Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1530 lines
45 KiB

/*
RELAY MODULE
Copyright (C) 2016-2019 by Xose Pérez <xose dot perez at gmail dot com>
*/
#include "relay.h"
#if RELAY_SUPPORT
#include <Ticker.h>
#include <ArduinoJson.h>
#include <vector>
#include <functional>
#include <bitset>
#include "api.h"
#include "broker.h"
#include "light.h"
#include "mqtt.h"
#include "rfbridge.h"
#include "rpc.h"
#include "rtcmem.h"
#include "settings.h"
#include "storage_eeprom.h"
#include "tuya.h"
#include "utils.h"
#include "ws.h"
#include "mcp23s08.h"
#include "libs/BasePin.h"
#include "relay_config.h"
struct DummyPin final : public BasePin {
DummyPin(unsigned char pin) :
BasePin(pin)
{}
void pinMode(int8_t) override {}
void digitalWrite(int8_t) override {}
int digitalRead() override { return 0; }
};
struct relay_t {
using pin_type = BasePin;
// Share the same dummy pin between different relays, no need to duplicate
static pin_type* DummyPinInstance;
// Default to empty relay configuration, as we allow switches to exist without real GPIOs
relay_t() = default;
relay_t(pin_type* pin_, unsigned char type_, pin_type* reset_pin_) :
pin(pin_),
reset_pin(reset_pin_),
type(type_)
{}
pin_type* pin { DummyPinInstance }; // GPIO pin for the relay
pin_type* reset_pin { DummyPinInstance }; // GPIO to reset the relay if RELAY_TYPE_LATCHED
unsigned char type { RELAY_TYPE_NORMAL }; // RELAY_TYPE_NORMAL, RELAY_TYPE_INVERSE, RELAY_TYPE_LATCHED or RELAY_TYPE_LATCHED_INVERSE
unsigned long delay_on { 0ul }; // Delay to turn relay ON
unsigned long delay_off { 0ul }; // Delay to turn relay OFF
unsigned char pulse { RELAY_PULSE_NONE }; // RELAY_PULSE_NONE, RELAY_PULSE_OFF or RELAY_PULSE_ON
unsigned long pulse_ms { 0ul }; // Pulse length in millis
// Status variables
bool current_status { false }; // Holds the current (physical) status of the relay
bool target_status { false }; // Holds the target status
unsigned char lock { RELAY_LOCK_DISABLED }; // Holds the value of target status, that cannot be changed afterwards. (0 for false, 1 for true, 2 to disable)
unsigned long fw_start { 0ul }; // Flood window start time
unsigned char fw_count { 0u }; // Number of changes within the current flood window
unsigned long change_start { 0ul }; // Time when relay was scheduled to change
unsigned long change_delay { 0ul }; // Delay until the next change
bool report { false }; // Whether to report to own topic
bool group_report { false }; // Whether to report to group topic
// Helper objects
Ticker pulseTicker; // Holds the pulse back timer
};
BasePin* relay_t::DummyPinInstance = new DummyPin(GPIO_NONE);
std::vector<relay_t> _relays;
bool _relayRecursive = false;
size_t _relayDummy = 0;
unsigned long _relay_flood_window = (1000 * RELAY_FLOOD_WINDOW);
unsigned long _relay_flood_changes = RELAY_FLOOD_CHANGES;
unsigned long _relay_delay_interlock;
unsigned char _relay_sync_mode = RELAY_SYNC_ANY;
bool _relay_sync_locked = false;
Ticker _relay_save_timer;
Ticker _relay_sync_timer;
#if WEB_SUPPORT
bool _relay_report_ws = false;
#endif // WEB_SUPPORT
#if MQTT_SUPPORT || API_SUPPORT
String _relay_rpc_payload_on;
String _relay_rpc_payload_off;
String _relay_rpc_payload_toggle;
#endif // MQTT_SUPPORT || API_SUPPORT
// -----------------------------------------------------------------------------
// UTILITY
// -----------------------------------------------------------------------------
bool _relayHandlePayload(unsigned char relayID, const char* payload) {
auto value = relayParsePayload(payload);
if (value == PayloadStatus::Unknown) return false;
if (value == PayloadStatus::Off) {
relayStatus(relayID, false);
} else if (value == PayloadStatus::On) {
relayStatus(relayID, true);
} else if (value == PayloadStatus::Toggle) {
relayToggle(relayID);
}
return true;
}
PayloadStatus _relayStatusInvert(PayloadStatus status) {
return (status == PayloadStatus::On) ? PayloadStatus::Off : status;
}
PayloadStatus _relayStatusTyped(unsigned char id) {
if (id >= _relays.size()) return PayloadStatus::Off;
const bool status = _relays[id].current_status;
return (status) ? PayloadStatus::On : PayloadStatus::Off;
}
void _relayLockAll() {
for (auto& relay : _relays) {
relay.lock = relay.target_status ? RELAY_LOCK_ON : RELAY_LOCK_OFF;
}
_relay_sync_locked = true;
}
void _relayUnlockAll() {
for (auto& relay : _relays) {
relay.lock = RELAY_LOCK_DISABLED;
}
_relay_sync_locked = false;
}
bool _relayStatusLock(unsigned char id, bool status) {
if (_relays[id].lock != RELAY_LOCK_DISABLED) {
bool lock = _relays[id].lock == RELAY_LOCK_ON;
if ((lock != status) || (lock != _relays[id].target_status)) {
_relays[id].target_status = lock;
_relays[id].change_delay = 0;
return false;
}
}
return true;
}
// https://github.com/xoseperez/espurna/issues/1510#issuecomment-461894516
// completely reset timing on the other relay to sync with this one
// to ensure that they change state sequentially
void _relaySyncRelaysDelay(unsigned char first, unsigned char second) {
_relays[second].fw_start = _relays[first].change_start;
_relays[second].fw_count = 1;
_relays[second].change_delay = std::max({
_relay_delay_interlock,
_relays[first].change_delay,
_relays[second].change_delay
});
}
void _relaySyncUnlock() {
bool unlock = true;
bool all_off = true;
for (const auto& relay : _relays) {
unlock = unlock && (relay.current_status == relay.target_status);
if (!unlock) break;
all_off = all_off && !relay.current_status;
}
if (!unlock) return;
auto action = []() {
_relayUnlockAll();
#if WEB_SUPPORT
_relay_report_ws = true;
#endif
};
if (all_off) {
_relay_sync_timer.once_ms(_relay_delay_interlock, action);
} else {
action();
}
}
// -----------------------------------------------------------------------------
// RELAY PROVIDERS
// -----------------------------------------------------------------------------
void _relayProviderStatus(unsigned char id, bool status) {
// Check relay ID
if (id >= _relays.size()) return;
// Store new current status
_relays[id].current_status = status;
#if RELAY_PROVIDER == RELAY_PROVIDER_RFBRIDGE
rfbStatus(id, status);
#endif
#if RELAY_PROVIDER == RELAY_PROVIDER_DUAL
// Calculate mask
unsigned char mask=0;
for (unsigned char i=0; i<_relays.size(); i++) {
if (_relays[i].current_status) mask = mask + (1 << i);
}
DEBUG_MSG_P(PSTR("[RELAY] [DUAL] Sending relay mask: %d\n"), mask);
// Send it to F330
Serial.flush();
Serial.write(0xA0);
Serial.write(0x04);
Serial.write(mask);
Serial.write(0xA1);
Serial.flush();
#endif
#if RELAY_PROVIDER == RELAY_PROVIDER_STM
Serial.flush();
Serial.write(0xA0);
Serial.write(id + 1);
Serial.write(status);
Serial.write(0xA1 + status + id);
// The serial init are not full recognized by relais board.
// References: https://github.com/xoseperez/espurna/issues/1519 , https://github.com/xoseperez/espurna/issues/1130
delay(100);
Serial.flush();
#endif
#if RELAY_PROVIDER == RELAY_PROVIDER_LIGHT
// Real relays
size_t physical = _relays.size() - _relayDummy;
// Support for a mixed of dummy and real relays
// Reference: https://github.com/xoseperez/espurna/issues/1305
if (id >= physical) {
// If the number of dummy relays matches the number of light channels
// assume each relay controls one channel.
// If the number of dummy relays is the number of channels plus 1
// assume the first one controls all the channels and
// the rest one channel each.
// Otherwise every dummy relay controls all channels.
if (_relayDummy == lightChannels()) {
lightState(id-physical, status);
lightState(true);
} else if (_relayDummy == (lightChannels() + 1u)) {
if (id == physical) {
lightState(status);
} else {
lightState(id-1-physical, status);
}
} else {
lightState(status);
}
lightUpdate(true, true);
return;
}
#endif
#if (RELAY_PROVIDER == RELAY_PROVIDER_RELAY) || \
(RELAY_PROVIDER == RELAY_PROVIDER_LIGHT) || \
(RELAY_PROVIDER == RELAY_PROVIDER_MCP23S08)
// If this is a light, all dummy relays have already been processed above
// we reach here if the user has toggled a physical relay
if (_relays[id].type == RELAY_TYPE_NORMAL) {
_relays[id].pin->digitalWrite(status);
} else if (_relays[id].type == RELAY_TYPE_INVERSE) {
_relays[id].pin->digitalWrite(!status);
} else if (_relays[id].type == RELAY_TYPE_LATCHED || _relays[id].type == RELAY_TYPE_LATCHED_INVERSE) {
bool pulse = (_relays[id].type == RELAY_TYPE_LATCHED) ? HIGH : LOW;
_relays[id].pin->digitalWrite(!pulse);
if (GPIO_NONE != _relays[id].reset_pin->pin) {
_relays[id].reset_pin->digitalWrite(!pulse);
}
if (status || (GPIO_NONE == _relays[id].reset_pin->pin)) {
_relays[id].pin->digitalWrite(pulse);
} else {
_relays[id].reset_pin->digitalWrite(pulse);
}
nice_delay(RELAY_LATCHING_PULSE);
_relays[id].pin->digitalWrite(!pulse);
if (GPIO_NONE != _relays[id].reset_pin->pin) {
_relays[id].reset_pin->digitalWrite(!pulse);
}
}
#endif
}
/**
* Walks the relay vector processing only those relays
* that have to change to the requested mode
* @bool mode Requested mode
*/
void _relayProcess(bool mode) {
bool changed = false;
for (unsigned char id = 0; id < _relays.size(); id++) {
bool target = _relays[id].target_status;
// Only process the relays we have to change
if (target == _relays[id].current_status) continue;
// Only process the relays we have to change to the requested mode
if (target != mode) continue;
// Only process if the change delay has expired
if (_relays[id].change_delay && (millis() - _relays[id].change_start < _relays[id].change_delay)) continue;
// Purge existing delay in case of cancelation
_relays[id].change_delay = 0;
changed = true;
DEBUG_MSG_P(PSTR("[RELAY] #%d set to %s\n"), id, target ? "ON" : "OFF");
// Call the provider to perform the action
_relayProviderStatus(id, target);
// Send to Broker
#if BROKER_SUPPORT
StatusBroker::Publish(MQTT_TOPIC_RELAY, id, target);
#endif
// Send MQTT
#if MQTT_SUPPORT
relayMQTT(id);
#endif
#if WEB_SUPPORT
_relay_report_ws = true;
#endif
if (!_relayRecursive) {
relayPulse(id);
// We will trigger a eeprom save only if
// we care about current relay status on boot
const auto boot_mode = getSetting({"relayBoot", id}, RELAY_BOOT_MODE);
const bool save_eeprom = ((RELAY_BOOT_SAME == boot_mode) || (RELAY_BOOT_TOGGLE == boot_mode));
_relay_save_timer.once_ms(RELAY_SAVE_DELAY, relaySave, save_eeprom);
}
_relays[id].report = false;
_relays[id].group_report = false;
}
// Whenever we are using sync modes and any relay had changed the state, check if we can unlock
const bool needs_unlock = ((_relay_sync_mode == RELAY_SYNC_NONE_OR_ONE) || (_relay_sync_mode == RELAY_SYNC_ONE));
if (_relay_sync_locked && needs_unlock && changed) {
_relaySyncUnlock();
}
}
#if defined(ITEAD_SONOFF_IFAN02)
unsigned char _relay_ifan02_speeds[] = {0, 1, 3, 5};
unsigned char getSpeed() {
unsigned char speed =
(_relays[1].target_status ? 1 : 0) +
(_relays[2].target_status ? 2 : 0) +
(_relays[3].target_status ? 4 : 0);
for (unsigned char i=0; i<4; i++) {
if (_relay_ifan02_speeds[i] == speed) return i;
}
return 0;
}
void setSpeed(unsigned char speed) {
if ((0 <= speed) & (speed <= 3)) {
if (getSpeed() == speed) return;
unsigned char states = _relay_ifan02_speeds[speed];
for (unsigned char i=0; i<3; i++) {
relayStatus(i+1, states & 1 == 1);
states >>= 1;
}
}
}
#endif
// -----------------------------------------------------------------------------
// RELAY
// -----------------------------------------------------------------------------
// State persistance persistance
namespace {
String u32toString(uint32_t value, int base) {
String result;
result.reserve(32 + 2);
if (base == 2) {
result += "0b";
} else if (base == 8) {
result += "0o";
} else if (base == 16) {
result += "0x";
}
char buffer[33] = {0};
ultoa(value, buffer, base);
result += buffer;
return result;
}
struct RelayMask {
const String as_string;
uint32_t as_u32;
};
RelayMask INLINE _relayMask(uint32_t mask) {
return {std::move(u32toString(mask, 2)), mask};
}
RelayMask INLINE _relayMaskRtcmem() {
return _relayMask(Rtcmem->relay);
}
void INLINE _relayMaskRtcmem(uint32_t mask) {
Rtcmem->relay = mask;
}
void INLINE _relayMaskRtcmem(const RelayMask& mask) {
_relayMaskRtcmem(mask.as_u32);
}
void INLINE _relayMaskRtcmem(const std::bitset<RelaysMax>& bitset) {
_relayMaskRtcmem(bitset.to_ulong());
}
RelayMask INLINE _relayMaskSettings() {
constexpr unsigned long defaultMask { 0ul };
auto value = getSetting("relayBootMask", defaultMask);
return _relayMask(value);
}
void INLINE _relayMaskSettings(uint32_t mask) {
setSetting("relayBootMask", u32toString(mask, 2));
}
void INLINE _relayMaskSettings(const RelayMask& mask) {
setSetting("relayBootMask", mask.as_string);
}
void INLINE _relayMaskSettings(const std::bitset<RelaysMax>& bitset) {
_relayMaskSettings(bitset.to_ulong());
}
} // ns anonymous
// Pulse timers (timer after ON or OFF event)
void relayPulse(unsigned char id) {
_relays[id].pulseTicker.detach();
byte mode = _relays[id].pulse;
if (mode == RELAY_PULSE_NONE) return;
unsigned long ms = _relays[id].pulse_ms;
if (ms == 0) return;
bool status = relayStatus(id);
bool pulseStatus = (mode == RELAY_PULSE_ON);
if (pulseStatus != status) {
DEBUG_MSG_P(PSTR("[RELAY] Scheduling relay #%d back in %lums (pulse)\n"), id, ms);
_relays[id].pulseTicker.once_ms(ms, relayToggle, id);
// Reconfigure after dynamic pulse
_relays[id].pulse = getSetting({"relayPulse", id}, RELAY_PULSE_MODE);
_relays[id].pulse_ms = 1000 * getSetting({"relayTime", id}, 0.);
}
}
// General relay status control
bool relayStatus(unsigned char id, bool status, bool report, bool group_report) {
if (id == RELAY_NONE) return false;
if (id >= _relays.size()) return false;
if (!_relayStatusLock(id, status)) {
DEBUG_MSG_P(PSTR("[RELAY] #%d is locked to %s\n"), id, _relays[id].current_status ? "ON" : "OFF");
_relays[id].report = true;
_relays[id].group_report = true;
return false;
}
bool changed = false;
if (_relays[id].current_status == status) {
if (_relays[id].target_status != status) {
DEBUG_MSG_P(PSTR("[RELAY] #%d scheduled change cancelled\n"), id);
_relays[id].target_status = status;
_relays[id].report = false;
_relays[id].group_report = false;
_relays[id].change_delay = 0;
changed = true;
}
// For RFBridge, keep sending the message even if the status is already the required
#if RELAY_PROVIDER == RELAY_PROVIDER_RFBRIDGE
rfbStatus(id, status);
#endif
// Update the pulse counter if the relay is already in the non-normal state (#454)
relayPulse(id);
} else {
unsigned long current_time = millis();
unsigned long change_delay = status ? _relays[id].delay_on : _relays[id].delay_off;
_relays[id].fw_count++;
_relays[id].change_start = current_time;
_relays[id].change_delay = std::max(_relays[id].change_delay, change_delay);
// If current_time is off-limits the floodWindow...
const auto fw_diff = current_time - _relays[id].fw_start;
if (fw_diff > _relay_flood_window) {
// We reset the floodWindow
_relays[id].fw_start = current_time;
_relays[id].fw_count = 1;
// If current_time is in the floodWindow and there have been too many requests...
} else if (_relays[id].fw_count >= _relay_flood_changes) {
// We schedule the changes to the end of the floodWindow
// unless it's already delayed beyond that point
_relays[id].change_delay = std::max(change_delay, _relay_flood_window - fw_diff);
// Another option is to always move it forward, starting from current time
//_relays[id].fw_start = current_time;
}
_relays[id].target_status = status;
if (report) _relays[id].report = true;
if (group_report) _relays[id].group_report = true;
relaySync(id);
DEBUG_MSG_P(PSTR("[RELAY] #%d scheduled %s in %u ms\n"),
id, status ? "ON" : "OFF", _relays[id].change_delay
);
changed = true;
}
return changed;
}
bool relayStatus(unsigned char id, bool status) {
#if MQTT_SUPPORT
return relayStatus(id, status, mqttForward(), true);
#else
return relayStatus(id, status, false, true);
#endif
}
bool relayStatus(unsigned char id) {
// Check that relay ID is valid
if (id >= _relays.size()) return false;
// Get status directly from storage
return _relays[id].current_status;
}
bool relayStatusTarget(unsigned char id) {
if (id >= _relays.size()) return false;
return _relays[id].target_status;
}
void relaySync(unsigned char id) {
// No sync if none or only one relay
if (_relays.size() < 2) return;
// Do not go on if we are comming from a previous sync
if (_relayRecursive) return;
// Flag sync mode
_relayRecursive = true;
bool status = _relays[id].target_status;
// If RELAY_SYNC_SAME all relays should have the same state
if (_relay_sync_mode == RELAY_SYNC_SAME) {
for (unsigned short i=0; i<_relays.size(); i++) {
if (i != id) relayStatus(i, status);
}
// If RELAY_SYNC_FIRST all relays should have the same state as first if first changes
} else if (_relay_sync_mode == RELAY_SYNC_FIRST) {
if (id == 0) {
for (unsigned short i=1; i<_relays.size(); i++) {
relayStatus(i, status);
}
}
} else if ((_relay_sync_mode == RELAY_SYNC_NONE_OR_ONE) || (_relay_sync_mode == RELAY_SYNC_ONE)) {
// If NONE_OR_ONE or ONE and setting ON we should set OFF all the others
if (status) {
if (_relay_sync_mode != RELAY_SYNC_ANY) {
for (unsigned short other_id=0; other_id<_relays.size(); other_id++) {
if (other_id != id) {
relayStatus(other_id, false);
if (relayStatus(other_id)) {
_relaySyncRelaysDelay(other_id, id);
}
}
}
}
// If ONLY_ONE and setting OFF we should set ON the other one
} else {
if (_relay_sync_mode == RELAY_SYNC_ONE) {
unsigned char other_id = (id + 1) % _relays.size();
_relaySyncRelaysDelay(id, other_id);
relayStatus(other_id, true);
}
}
_relayLockAll();
}
// Unflag sync mode
_relayRecursive = false;
}
void relaySave(bool eeprom) {
const unsigned char count = constrain(relayCount(), 0, RelaysMax);
auto statuses = std::bitset<RelaysMax>(0);
for (unsigned int id = 0; id < count; ++id) {
statuses.set(id, relayStatus(id));
}
const auto mask = _relayMask(statuses.to_ulong() & 0xffffffffu);
DEBUG_MSG_P(PSTR("[RELAY] Setting relay mask: %s\n"), mask.as_string.c_str());
// Persist only to rtcmem, unless requested to save to the eeprom
_relayMaskRtcmem(mask);
// The 'eeprom' flag controls whether we are commiting this change or not.
// It is useful to set it to 'false' if the relay change triggering the
// save involves a relay whose boot mode is independent from current mode,
// thus storing the last relay value is not absolutely necessary.
// Nevertheless, we store the value in the EEPROM buffer so it will be written
// on the next commit.
if (eeprom) {
_relayMaskSettings(mask);
// We are actually enqueuing the commit so it will be
// executed on the main loop, in case this is called from a system context callback
eepromCommit();
}
}
void relaySave() {
relaySave(false);
}
void relayToggle(unsigned char id, bool report, bool group_report) {
if (id >= _relays.size()) return;
relayStatus(id, !relayStatus(id), report, group_report);
}
void relayToggle(unsigned char id) {
#if MQTT_SUPPORT
relayToggle(id, mqttForward(), true);
#else
relayToggle(id, false, true);
#endif
}
unsigned char relayCount() {
return _relays.size();
}
PayloadStatus relayParsePayload(const char * payload) {
#if MQTT_SUPPORT || API_SUPPORT
return rpcParsePayload(payload, [](const char* payload) {
if (_relay_rpc_payload_off.equals(payload)) return PayloadStatus::Off;
if (_relay_rpc_payload_on.equals(payload)) return PayloadStatus::On;
if (_relay_rpc_payload_toggle.equals(payload)) return PayloadStatus::Toggle;
return PayloadStatus::Unknown;
});
#else
return rpcParsePayload(payload);
#endif
}
// BACKWARDS COMPATIBILITY
void _relayBackwards() {
for (unsigned char id = 0; id < _relays.size(); ++id) {
const settings_key_t key {"mqttGroupInv", id};
if (!hasSetting(key)) continue;
setSetting({"mqttGroupSync", id}, getSetting(key));
delSetting(key);
}
}
void _relayBoot() {
_relayRecursive = true;
const auto stored_mask = rtcmemStatus()
? _relayMaskRtcmem()
: _relayMaskSettings();
DEBUG_MSG_P(PSTR("[RELAY] Retrieving mask: %s\n"), stored_mask.as_string.c_str());
auto mask = std::bitset<RelaysMax>(stored_mask.as_u32);
// Walk the relays
unsigned char lock;
bool status;
for (unsigned char i=0; i<relayCount(); ++i) {
const auto boot_mode = getSetting({"relayBoot", i}, RELAY_BOOT_MODE);
DEBUG_MSG_P(PSTR("[RELAY] Relay #%u boot mode %d\n"), i, boot_mode);
status = false;
lock = RELAY_LOCK_DISABLED;
switch (boot_mode) {
case RELAY_BOOT_SAME:
status = mask.test(i);
break;
case RELAY_BOOT_TOGGLE:
mask.flip(i);
status = mask[i];
break;
case RELAY_BOOT_LOCKED_ON:
status = true;
lock = RELAY_LOCK_ON;
break;
case RELAY_BOOT_LOCKED_OFF:
lock = RELAY_LOCK_OFF;
break;
case RELAY_BOOT_ON:
status = true;
break;
case RELAY_BOOT_OFF:
default:
break;
}
_relays[i].current_status = !status;
_relays[i].target_status = status;
_relays[i].change_start = millis();
_relays[i].change_delay = status
? _relays[i].delay_on
: _relays[i].delay_off;
#if RELAY_PROVIDER == RELAY_PROVIDER_STM
// XXX hack for correctly restoring relay state on boot
// because of broken stm relay firmware
_relays[i].change_delay = 3000 + 1000 * i;
#endif
_relays[i].lock = lock;
}
_relayRecursive = false;
#if TUYA_SUPPORT
Tuya::tuyaSyncSwitchStatus();
#endif
}
void _relayConfigure() {
for (unsigned char i = 0, relays = _relays.size() ; (i < relays); ++i) {
_relays[i].pulse = getSetting({"relayPulse", i}, RELAY_PULSE_MODE);
_relays[i].pulse_ms = 1000 * getSetting({"relayTime", i}, 0.);
_relays[i].delay_on = getSetting({"relayDelayOn", i}, _relayDelayOn(i));
_relays[i].delay_off = getSetting({"relayDelayOff", i}, _relayDelayOff(i));
// make sure pin is valid before continuing with writes
if (!static_cast<bool>(*_relays[i].pin)) continue;
_relays[i].pin->pinMode(OUTPUT);
if (static_cast<bool>(*_relays[i].reset_pin)) {
_relays[i].reset_pin->pinMode(OUTPUT);
}
if (_relays[i].type == RELAY_TYPE_INVERSE) {
//set to high to block short opening of relay
_relays[i].pin->digitalWrite(HIGH);
}
}
_relay_flood_window = (1000 * getSetting("relayFloodTime", RELAY_FLOOD_WINDOW));
_relay_flood_changes = getSetting("relayFloodChanges", RELAY_FLOOD_CHANGES);
_relay_delay_interlock = getSetting("relayDelayInterlock", RELAY_DELAY_INTERLOCK);
_relay_sync_mode = getSetting("relaySync", RELAY_SYNC);
#if MQTT_SUPPORT || API_SUPPORT
settingsProcessConfig({
{_relay_rpc_payload_on, "relayPayloadOn", RELAY_MQTT_ON},
{_relay_rpc_payload_off, "relayPayloadOff", RELAY_MQTT_OFF},
{_relay_rpc_payload_toggle, "relayPayloadToggle", RELAY_MQTT_TOGGLE},
});
#endif // MQTT_SUPPORT
}
//------------------------------------------------------------------------------
// WEBSOCKETS
//------------------------------------------------------------------------------
#if WEB_SUPPORT
bool _relayWebSocketOnKeyCheck(const char * key, JsonVariant& value) {
return (strncmp(key, "relay", 5) == 0);
}
void _relayWebSocketUpdate(JsonObject& root) {
JsonObject& state = root.createNestedObject("relayState");
state["size"] = relayCount();
JsonArray& status = state.createNestedArray("status");
JsonArray& lock = state.createNestedArray("lock");
// Note: we use byte instead of bool to ever so slightly compress json output
for (unsigned char i=0; i<relayCount(); i++) {
status.add<uint8_t>(_relays[i].target_status);
lock.add(_relays[i].lock);
}
}
String _relayFriendlyName(unsigned char i) {
String res = String("GPIO") + String(_relays[i].pin->pin);
if (GPIO_NONE == _relays[i].pin->pin) {
#if (RELAY_PROVIDER == RELAY_PROVIDER_LIGHT)
uint8_t physical = _relays.size() - _relayDummy;
if (i >= physical) {
if (_relayDummy == lightChannels()) {
res = String("CH") + String(i-physical);
} else if (_relayDummy == (lightChannels() + 1u)) {
if (physical == i) {
res = String("Light");
} else {
res = String("CH") + String(i-1-physical);
}
} else {
res = String("Light");
}
} else {
res = String("?");
}
#else
res = String("SW") + String(i);
#endif
}
return res;
}
void _relayWebSocketSendRelays(JsonObject& root) {
JsonObject& relays = root.createNestedObject("relayConfig");
relays["size"] = relayCount();
relays["start"] = 0;
JsonArray& gpio = relays.createNestedArray("gpio");
JsonArray& type = relays.createNestedArray("type");
JsonArray& reset = relays.createNestedArray("reset");
JsonArray& boot = relays.createNestedArray("boot");
JsonArray& pulse = relays.createNestedArray("pulse");
JsonArray& pulse_time = relays.createNestedArray("pulse_time");
#if SCHEDULER_SUPPORT
JsonArray& sch_last = relays.createNestedArray("sch_last");
#endif
#if MQTT_SUPPORT
JsonArray& group = relays.createNestedArray("group");
JsonArray& group_sync = relays.createNestedArray("group_sync");
JsonArray& on_disconnect = relays.createNestedArray("on_disc");
#endif
for (unsigned char i=0; i<relayCount(); i++) {
gpio.add(_relayFriendlyName(i));
type.add(_relays[i].type);
reset.add(_relays[i].reset_pin->pin);
boot.add(getSetting({"relayBoot", i}, RELAY_BOOT_MODE));
pulse.add(_relays[i].pulse);
pulse_time.add(_relays[i].pulse_ms / 1000.0);
#if SCHEDULER_SUPPORT
sch_last.add(getSetting({"relayLastSch", i}, SCHEDULER_RESTORE_LAST_SCHEDULE));
#endif
#if MQTT_SUPPORT
group.add(getSetting({"mqttGroup", i}));
group_sync.add(getSetting({"mqttGroupSync", i}, 0));
on_disconnect.add(getSetting({"relayOnDisc", i}, 0));
#endif
}
}
void _relayWebSocketOnVisible(JsonObject& root) {
if (relayCount() == 0) return;
if (relayCount() > 1) {
root["multirelayVisible"] = 1;
root["relaySync"] = getSetting("relaySync", RELAY_SYNC);
}
root["relayVisible"] = 1;
}
void _relayWebSocketOnConnected(JsonObject& root) {
if (relayCount() == 0) return;
// Per-relay configuration
_relayWebSocketSendRelays(root);
}
void _relayWebSocketOnAction(uint32_t client_id, const char * action, JsonObject& data) {
if (strcmp(action, "relay") != 0) return;
if (data.containsKey("status")) {
unsigned int relayID = 0;
if (data.containsKey("id") && data.is<int>("id")) {
relayID = data["id"];
}
_relayHandlePayload(relayID, data["status"]);
}
}
void relaySetupWS() {
wsRegister()
.onVisible(_relayWebSocketOnVisible)
.onConnected(_relayWebSocketOnConnected)
.onData(_relayWebSocketUpdate)
.onAction(_relayWebSocketOnAction)
.onKeyCheck(_relayWebSocketOnKeyCheck);
}
#endif // WEB_SUPPORT
//------------------------------------------------------------------------------
// REST API
//------------------------------------------------------------------------------
#if API_SUPPORT
void relaySetupAPI() {
// Note that we expect a fixed number of entries.
// Otherwise, underlying vector will reserve more than we need (likely, *2 of the current size)
apiReserve(2u + (relayCount() * 2u));
apiRegister({
MQTT_TOPIC_RELAY, Api::Type::Json, ApiUnusedArg,
[](const Api&, JsonObject& root) {
JsonArray& relays = root.createNestedArray("relayStatus");
for (unsigned char id = 0; id < relayCount(); ++id) {
relays.add(_relays[id].target_status ? 1 : 0);
}
}
});
#if defined(ITEAD_SONOFF_IFAN02)
apiRegister({
MQTT_TOPIC_SPEED, Api::Type::Basic, ApiUnusedArg,
[](const Api&, ApiBuffer& buffer) {
snprintf(buffer.data, buffer.size, "%u", getSpeed());
},
[](const Api&, ApiBuffer& buffer) {
setSpeed(atoi(buffer.data));
snprintf(buffer.data, buffer.size, "%u", getSpeed());
}
});
#endif
char path[64] = {0};
for (unsigned char id = 0; id < relayCount(); ++id) {
sprintf_P(path, PSTR(MQTT_TOPIC_RELAY "/%u"), id);
apiRegister({
path, Api::Type::Basic, id,
[](const Api& api, ApiBuffer& buffer) {
snprintf_P(buffer.data, buffer.size, PSTR("%d"), _relays[api.arg].target_status ? 1 : 0);
},
[](const Api& api, ApiBuffer& buffer) {
if (!_relayHandlePayload(api.arg, buffer.data)) {
DEBUG_MSG_P(PSTR("[RELAY] Invalid API payload (%s)\n"), buffer.data);
return;
}
}
});
sprintf_P(path, PSTR(MQTT_TOPIC_PULSE "/%u"), id);
apiRegister({
path, Api::Type::Basic, id,
[](const Api& api, ApiBuffer& buffer) {
dtostrf((double) _relays[api.arg].pulse_ms / 1000, 1, 3, buffer.data);
},
[](const Api& api, ApiBuffer& buffer) {
unsigned long pulse = 1000 * atof(buffer.data);
if (0 == pulse) {
return;
}
if (RELAY_PULSE_NONE != _relays[api.arg].pulse) {
DEBUG_MSG_P(PSTR("[RELAY] Overriding relay #%d pulse settings\n"), api.arg);
}
_relays[api.arg].pulse_ms = pulse;
_relays[api.arg].pulse = relayStatus(api.arg)
? RELAY_PULSE_ON
: RELAY_PULSE_OFF;
relayToggle(api.arg, true, false);
}
});
}
}
#endif // API_SUPPORT
//------------------------------------------------------------------------------
// MQTT
//------------------------------------------------------------------------------
#if MQTT_SUPPORT || API_SUPPORT
const String& relayPayloadOn() {
return _relay_rpc_payload_on;
}
const String& relayPayloadOff() {
return _relay_rpc_payload_off;
}
const String& relayPayloadToggle() {
return _relay_rpc_payload_toggle;
}
const char* relayPayload(PayloadStatus status) {
switch (status) {
case PayloadStatus::Off:
return _relay_rpc_payload_off.c_str();
case PayloadStatus::On:
return _relay_rpc_payload_on.c_str();
case PayloadStatus::Toggle:
return _relay_rpc_payload_toggle.c_str();
case PayloadStatus::Unknown:
default:
return "";
}
}
#endif // MQTT_SUPPORT || API_SUPPORT
#if MQTT_SUPPORT
void _relayMQTTGroup(unsigned char id) {
const String topic = getSetting({"mqttGroup", id});
if (!topic.length()) return;
const auto mode = getSetting({"mqttGroupSync", id}, RELAY_GROUP_SYNC_NORMAL);
if (mode == RELAY_GROUP_SYNC_RECEIVEONLY) return;
auto status = _relayStatusTyped(id);
if (mode == RELAY_GROUP_SYNC_INVERSE) status = _relayStatusInvert(status);
mqttSendRaw(topic.c_str(), relayPayload(status));
}
void relayMQTT(unsigned char id) {
if (id >= _relays.size()) return;
// Send state topic
if (_relays[id].report) {
_relays[id].report = false;
mqttSend(MQTT_TOPIC_RELAY, id, relayPayload(_relayStatusTyped(id)));
}
// Check group topic
if (_relays[id].group_report) {
_relays[id].group_report = false;
_relayMQTTGroup(id);
}
// Send speed for IFAN02
#if defined (ITEAD_SONOFF_IFAN02)
char buffer[5];
snprintf(buffer, sizeof(buffer), "%u", getSpeed());
mqttSend(MQTT_TOPIC_SPEED, buffer);
#endif
}
void relayMQTT() {
for (unsigned int id=0; id < _relays.size(); id++) {
mqttSend(MQTT_TOPIC_RELAY, id, relayPayload(_relayStatusTyped(id)));
}
}
void relayStatusWrap(unsigned char id, PayloadStatus value, bool is_group_topic) {
#if MQTT_SUPPORT
const auto forward = mqttForward();
#else
const auto forward = false;
#endif
switch (value) {
case PayloadStatus::Off:
relayStatus(id, false, forward, !is_group_topic);
break;
case PayloadStatus::On:
relayStatus(id, true, forward, !is_group_topic);
break;
case PayloadStatus::Toggle:
relayToggle(id, true, true);
break;
case PayloadStatus::Unknown:
default:
_relays[id].report = true;
relayMQTT(id);
break;
}
}
void relayMQTTCallback(unsigned int type, const char * topic, const char * payload) {
if (type == MQTT_CONNECT_EVENT) {
// Send status on connect
#if (HEARTBEAT_MODE == HEARTBEAT_NONE) or (not HEARTBEAT_REPORT_RELAY)
relayMQTT();
#endif
// Subscribe to own /set topic
char relay_topic[strlen(MQTT_TOPIC_RELAY) + 3];
snprintf_P(relay_topic, sizeof(relay_topic), PSTR("%s/+"), MQTT_TOPIC_RELAY);
mqttSubscribe(relay_topic);
// Subscribe to pulse topic
char pulse_topic[strlen(MQTT_TOPIC_PULSE) + 3];
snprintf_P(pulse_topic, sizeof(pulse_topic), PSTR("%s/+"), MQTT_TOPIC_PULSE);
mqttSubscribe(pulse_topic);
#if defined(ITEAD_SONOFF_IFAN02)
mqttSubscribe(MQTT_TOPIC_SPEED);
#endif
// Subscribe to group topics
for (unsigned char i=0; i < _relays.size(); i++) {
const auto t = getSetting({"mqttGroup", i});
if (t.length() > 0) mqttSubscribeRaw(t.c_str());
}
}
if (type == MQTT_MESSAGE_EVENT) {
String t = mqttMagnitude((char *) topic);
// magnitude is relay/#/pulse
if (t.startsWith(MQTT_TOPIC_PULSE)) {
unsigned int id = t.substring(strlen(MQTT_TOPIC_PULSE)+1).toInt();
if (id >= relayCount()) {
DEBUG_MSG_P(PSTR("[RELAY] Wrong relayID (%d)\n"), id);
return;
}
unsigned long pulse = 1000 * atof(payload);
if (0 == pulse) return;
if (RELAY_PULSE_NONE != _relays[id].pulse) {
DEBUG_MSG_P(PSTR("[RELAY] Overriding relay #%d pulse settings\n"), id);
}
_relays[id].pulse_ms = pulse;
_relays[id].pulse = relayStatus(id) ? RELAY_PULSE_ON : RELAY_PULSE_OFF;
relayToggle(id, true, false);
return;
}
// magnitude is relay/#
if (t.startsWith(MQTT_TOPIC_RELAY)) {
// Get relay ID
unsigned int id = t.substring(strlen(MQTT_TOPIC_RELAY)+1).toInt();
if (id >= relayCount()) {
DEBUG_MSG_P(PSTR("[RELAY] Wrong relayID (%d)\n"), id);
return;
}
// Get value
auto value = relayParsePayload(payload);
if (value == PayloadStatus::Unknown) return;
relayStatusWrap(id, value, false);
return;
}
// Check group topics
for (unsigned char i=0; i < _relays.size(); i++) {
const String t = getSetting({"mqttGroup", i});
if ((t.length() > 0) && t.equals(topic)) {
auto value = relayParsePayload(payload);
if (value == PayloadStatus::Unknown) return;
if ((value == PayloadStatus::On) || (value == PayloadStatus::Off)) {
if (getSetting({"mqttGroupSync", i}, RELAY_GROUP_SYNC_NORMAL) == RELAY_GROUP_SYNC_INVERSE) {
value = _relayStatusInvert(value);
}
}
DEBUG_MSG_P(PSTR("[RELAY] Matched group topic for relayID %d\n"), i);
relayStatusWrap(i, value, true);
}
}
// Itead Sonoff IFAN02
#if defined (ITEAD_SONOFF_IFAN02)
if (t.startsWith(MQTT_TOPIC_SPEED)) {
setSpeed(atoi(payload));
}
#endif
}
if (type == MQTT_DISCONNECT_EVENT) {
for (unsigned char i=0; i < _relays.size(); i++){
const auto reaction = getSetting({"relayOnDisc", i}, 0);
if (1 == reaction) { // switch relay OFF
DEBUG_MSG_P(PSTR("[RELAY] Reset relay (%d) due to MQTT disconnection\n"), i);
relayStatusWrap(i, PayloadStatus::Off, false);
} else if(2 == reaction) { // switch relay ON
DEBUG_MSG_P(PSTR("[RELAY] Set relay (%d) due to MQTT disconnection\n"), i);
relayStatusWrap(i, PayloadStatus::On, false);
}
}
}
}
void relaySetupMQTT() {
mqttRegister(relayMQTTCallback);
}
#endif
void _relaySetupProvider() {
// TODO: implement something like `RelayProvider tuya_provider({.setup_cb = ..., .send_cb = ...})`?
// note of the function call order! relay code is initialized before tuya's, and the easiest
// way to accomplish that is to use ctor as a way to "register" callbacks even before setup() is called
#if TUYA_SUPPORT
Tuya::tuyaSetupSwitch();
#endif
}
//------------------------------------------------------------------------------
// Settings
//------------------------------------------------------------------------------
#if TERMINAL_SUPPORT
void _relayInitCommands() {
terminalRegisterCommand(F("RELAY"), [](const terminal::CommandContext& ctx) {
if (ctx.argc < 2) {
terminalError(F("Wrong arguments"));
return;
}
int id = ctx.argv[1].toInt();
if (id >= relayCount()) {
DEBUG_MSG_P(PSTR("-ERROR: Wrong relayID (%d)\n"), id);
return;
}
if (ctx.argc > 2) {
int value = ctx.argv[2].toInt();
if (value == 2) {
relayToggle(id);
} else {
relayStatus(id, value == 1);
}
}
DEBUG_MSG_P(PSTR("Status: %s\n"), _relays[id].target_status ? "true" : "false");
if (_relays[id].pulse != RELAY_PULSE_NONE) {
DEBUG_MSG_P(PSTR("Pulse: %s\n"), (_relays[id].pulse == RELAY_PULSE_ON) ? "ON" : "OFF");
DEBUG_MSG_P(PSTR("Pulse time: %d\n"), _relays[id].pulse_ms);
}
terminalOK();
});
#if 0
terminalRegisterCommand(F("RELAY.INFO"), [](const terminal::CommandContext&) {
DEBUG_MSG_P(PSTR(" cur tgt pin type reset lock delay_on delay_off pulse pulse_ms\n"));
DEBUG_MSG_P(PSTR(" --- --- --- ---- ----- ---- ---------- ----------- ----- ----------\n"));
for (unsigned char index = 0; index < _relays.size(); ++index) {
const auto& relay = _relays.at(index);
DEBUG_MSG_P(PSTR("%3u %3s %3s %3u %4u %5u %4u %10u %11u %5u %10u\n"),
index,
relay.current_status ? "ON" : "OFF",
relay.target_status ? "ON" : "OFF",
relay.pin, relay.type, relay.reset_pin,
relay.lock,
relay.delay_on, relay.delay_off,
relay.pulse, relay.pulse_ms
);
}
});
#endif
}
#endif // TERMINAL_SUPPORT
//------------------------------------------------------------------------------
// Setup
//------------------------------------------------------------------------------
void _relayLoop() {
_relayProcess(false);
_relayProcess(true);
#if WEB_SUPPORT
if (_relay_report_ws) {
wsPost(_relayWebSocketUpdate);
_relay_report_ws = false;
}
#endif
}
// Dummy relays for virtual light switches, Sonoff Dual, Sonoff RF Bridge and Tuya
void relaySetupDummy(size_t size, bool reconfigure) {
if (size == _relayDummy) return;
const size_t new_size = ((_relays.size() - _relayDummy) + size);
if (new_size > RelaysMax) return;
_relayDummy = size;
_relays.resize(new_size);
if (reconfigure) {
_relayConfigure();
}
#if BROKER_SUPPORT
ConfigBroker::Publish("relayDummy", String(int(size)));
#endif
}
void _relaySetupAdhoc() {
size_t relays [[gnu::unused]] = 0;
#if RELAY1_PIN != GPIO_NONE
++relays;
#endif
#if RELAY2_PIN != GPIO_NONE
++relays;
#endif
#if RELAY3_PIN != GPIO_NONE
++relays;
#endif
#if RELAY4_PIN != GPIO_NONE
++relays;
#endif
#if RELAY5_PIN != GPIO_NONE
++relays;
#endif
#if RELAY6_PIN != GPIO_NONE
++relays;
#endif
#if RELAY7_PIN != GPIO_NONE
++relays;
#endif
#if RELAY8_PIN != GPIO_NONE
++relays;
#endif
_relays.reserve(relays);
#if (RELAY_PROVIDER == RELAY_PROVIDER_RELAY) || (RELAY_PROVIDER == RELAY_PROVIDER_LIGHT)
using gpio_type = GpioPin;
#elif (RELAY_PROVIDER == RELAY_PROVIDER_MCP23S08)
using gpio_type = McpGpioPin;
#else
using gpio_type = DummyPin;
#endif
for (unsigned char id = 0; id < RelaysMax; ++id) {
const auto pin = _relayPin(id);
#if (RELAY_PROVIDER == RELAY_PROVIDER_MCP23S08)
if (!mcpGpioValid(pin)) {
#else
if (!gpioValid(pin)) {
#endif
break;
}
_relays.emplace_back(
new gpio_type(pin),
_relayType(id),
new gpio_type(_relayResetPin(id))
);
}
}
void relaySetup() {
// Ad-hoc relays
_relaySetupAdhoc();
// Dummy (virtual) relays
relaySetupDummy(getSetting("relayDummy", DUMMY_RELAY_COUNT));
_relaySetupProvider();
_relayBackwards();
_relayConfigure();
_relayBoot();
_relayLoop();
#if WEB_SUPPORT
relaySetupWS();
#endif
#if API_SUPPORT
relaySetupAPI();
#endif
#if MQTT_SUPPORT
relaySetupMQTT();
#endif
#if TERMINAL_SUPPORT
_relayInitCommands();
#endif
// Main callbacks
espurnaRegisterLoop(_relayLoop);
espurnaRegisterReload(_relayConfigure);
DEBUG_MSG_P(PSTR("[RELAY] Number of relays: %d\n"), _relays.size());
}
#endif // RELAY_SUPPORT == 1