Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

601 lines
16 KiB

/*
SETTINGS MODULE
Copyright (C) 2016-2018 by Xose Pérez <xose dot perez at gmail dot com>
Module key prefix: cfg
*/
#include <EEPROM_Rotate.h>
#include <vector>
#include "libs/EmbedisWrap.h"
#include <Stream.h>
#include "libs/StreamInjector.h"
StreamInjector _serial = StreamInjector(TERMINAL_BUFFER_SIZE);
EmbedisWrap embedis(_serial, TERMINAL_BUFFER_SIZE);
#if TERMINAL_SUPPORT
#if SERIAL_RX_ENABLED
char _serial_rx_buffer[TERMINAL_BUFFER_SIZE];
static unsigned char _serial_rx_pointer = 0;
#endif // SERIAL_RX_ENABLED
#endif // TERMINAL_SUPPORT
bool _settings_save = false;
std::vector<setting_key_check_callback_f> _setting_key_check_callbacks;
// -----------------------------------------------------------------------------
// Reverse engineering EEPROM storage format
// -----------------------------------------------------------------------------
unsigned long settingsSize() {
unsigned pos = SPI_FLASH_SEC_SIZE - 1;
while (size_t len = EEPROMr.read(pos)) {
pos = pos - len - 2;
}
return SPI_FLASH_SEC_SIZE - pos;
}
// -----------------------------------------------------------------------------
bool settingsKeyExists(const char * key) {
for (unsigned char i = 0; i < _setting_key_check_callbacks.size(); i++) {
if ((_setting_key_check_callbacks[i])(key)) return true;
}
return false;
}
unsigned int settingsKeyCount() {
unsigned count = 0;
unsigned pos = SPI_FLASH_SEC_SIZE - 1;
while (size_t len = EEPROMr.read(pos)) {
pos = pos - len - 2;
len = EEPROMr.read(pos);
pos = pos - len - 2;
count ++;
}
return count;
}
String settingsKeyName(unsigned int index) {
String s;
unsigned count = 0;
unsigned pos = SPI_FLASH_SEC_SIZE - 1;
while (size_t len = EEPROMr.read(pos)) {
pos = pos - len - 2;
if (count == index) {
s.reserve(len);
for (unsigned char i = 0 ; i < len; i++) {
s += (char) EEPROMr.read(pos + i + 1);
}
break;
}
count++;
len = EEPROMr.read(pos);
pos = pos - len - 2;
}
return s;
}
std::vector<String> _settingsKeys() {
// Get sorted list of keys
std::vector<String> keys;
//unsigned int size = settingsKeyCount();
unsigned int size = settingsKeyCount();
for (unsigned int i=0; i<size; i++) {
//String key = settingsKeyName(i);
String key = settingsKeyName(i);
bool inserted = false;
for (unsigned char j=0; j<keys.size(); j++) {
// Check if we have to insert it before the current element
if (keys[j].compareTo(key) > 0) {
keys.insert(keys.begin() + j, key);
inserted = true;
break;
}
}
// If we could not insert it, just push it at the end
if (!inserted) keys.push_back(key);
}
return keys;
}
bool _settingsKeyCheck(const char * key) {
if (strncmp(key, "admin", 5) == 0) return true;
if (strncmp(key, "hostname", 8) == 0) return true;
if (strncmp(key, "board", 5) == 0) return true;
if (strncmp(key, "loopDelay", 9) == 0) return true;
if (strncmp(key, "wtfHeap", 7) == 0) return true;
if (strncmp(key, "cfg", 3) == 0) return true;
return false;
}
// -----------------------------------------------------------------------------
// Commands
// -----------------------------------------------------------------------------
void _settingsHelpCommand() {
// Get sorted list of commands
std::vector<String> commands;
unsigned char size = embedis.getCommandCount();
for (unsigned int i=0; i<size; i++) {
String command = embedis.getCommandName(i);
bool inserted = false;
for (unsigned char j=0; j<commands.size(); j++) {
// Check if we have to insert it before the current element
if (commands[j].compareTo(command) > 0) {
commands.insert(commands.begin() + j, command);
inserted = true;
break;
}
}
// If we could not insert it, just push it at the end
if (!inserted) commands.push_back(command);
}
// Output the list
DEBUG_MSG_P(PSTR("Available commands:\n"));
for (unsigned char i=0; i<commands.size(); i++) {
DEBUG_MSG_P(PSTR("> %s\n"), (commands[i]).c_str());
}
}
void _settingsKeysCommand() {
// Get sorted list of keys
std::vector<String> keys = _settingsKeys();
// Write key-values
DEBUG_MSG_P(PSTR("Current settings:\n"));
for (unsigned int i=0; i<keys.size(); i++) {
String value = getSetting(keys[i]);
DEBUG_MSG_P(PSTR("> %s => \"%s\"\n"), (keys[i]).c_str(), value.c_str());
}
unsigned long freeEEPROM = SPI_FLASH_SEC_SIZE - settingsSize();
DEBUG_MSG_P(PSTR("Number of keys: %d\n"), keys.size());
DEBUG_MSG_P(PSTR("Current EEPROM sector: %u\n"), EEPROMr.current());
DEBUG_MSG_P(PSTR("Free EEPROM: %d bytes (%d%%)\n"), freeEEPROM, 100 * freeEEPROM / SPI_FLASH_SEC_SIZE);
}
void _settingsCleanCommand(bool do_delete) {
// Get sorted list of keys
std::vector<String> keys = _settingsKeys();
unsigned int count = 0;
for (unsigned int i=0; i<keys.size(); i++) {
if (!settingsKeyExists((keys[i]).c_str())) {
if (do_delete) {
delSetting(keys[i]);
DEBUG_MSG_P(PSTR("> %s deleted\n"), (keys[i]).c_str());
} else {
DEBUG_MSG_P(PSTR("> %s is safe to delete\n"), (keys[i]).c_str());
}
++count;
}
}
DEBUG_MSG_P(PSTR("%u unknown key(s) found\n"), count);
}
void _settingsFactoryResetCommand() {
for (unsigned int i = 0; i < SPI_FLASH_SEC_SIZE; i++) {
EEPROMr.write(i, 0xFF);
}
EEPROMr.commit();
}
void _settingsInitCommands() {
#if DEBUG_SUPPORT
settingsRegisterCommand(F("CRASH"), [](Embedis* e) {
debugDumpCrashInfo();
debugClearCrashInfo();
DEBUG_MSG_P(PSTR("+OK\n"));
});
#endif
settingsRegisterCommand(F("CLEAN"), [](Embedis* e) {
bool do_delete = false;
if (e->argc > 1) {
do_delete = String(e->argv[1]).toInt() == 1;
}
_settingsCleanCommand(do_delete);
DEBUG_MSG_P(PSTR("+OK\n"));
});
settingsRegisterCommand(F("COMMANDS"), [](Embedis* e) {
_settingsHelpCommand();
DEBUG_MSG_P(PSTR("+OK\n"));
});
settingsRegisterCommand(F("ERASE.CONFIG"), [](Embedis* e) {
DEBUG_MSG_P(PSTR("+OK\n"));
resetReason(CUSTOM_RESET_TERMINAL);
ESP.eraseConfig();
*((int*) 0) = 0; // see https://github.com/esp8266/Arduino/issues/1494
});
#if I2C_SUPPORT
settingsRegisterCommand(F("I2C.SCAN"), [](Embedis* e) {
i2cScan();
DEBUG_MSG_P(PSTR("+OK\n"));
});
settingsRegisterCommand(F("I2C.CLEAR"), [](Embedis* e) {
i2cClearBus();
DEBUG_MSG_P(PSTR("+OK\n"));
});
#endif
settingsRegisterCommand(F("FACTORY.RESET"), [](Embedis* e) {
_settingsFactoryResetCommand();
DEBUG_MSG_P(PSTR("+OK\n"));
});
settingsRegisterCommand(F("GPIO"), [](Embedis* e) {
if (e->argc < 2) {
DEBUG_MSG_P(PSTR("-ERROR: Wrong arguments\n"));
return;
}
int pin = String(e->argv[1]).toInt();
//if (!gpioValid(pin)) {
// DEBUG_MSG_P(PSTR("-ERROR: Invalid GPIO\n"));
// return;
//}
if (e->argc > 2) {
bool state = String(e->argv[2]).toInt() == 1;
digitalWrite(pin, state);
}
DEBUG_MSG_P(PSTR("GPIO %d is %s\n"), pin, digitalRead(pin) == HIGH ? "HIGH" : "LOW");
DEBUG_MSG_P(PSTR("+OK\n"));
});
settingsRegisterCommand(F("HEAP"), [](Embedis* e) {
DEBUG_MSG_P(PSTR("Free HEAP: %d bytes\n"), getFreeHeap());
DEBUG_MSG_P(PSTR("+OK\n"));
});
settingsRegisterCommand(F("HELP"), [](Embedis* e) {
_settingsHelpCommand();
DEBUG_MSG_P(PSTR("+OK\n"));
});
settingsRegisterCommand(F("INFO"), [](Embedis* e) {
info();
wifiDebug();
//StreamString s;
//WiFi.printDiag(s);
//DEBUG_MSG(s.c_str());
DEBUG_MSG_P(PSTR("+OK\n"));
});
settingsRegisterCommand(F("KEYS"), [](Embedis* e) {
_settingsKeysCommand();
DEBUG_MSG_P(PSTR("+OK\n"));
});
settingsRegisterCommand(F("GET"), [](Embedis* e) {
if (e->argc < 2) {
DEBUG_MSG_P(PSTR("-ERROR: Wrong arguments\n"));
return;
}
for (unsigned char i = 1; i < e->argc; i++) {
String key = String(e->argv[i]);
String value;
if (!Embedis::get(key, value)) {
DEBUG_MSG_P(PSTR("> %s =>\n"), key.c_str());
continue;
}
DEBUG_MSG_P(PSTR("> %s => \"%s\"\n"), key.c_str(), value.c_str());
}
DEBUG_MSG_P(PSTR("+OK\n"));
});
settingsRegisterCommand(F("SET"), [](Embedis* e) {
if (e->argc != 3) {
DEBUG_MSG_P(PSTR("-ERROR: Wrong arguments\n"));
return;
}
String key = String(e->argv[1]);
String value = String(e->argv[2]);
// Hacks for backwards compatibility
if (key.startsWith("ssid")) key.replace("ssid", "wifiName");
if (key.startsWith("pass")) key.replace("pass", "wifiPass");
if (Embedis::set(key, value)) {
DEBUG_MSG_P(PSTR("+OK\n"));
} else {
DEBUG_MSG_P(PSTR("-ERROR: Error storing key-value\n"));
}
});
#if WEB_SUPPORT
settingsRegisterCommand(F("RELOAD"), [](Embedis* e) {
wsReload();
DEBUG_MSG_P(PSTR("+OK\n"));
});
#endif
settingsRegisterCommand(F("RESET"), [](Embedis* e) {
DEBUG_MSG_P(PSTR("+OK\n"));
deferredReset(100, CUSTOM_RESET_TERMINAL);
});
settingsRegisterCommand(F("RESET.SAFE"), [](Embedis* e) {
EEPROMr.write(EEPROM_CRASH_COUNTER, SYSTEM_CHECK_MAX);
DEBUG_MSG_P(PSTR("+OK\n"));
deferredReset(100, CUSTOM_RESET_TERMINAL);
});
settingsRegisterCommand(F("UPTIME"), [](Embedis* e) {
DEBUG_MSG_P(PSTR("Uptime: %d seconds\n"), getUptime());
DEBUG_MSG_P(PSTR("+OK\n"));
});
}
// -----------------------------------------------------------------------------
// Key-value API
// -----------------------------------------------------------------------------
void moveSetting(const char * from, const char * to) {
String value = getSetting(from);
if (value.length() > 0) setSetting(to, value);
delSetting(from);
}
void moveSetting(const char * from, const char * to, unsigned int index) {
String value = getSetting(from, index, "");
if (value.length() > 0) setSetting(to, index, value);
delSetting(from, index);
}
void moveSettings(const char * from, const char * to) {
unsigned int index = 0;
while (index < 100) {
String value = getSetting(from, index, "");
if (value.length() == 0) break;
setSetting(to, index, value);
delSetting(from, index);
index++;
}
}
template<typename T> String getSetting(const String& key, T defaultValue) {
String value;
if (!Embedis::get(key, value)) value = String(defaultValue);
return value;
}
template<typename T> String getSetting(const String& key, unsigned int index, T defaultValue) {
return getSetting(key + String(index), defaultValue);
}
String getSetting(const String& key) {
return getSetting(key, "");
}
template<typename T> bool setSetting(const String& key, T value) {
return Embedis::set(key, String(value));
}
template<typename T> bool setSetting(const String& key, unsigned int index, T value) {
return setSetting(key + String(index), value);
}
bool delSetting(const String& key) {
return Embedis::del(key);
}
bool delSetting(const String& key, unsigned int index) {
return delSetting(key + String(index));
}
bool hasSetting(const String& key) {
return getSetting(key).length() != 0;
}
bool hasSetting(const String& key, unsigned int index) {
return getSetting(key, index, "").length() != 0;
}
void saveSettings() {
#if not SETTINGS_AUTOSAVE
_settings_save = true;
#endif
}
void resetSettings() {
_settingsFactoryResetCommand();
}
// -----------------------------------------------------------------------------
// Settings
// -----------------------------------------------------------------------------
void settingsInject(void *data, size_t len) {
_serial.inject((char *) data, len);
}
Stream & settingsSerial() {
return (Stream &) _serial;
}
size_t settingsMaxSize() {
size_t size = EEPROM_SIZE;
if (size > SPI_FLASH_SEC_SIZE) size = SPI_FLASH_SEC_SIZE;
size = (size + 3) & (~3);
return size;
}
bool settingsRestoreJson(JsonObject& data) {
// Check this is an ESPurna configuration file (must have "app":"ESPURNA")
const char* app = data["app"];
if (!app || strcmp(app, APP_NAME) != 0) {
DEBUG_MSG_P(PSTR("[SETTING] Wrong or missing 'app' key\n"));
return false;
}
// Clear settings
bool is_backup = data["backup"];
if (is_backup) {
for (unsigned int i = EEPROM_DATA_END; i < SPI_FLASH_SEC_SIZE; i++) {
EEPROMr.write(i, 0xFF);
}
}
// Dump settings to memory buffer
for (auto element : data) {
if (strcmp(element.key, "app") == 0) continue;
if (strcmp(element.key, "version") == 0) continue;
if (strcmp(element.key, "backup") == 0) continue;
if (strcmp(element.key, "timestamp") == 0) continue;
setSetting(element.key, element.value.as<char*>());
}
// Persist to EEPROM
saveSettings();
DEBUG_MSG_P(PSTR("[SETTINGS] Settings restored successfully\n"));
return true;
}
void settingsGetJson(JsonObject& root) {
// Get sorted list of keys
std::vector<String> keys = _settingsKeys();
// Add the key-values to the json object
for (unsigned int i=0; i<keys.size(); i++) {
String value = getSetting(keys[i]);
root[keys[i]] = value;
}
}
void settingsRegisterCommand(const String& name, void (*call)(Embedis*)) {
Embedis::command(name, call);
};
void settingsRegisterKeyCheck(setting_key_check_callback_f callback) {
_setting_key_check_callbacks.push_back(callback);
}
// -----------------------------------------------------------------------------
// Initialization
// -----------------------------------------------------------------------------
void settingsSetup() {
EEPROMr.begin(SPI_FLASH_SEC_SIZE);
_serial.callback([](uint8_t ch) {
#if TELNET_SUPPORT
telnetWrite(ch);
#endif
#if DEBUG_SERIAL_SUPPORT
DEBUG_PORT.write(ch);
#endif
});
Embedis::dictionary( F("EEPROM"),
SPI_FLASH_SEC_SIZE,
[](size_t pos) -> char { return EEPROMr.read(pos); },
[](size_t pos, char value) { EEPROMr.write(pos, value); },
#if SETTINGS_AUTOSAVE
[]() { _settings_save = true; }
#else
[]() {}
#endif
);
_settingsInitCommands();
#if TERMINAL_SUPPORT
#if SERIAL_RX_ENABLED
SERIAL_RX_PORT.begin(SERIAL_RX_BAUDRATE);
#endif // SERIAL_RX_ENABLED
#endif // TERMINAL_SUPPORT
// Register key check
settingsRegisterKeyCheck(_settingsKeyCheck);
// Register loop
espurnaRegisterLoop(settingsLoop);
}
void settingsLoop() {
if (_settings_save) {
EEPROMr.commit();
_settings_save = false;
}
#if TERMINAL_SUPPORT
#if DEBUG_SERIAL_SUPPORT
while (DEBUG_PORT.available()) {
_serial.inject(DEBUG_PORT.read());
}
#endif
embedis.process();
#if SERIAL_RX_ENABLED
while (SERIAL_RX_PORT.available() > 0) {
char rc = Serial.read();
_serial_rx_buffer[_serial_rx_pointer++] = rc;
if ((_serial_rx_pointer == TERMINAL_BUFFER_SIZE) || (rc == 10)) {
settingsInject(_serial_rx_buffer, (size_t) _serial_rx_pointer);
_serial_rx_pointer = 0;
}
}
#endif // SERIAL_RX_ENABLED
#endif // TERMINAL_SUPPORT
}