigned int type, const char * topic, const char * payload) {
if (type == MQTT_CONNECT_EVENT) {
#if not HEARTBEAT_REPORT_RELAY
relayMQTT();
#endif
char buffer[strlen(MQTT_TOPIC_RELAY) + 3];
sprintf(buffer, "%s/+", MQTT_TOPIC_RELAY);
mqttSubscribe(buffer);
}
if (type == MQTT_MESSAGE_EVENT) {
// Match topic
String t = mqttSubtopic((char *) topic);
if (!t.startsWith(MQTT_TOPIC_RELAY)) return;
// Get value
unsigned int value = (char)payload[0] - '0';
// Pulse topic
if (t.endsWith("pulse")) {
relayPulseMode(value, mqttForward());
return;
}
// Get relay ID
unsigned int relayID = t.substring(strlen(MQTT_TOPIC_RELAY)+1).toInt();
if (relayID >= relayCount()) {
DEBUG_MSG_P(PSTR("[RELAY] Wrong relayID (%d)\n"), relayID);
return;
}
// Action to perform
if (value == 2) {
relayToggle(relayID);
} else {
relayStatus(relayID, value > 0, mqttForward());
}
}
}
void relaySetupMQTT() {
mqttRegister(relayMQTTCallback);
}
//------------------------------------------------------------------------------
// InfluxDB
//------------------------------------------------------------------------------
#if ENABLE_INFLUXDB
void relayInfluxDB(unsigned char id) {
if (id >= _relays.size()) return;
char buffer[10];
sprintf(buffer, "%s,id=%d", MQTT_TOPIC_RELAY, id);
influxDBSend(buffer, relayStatus(id) ? "1" : "0");
}
#endif
//------------------------------------------------------------------------------
// Setup
//------------------------------------------------------------------------------
void relaySetup() {
#if defined(SONOFF_DUAL)
// Two dummy relays for the dual
_relays.push_back((relay_t) {0, 0, 0, RELAY1_DELAY_ON, RELAY1_DELAY_OFF});
_relays.push_back((relay_t) {0, 0, 0, RELAY2_DELAY_ON, RELAY2_DELAY_OFF});
#elif defined(AI_LIGHT) | defined(LED_CONTROLLER) | defined(H801_LED_CONTROLLER)
// One dummy relay for the AI Thinker Light & Magic Home and H801 led controllers
_relays.push_back((relay_t) {0, 0, 0, RELAY1_DELAY_ON, RELAY1_DELAY_OFF});
#else
#ifdef RELAY1_PIN
_relays.push_back((relay_t) { RELAY1_PIN, RELAY1_PIN_INVERSE, RELAY1_LED, RELAY1_DELAY_ON, RELAY1_DELAY_OFF });
#endif
#ifdef RELAY2_PIN
_relays.push_back((relay_t) { RELAY2_PIN, RELAY2_PIN_INVERSE, RELAY2_LED, RELAY2_DELAY_ON, RELAY2_DELAY_OFF });
#endif
#ifdef RELAY3_PIN
_relays.push_back((relay_t) { RELAY3_PIN, RELAY3_PIN_INVERSE, RELAY3_LED, RELAY3_DELAY_ON, RELAY3_DELAY_OFF });
#endif
#ifdef RELAY4_PIN
_relays.push_back((relay_t) { RELAY4_PIN, RELAY4_PIN_INVERSE, RELAY4_LED, RELAY4_DELAY_ON, RELAY4_DELAY_OFF });
#endif
#endif
byte relayMode = getSetting("relayMode", RELAY_MODE).toInt();
for (unsigned int i=0; i < _relays.size(); i++) {
pinMode(_relays[i].pin, OUTPUT);
if (relayMode == RELAY_MODE_OFF) relayStatus(i, false);
if (relayMode == RELAY_MODE_ON) relayStatus(i, true);
}
if (relayMode == RELAY_MODE_SAME) relayRetrieve(false);
if (relayMode == RELAY_MODE_TOOGLE) relayRetrieve(true);
relayLoop();
relaySetupAPI();
relaySetupMQTT();
DEBUG_MSG_P(PSTR("[RELAY] Number of relays: %d\n"), _relays.size());
}
void relayLoop(void) {
unsigned char id;
for (id = 0; id < _relays.size(); id++) {
unsigned int currentTime = millis();
bool status = _relays[id].scheduledStatus;
if (relayStatus(id) != status && currentTime >= _relays[id].scheduledStatusTime) {
DEBUG_MSG_P(PSTR("[RELAY] #%d set to %s\n"), id, status ? "ON" : "OFF");
// Call the provider to perform the action
relayProviderStatus(id, status);
// Change the binded LED if any
if (_relays[id].led > 0) {
ledStatus(_relays[id].led - 1, status);
}
// Send MQTT report if requested
if (_relays[id].scheduledReport) {
relayMQTT(id);
}
if (!recursive) {
relayPulse(id);
relaySync(id);
relaySave();
relayWS();
}
#if ENABLE_DOMOTICZ
relayDomoticzSend(id);
#endif
#if ENABLE_INFLUXDB
relayInfluxDB(id);
#endif
_relays[id].scheduledReport = false;
}
}
}