Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

855 lines
27 KiB

/*
UTILS MODULE
Copyright (C) 2017-2019 by Xose Pérez <xose dot perez at gmail dot com>
*/
#include "espurna.h"
#include "board.h"
#include "influxdb.h"
#include "light.h"
#include "mqtt.h"
#include "ntp.h"
#include "relay.h"
#include "thermostat.h"
#include "libs/TypeChecks.h"
#include <limits>
//--------------------------------------------------------------------------------
// Reset reasons
//--------------------------------------------------------------------------------
PROGMEM const char custom_reset_hardware[] = "Hardware button";
PROGMEM const char custom_reset_web[] = "Reboot from web interface";
PROGMEM const char custom_reset_terminal[] = "Reboot from terminal";
PROGMEM const char custom_reset_mqtt[] = "Reboot from MQTT";
PROGMEM const char custom_reset_rpc[] = "Reboot from RPC";
PROGMEM const char custom_reset_ota[] = "Reboot after successful OTA update";
PROGMEM const char custom_reset_http[] = "Reboot from HTTP";
PROGMEM const char custom_reset_nofuss[] = "Reboot after successful NoFUSS update";
PROGMEM const char custom_reset_upgrade[] = "Reboot after successful web update";
PROGMEM const char custom_reset_factory[] = "Factory reset";
PROGMEM const char* const custom_reset_string[] = {
custom_reset_hardware, custom_reset_web, custom_reset_terminal,
custom_reset_mqtt, custom_reset_rpc, custom_reset_ota,
custom_reset_http, custom_reset_nofuss, custom_reset_upgrade,
custom_reset_factory
};
void setDefaultHostname() {
if (strlen(HOSTNAME) > 0) {
setSetting("hostname", F(HOSTNAME));
} else {
setSetting("hostname", getIdentifier());
}
}
const String& getDevice() {
static const String value(F(DEVICE));
return value;
}
const String& getManufacturer() {
static const String value(F(MANUFACTURER));
return value;
}
String getBoardName() {
static const String defaultValue(F(DEVICE_NAME));
return getSetting("boardName", defaultValue);
}
void setBoardName() {
if (!isEspurnaCore()) {
setSetting("boardName", F(DEVICE_NAME));
}
}
String getAdminPass() {
static const String defaultValue(F(ADMIN_PASS));
return getSetting("adminPass", defaultValue);
}
const String& getCoreVersion() {
static String version;
if (!version.length()) {
#ifdef ARDUINO_ESP8266_RELEASE
version = ESP.getCoreVersion();
if (version.equals("00000000")) {
version = String(ARDUINO_ESP8266_RELEASE);
}
version.replace("_", ".");
#else
#define _GET_COREVERSION_STR(X) #X
#define GET_COREVERSION_STR(X) _GET_COREVERSION_STR(X)
version = GET_COREVERSION_STR(ARDUINO_ESP8266_GIT_DESC);
#undef _GET_COREVERSION_STR
#undef GET_COREVERSION_STR
#endif
}
return version;
}
const String& getCoreRevision() {
static String revision;
if (!revision.length()) {
#ifdef ARDUINO_ESP8266_GIT_VER
revision = String(ARDUINO_ESP8266_GIT_VER, 16);
#else
revision = "(unspecified)";
#endif
}
return revision;
}
int getHeartbeatMode() {
return getSetting("hbMode", HEARTBEAT_MODE);
}
unsigned long getHeartbeatInterval() {
return getSetting("hbInterval", HEARTBEAT_INTERVAL);
}
String buildTime() {
#if NTP_LEGACY_SUPPORT && NTP_SUPPORT
return ntpDateTime(__UNIX_TIMESTAMP__);
#elif NTP_SUPPORT
constexpr const time_t ts = __UNIX_TIMESTAMP__;
tm timestruct;
gmtime_r(&ts, &timestruct);
return ntpDateTime(&timestruct);
#else
char buffer[20];
snprintf_P(
buffer, sizeof(buffer), PSTR("%04d-%02d-%02d %02d:%02d:%02d"),
__TIME_YEAR__, __TIME_MONTH__, __TIME_DAY__,
__TIME_HOUR__, __TIME_MINUTE__, __TIME_SECOND__
);
return String(buffer);
#endif
}
unsigned long getUptime() {
static unsigned long last_uptime = 0;
static unsigned char uptime_overflows = 0;
if (millis() < last_uptime) ++uptime_overflows;
last_uptime = millis();
unsigned long uptime_seconds = uptime_overflows * (UPTIME_OVERFLOW / 1000) + (last_uptime / 1000);
return uptime_seconds;
}
//--------------------------------------------------------------------------------
// Heap stats
//--------------------------------------------------------------------------------
namespace {
template <typename T>
using has_getHeapStats_t = decltype(std::declval<T>().getHeapStats(0,0,0));
template <typename T>
using has_getHeapStats = is_detected<has_getHeapStats_t, T>;
template <typename T>
void _getHeapStats(const std::true_type&, T& instance, heap_stats_t& stats) {
instance.getHeapStats(&stats.available, &stats.usable, &stats.frag_pct);
}
template <typename T>
void _getHeapStats(const std::false_type&, T& instance, heap_stats_t& stats) {
stats.available = instance.getFreeHeap();
stats.usable = 0;
stats.frag_pct = 0;
}
} // namespace anonymous
void getHeapStats(heap_stats_t& stats) {
_getHeapStats(has_getHeapStats<decltype(ESP)>{}, ESP, stats);
}
// WTF
// Calling ESP.getFreeHeap() is making the system crash on a specific
// AiLight bulb, but anywhere else it should work as expected
static bool _heap_value_wtf = false;
heap_stats_t getHeapStats() {
heap_stats_t stats;
if (_heap_value_wtf) {
stats.available = 9999;
stats.usable = 9999;
stats.frag_pct = 0;
return stats;
}
getHeapStats(stats);
return stats;
}
void wtfHeap(bool value) {
_heap_value_wtf = value;
}
unsigned int getFreeHeap() {
return ESP.getFreeHeap();
}
// TODO: place in struct ctor to run at the earliest opportunity
static unsigned int _initial_heap_value = 0;
void setInitialFreeHeap() {
_initial_heap_value = getFreeHeap();
}
unsigned int getInitialFreeHeap() {
if (0 == _initial_heap_value) {
setInitialFreeHeap();
}
return _initial_heap_value;
}
// -----------------------------------------------------------------------------
// Heartbeat helper
// -----------------------------------------------------------------------------
namespace Heartbeat {
enum Report : uint32_t {
Status = 1 << 1,
Ssid = 1 << 2,
Ip = 1 << 3,
Mac = 1 << 4,
Rssi = 1 << 5,
Uptime = 1 << 6,
Datetime = 1 << 7,
Freeheap = 1 << 8,
Vcc = 1 << 9,
Relay = 1 << 10,
Light = 1 << 11,
Hostname = 1 << 12,
App = 1 << 13,
Version = 1 << 14,
Board = 1 << 15,
Loadavg = 1 << 16,
Interval = 1 << 17,
Description = 1 << 18,
Range = 1 << 19,
RemoteTemp = 1 << 20,
Bssid = 1 << 21
};
constexpr uint32_t defaultValue() {
return (Status * (HEARTBEAT_REPORT_STATUS)) | \
(Ssid * (HEARTBEAT_REPORT_SSID)) | \
(Ip * (HEARTBEAT_REPORT_IP)) | \
(Mac * (HEARTBEAT_REPORT_MAC)) | \
(Rssi * (HEARTBEAT_REPORT_RSSI)) | \
(Uptime * (HEARTBEAT_REPORT_UPTIME)) | \
(Datetime * (HEARTBEAT_REPORT_DATETIME)) | \
(Freeheap * (HEARTBEAT_REPORT_FREEHEAP)) | \
(Vcc * (HEARTBEAT_REPORT_VCC)) | \
(Relay * (HEARTBEAT_REPORT_RELAY)) | \
(Light * (HEARTBEAT_REPORT_LIGHT)) | \
(Hostname * (HEARTBEAT_REPORT_HOSTNAME)) | \
(Description * (HEARTBEAT_REPORT_DESCRIPTION)) | \
(App * (HEARTBEAT_REPORT_APP)) | \
(Version * (HEARTBEAT_REPORT_VERSION)) | \
(Board * (HEARTBEAT_REPORT_BOARD)) | \
(Loadavg * (HEARTBEAT_REPORT_LOADAVG)) | \
(Interval * (HEARTBEAT_REPORT_INTERVAL)) | \
(Range * (HEARTBEAT_REPORT_RANGE)) | \
(RemoteTemp * (HEARTBEAT_REPORT_REMOTE_TEMP)) | \
(Bssid * (HEARTBEAT_REPORT_BSSID));
}
uint32_t currentValue() {
// use default without any setting / when it is empty
const auto value = getSetting("hbReport", defaultValue());
// because we start shifting from 1, we could use the
// first bit as a flag to enable all of the messages
if (value == 1) {
return std::numeric_limits<uint32_t>::max();
}
return value;
}
}
void infoUptime() {
#if NTP_SUPPORT
time_t uptime = getUptime();
tm spec;
gmtime_r(&uptime, &spec);
DEBUG_MSG_P(
PSTR("[MAIN] Uptime: %02dy %02dd %02dh %02dm %02ds\n"),
(spec.tm_year - 70), spec.tm_yday, spec.tm_hour,
spec.tm_min, spec.tm_sec
);
#else
DEBUG_MSG_P(PSTR("[MAIN] Uptime: %lu seconds\n"), getUptime());
#endif // NTP_SUPPORT
}
void heartbeat() {
auto heap_stats [[gnu::unused]] = getHeapStats();
#if MQTT_SUPPORT
unsigned char _heartbeat_mode = getHeartbeatMode();
bool serial = !mqttConnected();
#else
bool serial = true;
#endif
// -------------------------------------------------------------------------
// Serial
// -------------------------------------------------------------------------
if (serial) {
infoUptime();
infoHeapStats();
if (ADC_MODE_VALUE == ADC_VCC) {
DEBUG_MSG_P(PSTR("[MAIN] Power: %lu mV\n"), ESP.getVcc());
}
#if NTP_SUPPORT
if (ntpSynced()) DEBUG_MSG_P(PSTR("[MAIN] Time: %s\n"), (char *) ntpDateTime().c_str());
#endif
}
const uint32_t hb_cfg = Heartbeat::currentValue();
if (!hb_cfg) return;
// -------------------------------------------------------------------------
// MQTT
// -------------------------------------------------------------------------
#if MQTT_SUPPORT
if (!serial && (_heartbeat_mode == HEARTBEAT_REPEAT || systemGetHeartbeat())) {
if (hb_cfg & Heartbeat::Interval)
mqttSend(MQTT_TOPIC_INTERVAL, String(getHeartbeatInterval()).c_str());
if (hb_cfg & Heartbeat::App)
mqttSend(MQTT_TOPIC_APP, APP_NAME);
if (hb_cfg & Heartbeat::Version)
mqttSend(MQTT_TOPIC_VERSION, APP_VERSION);
if (hb_cfg & Heartbeat::Board)
mqttSend(MQTT_TOPIC_BOARD, getBoardName().c_str());
if (hb_cfg & Heartbeat::Hostname)
mqttSend(MQTT_TOPIC_HOSTNAME, getSetting("hostname", getIdentifier()).c_str());
if (hb_cfg & Heartbeat::Description) {
if (hasSetting("desc")) {
mqttSend(MQTT_TOPIC_DESCRIPTION, getSetting("desc").c_str());
}
}
if (hb_cfg & Heartbeat::Ssid)
mqttSend(MQTT_TOPIC_SSID, WiFi.SSID().c_str());
if (hb_cfg & Heartbeat::Bssid)
mqttSend(MQTT_TOPIC_BSSID, WiFi.BSSIDstr().c_str());
if (hb_cfg & Heartbeat::Ip)
mqttSend(MQTT_TOPIC_IP, getIP().c_str());
if (hb_cfg & Heartbeat::Mac)
mqttSend(MQTT_TOPIC_MAC, WiFi.macAddress().c_str());
if (hb_cfg & Heartbeat::Rssi)
mqttSend(MQTT_TOPIC_RSSI, String(WiFi.RSSI()).c_str());
if (hb_cfg & Heartbeat::Uptime)
mqttSend(MQTT_TOPIC_UPTIME, String(getUptime()).c_str());
#if NTP_SUPPORT
if ((hb_cfg & Heartbeat::Datetime) && (ntpSynced()))
mqttSend(MQTT_TOPIC_DATETIME, ntpDateTime().c_str());
#endif
if (hb_cfg & Heartbeat::Freeheap)
mqttSend(MQTT_TOPIC_FREEHEAP, String(heap_stats.available).c_str());
#if RELAY_SUPPORT
if (hb_cfg & Heartbeat::Relay)
relayMQTT();
#endif
#if (LIGHT_PROVIDER != LIGHT_PROVIDER_NONE)
if (hb_cfg & Heartbeat::Light)
lightMQTT();
#endif
if ((hb_cfg & Heartbeat::Vcc) && (ADC_MODE_VALUE == ADC_VCC))
mqttSend(MQTT_TOPIC_VCC, String(ESP.getVcc()).c_str());
if (hb_cfg & Heartbeat::Status)
mqttSendStatus();
if (hb_cfg & Heartbeat::Loadavg)
mqttSend(MQTT_TOPIC_LOADAVG, String(systemLoadAverage()).c_str());
#if THERMOSTAT_SUPPORT
if (hb_cfg & Heartbeat::Range) {
const auto& range = thermostatRange();
mqttSend(MQTT_TOPIC_HOLD_TEMP "_" MQTT_TOPIC_HOLD_TEMP_MIN, String(range.min).c_str());
mqttSend(MQTT_TOPIC_HOLD_TEMP "_" MQTT_TOPIC_HOLD_TEMP_MAX, String(range.max).c_str());
}
if (hb_cfg & Heartbeat::RemoteTemp) {
const auto& remote_temp = thermostatRemoteTemp();
char buffer[16];
dtostrf(remote_temp.temp, 1, 1, buffer);
mqttSend(MQTT_TOPIC_REMOTE_TEMP, buffer);
}
#endif
} else if (!serial && _heartbeat_mode == HEARTBEAT_REPEAT_STATUS) {
mqttSendStatus();
}
#endif
// -------------------------------------------------------------------------
// InfluxDB
// -------------------------------------------------------------------------
#if INFLUXDB_SUPPORT
if (hb_cfg & Heartbeat::Uptime)
idbSend(MQTT_TOPIC_UPTIME, String(getUptime()).c_str());
if (hb_cfg & Heartbeat::Freeheap)
idbSend(MQTT_TOPIC_FREEHEAP, String(heap_stats.available).c_str());
if (hb_cfg & Heartbeat::Rssi)
idbSend(MQTT_TOPIC_RSSI, String(WiFi.RSSI()).c_str());
if ((hb_cfg & Heartbeat::Vcc) && (ADC_MODE_VALUE == ADC_VCC))
idbSend(MQTT_TOPIC_VCC, String(ESP.getVcc()).c_str());
if (hb_cfg & Heartbeat::Loadavg)
idbSend(MQTT_TOPIC_LOADAVG, String(systemLoadAverage()).c_str());
if (hb_cfg & Heartbeat::Ssid)
idbSend(MQTT_TOPIC_SSID, WiFi.SSID().c_str());
if (hb_cfg & Heartbeat::Bssid)
idbSend(MQTT_TOPIC_BSSID, WiFi.BSSIDstr().c_str());
#endif
}
// -----------------------------------------------------------------------------
// INFO
// -----------------------------------------------------------------------------
extern "C" uint32_t _SPIFFS_start;
extern "C" uint32_t _SPIFFS_end;
unsigned int info_bytes2sectors(size_t size) {
return (int) (size + SPI_FLASH_SEC_SIZE - 1) / SPI_FLASH_SEC_SIZE;
}
unsigned long info_ota_space() {
return (ESP.getFreeSketchSpace() - 0x1000) & 0xFFFFF000;
}
unsigned long info_filesystem_space() {
return ((uint32_t)&_SPIFFS_end - (uint32_t)&_SPIFFS_start);
}
unsigned long info_eeprom_space() {
return EEPROMr.reserved() * SPI_FLASH_SEC_SIZE;
}
void _info_print_memory_layout_line(const char * name, unsigned long bytes, bool reset) {
static unsigned long index = 0;
if (reset) index = 0;
if (0 == bytes) return;
unsigned int _sectors = info_bytes2sectors(bytes);
DEBUG_MSG_P(PSTR("[MAIN] %-20s: %8lu bytes / %4d sectors (%4d to %4d)\n"), name, bytes, _sectors, index, index + _sectors - 1);
index += _sectors;
}
void _info_print_memory_layout_line(const char * name, unsigned long bytes) {
_info_print_memory_layout_line(name, bytes, false);
}
void infoMemory(const char * name, unsigned int total_memory, unsigned int free_memory) {
DEBUG_MSG_P(
PSTR("[MAIN] %-6s: %5u bytes initially | %5u bytes used (%2u%%) | %5u bytes free (%2u%%)\n"),
name,
total_memory,
total_memory - free_memory,
100 * (total_memory - free_memory) / total_memory,
free_memory,
100 * free_memory / total_memory
);
}
void infoMemory(const char* name, const heap_stats_t& stats) {
infoMemory(name, getInitialFreeHeap(), stats.available);
}
void infoHeapStats(const char* name, const heap_stats_t& stats) {
DEBUG_MSG_P(
PSTR("[MAIN] %-6s: %5u contiguous bytes available (%u%% fragmentation)\n"),
name,
stats.usable,
stats.frag_pct
);
}
void infoHeapStats(bool show_frag_stats) {
const auto stats = getHeapStats();
infoMemory("Heap", stats);
if (show_frag_stats && has_getHeapStats<decltype(ESP)>{}) {
infoHeapStats("Heap", stats);
}
}
const char* _info_wifi_sleep_mode(WiFiSleepType_t type) {
switch (type) {
case WIFI_NONE_SLEEP: return "NONE";
case WIFI_LIGHT_SLEEP: return "LIGHT";
case WIFI_MODEM_SLEEP: return "MODEM";
default: return "UNKNOWN";
}
}
void info(bool first) {
// Avoid printing on early boot when buffering is enabled
#if DEBUG_SUPPORT
#if DEBUG_LOG_BUFFER_SUPPORT
if (first && debugLogBuffer()) return;
#endif
DEBUG_MSG_P(PSTR("\n\n---8<-------\n\n"));
// -------------------------------------------------------------------------
#if defined(APP_REVISION)
DEBUG_MSG_P(PSTR("[MAIN] " APP_NAME " " APP_VERSION " (" APP_REVISION ")\n"));
#else
DEBUG_MSG_P(PSTR("[MAIN] " APP_NAME " " APP_VERSION "\n"));
#endif
DEBUG_MSG_P(PSTR("[MAIN] " APP_AUTHOR "\n"));
DEBUG_MSG_P(PSTR("[MAIN] " APP_WEBSITE "\n\n"));
DEBUG_MSG_P(PSTR("[MAIN] CPU chip ID: 0x%06X\n"), ESP.getChipId());
DEBUG_MSG_P(PSTR("[MAIN] CPU frequency: %u MHz\n"), ESP.getCpuFreqMHz());
DEBUG_MSG_P(PSTR("[MAIN] SDK version: %s\n"), ESP.getSdkVersion());
DEBUG_MSG_P(PSTR("[MAIN] Core version: %s\n"), getCoreVersion().c_str());
DEBUG_MSG_P(PSTR("[MAIN] Core revision: %s\n"), getCoreRevision().c_str());
DEBUG_MSG_P(PSTR("[MAIN] Build time: %lu\n"), __UNIX_TIMESTAMP__);
DEBUG_MSG_P(PSTR("\n"));
// -------------------------------------------------------------------------
FlashMode_t mode [[gnu::unused]] = ESP.getFlashChipMode();
DEBUG_MSG_P(PSTR("[MAIN] Flash chip ID: 0x%06X\n"), ESP.getFlashChipId());
DEBUG_MSG_P(PSTR("[MAIN] Flash speed: %u Hz\n"), ESP.getFlashChipSpeed());
DEBUG_MSG_P(PSTR("[MAIN] Flash mode: %s\n"), mode == FM_QIO ? "QIO" : mode == FM_QOUT ? "QOUT" : mode == FM_DIO ? "DIO" : mode == FM_DOUT ? "DOUT" : "UNKNOWN");
DEBUG_MSG_P(PSTR("\n"));
// -------------------------------------------------------------------------
_info_print_memory_layout_line("Flash size (CHIP)", ESP.getFlashChipRealSize(), true);
_info_print_memory_layout_line("Flash size (SDK)", ESP.getFlashChipSize(), true);
_info_print_memory_layout_line("Reserved", 1 * SPI_FLASH_SEC_SIZE, true);
_info_print_memory_layout_line("Firmware size", ESP.getSketchSize());
_info_print_memory_layout_line("Max OTA size", info_ota_space());
_info_print_memory_layout_line("SPIFFS size", info_filesystem_space());
_info_print_memory_layout_line("EEPROM size", info_eeprom_space());
_info_print_memory_layout_line("Reserved", 4 * SPI_FLASH_SEC_SIZE);
DEBUG_MSG_P(PSTR("\n"));
// -------------------------------------------------------------------------
#if SPIFFS_SUPPORT
FSInfo fs_info;
bool fs = SPIFFS.info(fs_info);
if (fs) {
DEBUG_MSG_P(PSTR("[MAIN] SPIFFS total size : %8u bytes / %4d sectors\n"), fs_info.totalBytes, info_bytes2sectors(fs_info.totalBytes));
DEBUG_MSG_P(PSTR("[MAIN] used size : %8u bytes\n"), fs_info.usedBytes);
DEBUG_MSG_P(PSTR("[MAIN] block size : %8u bytes\n"), fs_info.blockSize);
DEBUG_MSG_P(PSTR("[MAIN] page size : %8u bytes\n"), fs_info.pageSize);
DEBUG_MSG_P(PSTR("[MAIN] max files : %8u\n"), fs_info.maxOpenFiles);
DEBUG_MSG_P(PSTR("[MAIN] max length : %8u\n"), fs_info.maxPathLength);
} else {
DEBUG_MSG_P(PSTR("[MAIN] No SPIFFS partition\n"));
}
DEBUG_MSG_P(PSTR("\n"));
#endif
// -------------------------------------------------------------------------
eepromSectorsDebug();
DEBUG_MSG_P(PSTR("\n"));
// -------------------------------------------------------------------------
infoMemory("EEPROM", SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE - settingsSize());
infoHeapStats(!first);
infoMemory("Stack", CONT_STACKSIZE, getFreeStack());
DEBUG_MSG_P(PSTR("\n"));
// -------------------------------------------------------------------------
DEBUG_MSG_P(PSTR("[MAIN] Boot version: %d\n"), ESP.getBootVersion());
DEBUG_MSG_P(PSTR("[MAIN] Boot mode: %d\n"), ESP.getBootMode());
unsigned char reason = customResetReason();
if (reason > 0) {
char buffer[32];
strcpy_P(buffer, custom_reset_string[reason-1]);
DEBUG_MSG_P(PSTR("[MAIN] Last reset reason: %s\n"), buffer);
} else {
DEBUG_MSG_P(PSTR("[MAIN] Last reset reason: %s\n"), (char *) ESP.getResetReason().c_str());
DEBUG_MSG_P(PSTR("[MAIN] Last reset info: %s\n"), (char *) ESP.getResetInfo().c_str());
}
DEBUG_MSG_P(PSTR("\n"));
// -------------------------------------------------------------------------
DEBUG_MSG_P(PSTR("[MAIN] Board: %s\n"), getBoardName().c_str());
DEBUG_MSG_P(PSTR("[MAIN] Support: %s\n"), getEspurnaModules().c_str());
DEBUG_MSG_P(PSTR("[MAIN] OTA: %s\n"), getEspurnaOTAModules().c_str());
#if SENSOR_SUPPORT
DEBUG_MSG_P(PSTR("[MAIN] Sensors: %s\n"), getEspurnaSensors().c_str());
#endif // SENSOR_SUPPORT
DEBUG_MSG_P(PSTR("[MAIN] WebUI image: %s\n"), getEspurnaWebUI().c_str());
DEBUG_MSG_P(PSTR("\n"));
// -------------------------------------------------------------------------
if (!first) {
DEBUG_MSG_P(PSTR("[MAIN] Firmware MD5: %s\n"), (char *) ESP.getSketchMD5().c_str());
}
if (ADC_MODE_VALUE == ADC_VCC) {
DEBUG_MSG_P(PSTR("[MAIN] Power: %u mV\n"), ESP.getVcc());
}
if (espurnaLoopDelay()) {
DEBUG_MSG_P(PSTR("[MAIN] Power saving delay value: %lu ms\n"), espurnaLoopDelay());
}
const WiFiSleepType_t sleep_mode = WiFi.getSleepMode();
if (sleep_mode != WIFI_NONE_SLEEP) {
DEBUG_MSG_P(PSTR("[MAIN] WiFi Sleep Mode: %s\n"), _info_wifi_sleep_mode(sleep_mode));
}
// -------------------------------------------------------------------------
#if SYSTEM_CHECK_ENABLED
if (!systemCheck()) {
DEBUG_MSG_P(PSTR("\n"));
DEBUG_MSG_P(PSTR("[MAIN] Device is in SAFE MODE\n"));
}
#endif
// -------------------------------------------------------------------------
DEBUG_MSG_P(PSTR("\n\n---8<-------\n\n"));
#endif // DEBUG_SUPPORT == 1
}
// -----------------------------------------------------------------------------
// SSL
// -----------------------------------------------------------------------------
bool sslCheckFingerPrint(const char * fingerprint) {
return (strlen(fingerprint) == 59);
}
bool sslFingerPrintArray(const char * fingerprint, unsigned char * bytearray) {
// check length (20 2-character digits ':' or ' ' separated => 20*2+19 = 59)
if (!sslCheckFingerPrint(fingerprint)) return false;
// walk the fingerprint
for (unsigned int i=0; i<20; i++) {
bytearray[i] = strtol(fingerprint + 3*i, NULL, 16);
}
return true;
}
bool sslFingerPrintChar(const char * fingerprint, char * destination) {
// check length (20 2-character digits ':' or ' ' separated => 20*2+19 = 59)
if (!sslCheckFingerPrint(fingerprint)) return false;
// copy it
strncpy(destination, fingerprint, 59);
// walk the fingerprint replacing ':' for ' '
for (unsigned char i = 0; i<59; i++) {
if (destination[i] == ':') destination[i] = ' ';
}
return true;
}
// -----------------------------------------------------------------------------
// Reset
// -----------------------------------------------------------------------------
// Use fixed method for Core 2.3.0, because it erases only 2 out of 4 SDK-reserved sectors
// Fixed since 2.4.0, see: esp8266/core/esp8266/Esp.cpp: ESP::eraseConfig()
bool eraseSDKConfig() {
#if defined(ARDUINO_ESP8266_RELEASE_2_3_0)
constexpr size_t cfgsize = 0x4000;
size_t cfgaddr = ESP.getFlashChipSize() - cfgsize;
for (size_t offset = 0; offset < cfgsize; offset += SPI_FLASH_SEC_SIZE) {
if (!ESP.flashEraseSector((cfgaddr + offset) / SPI_FLASH_SEC_SIZE)) {
return false;
}
}
return true;
#else
return ESP.eraseConfig();
#endif
}
// -----------------------------------------------------------------------------
// Helper functions
// -----------------------------------------------------------------------------
char * ltrim(char * s) {
char *p = s;
while ((unsigned char) *p == ' ') ++p;
return p;
}
double roundTo(double num, unsigned char positions) {
double multiplier = 1;
while (positions-- > 0) multiplier *= 10;
return round(num * multiplier) / multiplier;
}
void nice_delay(unsigned long ms) {
unsigned long start = millis();
while (millis() - start < ms) delay(1);
}
// This method is called by the SDK to know where to connect the ADC
int __get_adc_mode() {
return (int) (ADC_MODE_VALUE);
}
bool isNumber(const char * s) {
unsigned char len = strlen(s);
if (0 == len) return false;
bool decimal = false;
bool digit = false;
for (unsigned char i=0; i<len; i++) {
if (('-' == s[i]) || ('+' == s[i])) {
if (i>0) return false;
} else if (s[i] == '.') {
if (!digit) return false;
if (decimal) return false;
decimal = true;
} else if (!isdigit(s[i])) {
return false;
} else {
digit = true;
}
}
return digit;
}
// ref: lwip2 lwip_strnstr with strnlen
char* strnstr(const char* buffer, const char* token, size_t n) {
size_t token_len = strnlen(token, n);
if (token_len == 0) {
return const_cast<char*>(buffer);
}
for (const char* p = buffer; *p && (p + token_len <= buffer + n); p++) {
if ((*p == *token) && (strncmp(p, token, token_len) == 0)) {
return const_cast<char*>(p);
}
}
return nullptr;
}
// From a byte array to an hexa char array ("A220EE...", double the size)
size_t hexEncode(const uint8_t * in, size_t in_size, char * out, size_t out_size) {
if ((2 * in_size + 1) > (out_size)) return 0;
static const char base16[] = "0123456789ABCDEF";
size_t index = 0;
while (index < in_size) {
out[(index*2)] = base16[(in[index] & 0xf0) >> 4];
out[(index*2)+1] = base16[(in[index] & 0xf)];
++index;
}
out[2*index] = '\0';
return index ? (1 + (2 * index)) : 0;
}
// From an hexa char array ("A220EE...") to a byte array (half the size)
size_t hexDecode(const char* in, size_t in_size, uint8_t* out, size_t out_size) {
if ((in_size & 1) || (out_size < (in_size / 2))) {
return 0;
}
// We can only return small values
constexpr uint8_t InvalidByte { 255u };
auto char2byte = [](char ch) -> uint8_t {
if ((ch >= '0') && (ch <= '9')) {
return (ch - '0');
} else if ((ch >= 'a') && (ch <= 'f')) {
return 10 + (ch - 'a');
} else if ((ch >= 'A') && (ch <= 'F')) {
return 10 + (ch - 'A');
} else {
return InvalidByte;
}
};
size_t index = 0;
size_t out_index = 0;
while (index < in_size) {
const uint8_t lhs = char2byte(in[index]) << 4;
const uint8_t rhs = char2byte(in[index + 1]);
if ((InvalidByte != lhs) && (InvalidByte != rhs)) {
out[out_index++] = lhs | rhs;
index += 2;
continue;
}
out_index = 0;
break;
}
return out_index;
}