Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

801 lines
20 KiB

/*
RF BRIDGE MODULE
Copyright (C) 2016-2019 by Xose Pérez <xose dot perez at gmail dot com>
*/
#include "rfbridge.h"
#if RF_SUPPORT
#include <queue>
#include "api.h"
#include "relay.h"
#include "terminal.h"
#include "mqtt.h"
#include "ws.h"
// -----------------------------------------------------------------------------
// DEFINITIONS
// -----------------------------------------------------------------------------
// EFM8 Protocol
#define RF_MESSAGE_SIZE 9
#define RF_MAX_MESSAGE_SIZE (112+4)
#define RF_CODE_START 0xAA
#define RF_CODE_ACK 0xA0
#define RF_CODE_LEARN 0xA1
#define RF_CODE_LEARN_KO 0xA2
#define RF_CODE_LEARN_OK 0xA3
#define RF_CODE_RFIN 0xA4
#define RF_CODE_RFOUT 0xA5
#define RF_CODE_SNIFFING_ON 0xA6
#define RF_CODE_SNIFFING_OFF 0xA7
#define RF_CODE_RFOUT_NEW 0xA8
#define RF_CODE_LEARN_NEW 0xA9
#define RF_CODE_LEARN_KO_NEW 0xAA
#define RF_CODE_LEARN_OK_NEW 0xAB
#define RF_CODE_RFOUT_BUCKET 0xB0
#define RF_CODE_STOP 0x55
// Settings
#define RF_MAX_KEY_LENGTH (9)
// -----------------------------------------------------------------------------
// GLOBALS TO THE MODULE
// -----------------------------------------------------------------------------
unsigned char _uartbuf[RF_MESSAGE_SIZE+3] = {0};
unsigned char _uartpos = 0;
unsigned char _learnId = 0;
bool _learnStatus = true;
bool _rfbin = false;
struct rfb_message_t {
uint8_t code[RF_MESSAGE_SIZE];
uint8_t times;
};
static std::queue<rfb_message_t> _rfb_message_queue;
#if RFB_DIRECT
RCSwitch * _rfModem;
bool _learning = false;
#endif
bool _rfb_receive = false;
bool _rfb_transmit = false;
unsigned char _rfb_repeat = RF_SEND_TIMES;
// -----------------------------------------------------------------------------
// PRIVATES
// -----------------------------------------------------------------------------
// From a byte array to an hexa char array ("A220EE...", double the size)
static bool _rfbToChar(uint8_t * in, char * out, int n = RF_MESSAGE_SIZE) {
for (unsigned char p = 0; p<n; p++) {
sprintf_P(&out[p*2], PSTR("%02X"), in[p]);
}
return true;
}
#if WEB_SUPPORT
void _rfbWebSocketSendCodeArray(JsonObject& root, unsigned char start, unsigned char size) {
JsonObject& rfb = root.createNestedObject("rfb");
rfb["size"] = size;
rfb["start"] = start;
JsonArray& on = rfb.createNestedArray("on");
JsonArray& off = rfb.createNestedArray("off");
for (uint8_t id=start; id<start+size; id++) {
on.add(rfbRetrieve(id, true));
off.add(rfbRetrieve(id, false));
}
}
void _rfbWebSocketOnVisible(JsonObject& root) {
root["rfbVisible"] = 1;
}
void _rfbWebSocketOnConnected(JsonObject& root) {
root["rfbRepeat"] = getSetting("rfbRepeat", RF_SEND_TIMES);
root["rfbCount"] = relayCount();
#if RFB_DIRECT
root["rfbdirectVisible"] = 1;
root["rfbRX"] = getSetting("rfbRX", RFB_RX_PIN);
root["rfbTX"] = getSetting("rfbTX", RFB_TX_PIN);
#endif
}
void _rfbWebSocketOnAction(uint32_t client_id, const char * action, JsonObject& data) {
if (strcmp(action, "rfblearn") == 0) rfbLearn(data["id"], data["status"]);
if (strcmp(action, "rfbforget") == 0) rfbForget(data["id"], data["status"]);
if (strcmp(action, "rfbsend") == 0) rfbStore(data["id"], data["status"], data["data"].as<const char*>());
}
bool _rfbWebSocketOnKeyCheck(const char * key, JsonVariant& value) {
return (strncmp(key, "rfb", 3) == 0);
}
void _rfbWebSocketOnData(JsonObject& root) {
_rfbWebSocketSendCodeArray(root, 0, relayCount());
}
#endif // WEB_SUPPORT
// From an hexa char array ("A220EE...") to a byte array (half the size)
static int _rfbToArray(const char * in, uint8_t * out, int length = RF_MESSAGE_SIZE * 2) {
int n = strlen(in);
if (n > RF_MAX_MESSAGE_SIZE*2 || (length > 0 && n != length)) return 0;
char tmp[3] = {0,0,0};
n /= 2;
for (unsigned char p = 0; p<n; p++) {
memcpy(tmp, &in[p*2], 2);
out[p] = strtol(tmp, NULL, 16);
}
return n;
}
void _rfbAck();
void _rfbLearnImpl();
void _rfbSend(uint8_t * message);
void _rfbReceive();
bool _rfbMatch(char* code, unsigned char& relayID, unsigned char& value, char* buffer = NULL) {
if (strlen(code) != 18) return false;
bool found = false;
String compareto = String(&code[12]);
compareto.toUpperCase();
DEBUG_MSG_P(PSTR("[RF] Trying to match code %s\n"), compareto.c_str());
for (unsigned char i=0; i<relayCount(); i++) {
String code_on = rfbRetrieve(i, true);
if (code_on.length() && code_on.endsWith(compareto)) {
DEBUG_MSG_P(PSTR("[RF] Match ON code for relay %d\n"), i);
value = 1;
found = true;
if (buffer) strcpy(buffer, code_on.c_str());
}
String code_off = rfbRetrieve(i, false);
if (code_off.length() && code_off.endsWith(compareto)) {
DEBUG_MSG_P(PSTR("[RF] Match OFF code for relay %d\n"), i);
if (found) value = 2;
found = true;
if (buffer) strcpy(buffer, code_off.c_str());
}
if (found) {
relayID = i;
return true;
}
}
return false;
}
void _rfbDecode() {
static unsigned long last = 0;
if (millis() - last < RF_RECEIVE_DELAY) return;
last = millis();
uint8_t action = _uartbuf[0];
char buffer[RF_MESSAGE_SIZE * 2 + 1] = {0};
DEBUG_MSG_P(PSTR("[RF] Action 0x%02X\n"), action);
if (action == RF_CODE_LEARN_KO) {
_rfbAck();
DEBUG_MSG_P(PSTR("[RF] Learn timeout\n"));
}
if (action == RF_CODE_LEARN_OK || action == RF_CODE_RFIN) {
_rfbAck();
_rfbToChar(&_uartbuf[1], buffer);
DEBUG_MSG_P(PSTR("[RF] Received message '%s'\n"), buffer);
}
if (action == RF_CODE_LEARN_OK) {
DEBUG_MSG_P(PSTR("[RF] Learn success\n"));
rfbStore(_learnId, _learnStatus, buffer);
// Websocket update
#if WEB_SUPPORT
wsPost([](JsonObject& root) {
_rfbWebSocketSendCodeArray(root, _learnId, 1);
});
#endif
}
if (action == RF_CODE_RFIN) {
/* Look for the code, possibly replacing the code with the exact learned one on match
* we want to do this on learn too to be sure that the learned code is the same if it
* is equivalent
*/
unsigned char id;
unsigned char status;
bool matched = _rfbMatch(buffer, id, status, buffer);
if (matched) {
DEBUG_MSG_P(PSTR("[RF] Matched message '%s'\n"), buffer);
_rfbin = true;
if (status == 2) {
relayToggle(id);
} else {
relayStatus(id, status == 1);
}
}
#if MQTT_SUPPORT
mqttSend(MQTT_TOPIC_RFIN, buffer, false, false);
#endif
}
}
//
// RF handler implementations
//
#if !RFB_DIRECT // Default for ITEAD SONOFF RFBRIDGE
void _rfbAck() {
DEBUG_MSG_P(PSTR("[RF] Sending ACK\n"));
Serial.println();
Serial.write(RF_CODE_START);
Serial.write(RF_CODE_ACK);
Serial.write(RF_CODE_STOP);
Serial.flush();
Serial.println();
}
void _rfbLearnImpl() {
DEBUG_MSG_P(PSTR("[RF] Sending LEARN\n"));
Serial.println();
Serial.write(RF_CODE_START);
Serial.write(RF_CODE_LEARN);
Serial.write(RF_CODE_STOP);
Serial.flush();
Serial.println();
}
void _rfbSend(uint8_t * message) {
Serial.println();
Serial.write(RF_CODE_START);
Serial.write(RF_CODE_RFOUT);
_rfbSendRaw(message);
Serial.write(RF_CODE_STOP);
Serial.flush();
Serial.println();
}
void _rfbReceive() {
static bool receiving = false;
while (Serial.available()) {
yield();
uint8_t c = Serial.read();
//DEBUG_MSG_P(PSTR("[RF] Received 0x%02X\n"), c);
if (receiving) {
if (c == RF_CODE_STOP && (_uartpos == 1 || _uartpos == RF_MESSAGE_SIZE + 1)) {
_rfbDecode();
receiving = false;
} else if (_uartpos <= RF_MESSAGE_SIZE) {
_uartbuf[_uartpos++] = c;
} else {
// wrong message, should have received a RF_CODE_STOP
receiving = false;
}
} else if (c == RF_CODE_START) {
_uartpos = 0;
receiving = true;
}
}
}
#else // RFB_DIRECT
void _rfbAck() {}
void _rfbLearnImpl() {
DEBUG_MSG_P(PSTR("[RF] Entering LEARN mode\n"));
_learning = true;
}
void _rfbSend(uint8_t * message) {
if (!_rfb_transmit) return;
unsigned int protocol = message[1];
unsigned int timing =
(message[2] << 8) |
(message[3] << 0) ;
unsigned int bitlength = message[4];
unsigned long rf_code =
(message[5] << 24) |
(message[6] << 16) |
(message[7] << 8) |
(message[8] << 0) ;
_rfModem->setProtocol(protocol);
if (timing > 0) {
_rfModem->setPulseLength(timing);
}
_rfModem->send(rf_code, bitlength);
_rfModem->resetAvailable();
}
void _rfbReceive() {
if (!_rfb_receive) return;
static long learn_start = 0;
if (!_learning && learn_start) {
learn_start = 0;
}
if (_learning) {
if (!learn_start) {
DEBUG_MSG_P(PSTR("[RF] Arming learn timeout\n"));
learn_start = millis();
}
if (learn_start > 0 && millis() - learn_start > RF_LEARN_TIMEOUT) {
DEBUG_MSG_P(PSTR("[RF] Learn timeout triggered\n"));
memset(_uartbuf, 0, sizeof(_uartbuf));
_uartbuf[0] = RF_CODE_LEARN_KO;
_rfbDecode();
_learning = false;
}
}
if (_rfModem->available()) {
static unsigned long last = 0;
if (millis() - last > RF_DEBOUNCE) {
last = millis();
unsigned long rf_code = _rfModem->getReceivedValue();
if ( rf_code > 0) {
DEBUG_MSG_P(PSTR("[RF] Received code: %08X\n"), rf_code);
unsigned int timing = _rfModem->getReceivedDelay();
memset(_uartbuf, 0, sizeof(_uartbuf));
unsigned char *msgbuf = _uartbuf + 1;
_uartbuf[0] = _learning ? RF_CODE_LEARN_OK: RF_CODE_RFIN;
msgbuf[0] = 0xC0;
msgbuf[1] = _rfModem->getReceivedProtocol();
msgbuf[2] = timing >> 8;
msgbuf[3] = timing >> 0;
msgbuf[4] = _rfModem->getReceivedBitlength();
msgbuf[5] = rf_code >> 24;
msgbuf[6] = rf_code >> 16;
msgbuf[7] = rf_code >> 8;
msgbuf[8] = rf_code >> 0;
_rfbDecode();
_learning = false;
}
}
_rfModem->resetAvailable();
}
yield();
}
#endif // RFB_DIRECT
void _rfbSendRaw(const uint8_t *message, const unsigned char n = RF_MESSAGE_SIZE) {
for (unsigned char j=0; j<n; j++) {
Serial.write(message[j]);
}
}
void _rfbSend(uint8_t * code, unsigned char times) {
if (!_rfb_transmit) return;
// rc-switch will repeat on its own
#if RFB_DIRECT
times = 1;
#endif
char buffer[RF_MESSAGE_SIZE];
_rfbToChar(code, buffer);
DEBUG_MSG_P(PSTR("[RF] Enqueuing MESSAGE '%s' %d time(s)\n"), buffer, times);
rfb_message_t message;
memcpy(message.code, code, RF_MESSAGE_SIZE);
message.times = times;
_rfb_message_queue.push(message);
}
void _rfbSend() {
if (!_rfb_transmit) return;
// Check if there is something in the queue
if (_rfb_message_queue.empty()) return;
static unsigned long last = 0;
if (millis() - last < RF_SEND_DELAY) return;
last = millis();
// Pop the first message and send it
rfb_message_t message = _rfb_message_queue.front();
_rfb_message_queue.pop();
_rfbSend(message.code);
// Push it to the stack again if we need to send it more than once
if (message.times > 1) {
message.times = message.times - 1;
_rfb_message_queue.push(message);
}
yield();
}
void _rfbSendRawOnce(uint8_t *code, unsigned char length) {
char buffer[length*2];
_rfbToChar(code, buffer, length);
DEBUG_MSG_P(PSTR("[RF] Sending RAW MESSAGE '%s'\n"), buffer);
_rfbSendRaw(code, length);
}
bool _rfbCompare(const char * code1, const char * code2) {
return strcmp(&code1[12], &code2[12]) == 0;
}
bool _rfbSameOnOff(unsigned char id) {
return _rfbCompare(rfbRetrieve(id, true).c_str(), rfbRetrieve(id, false).c_str());
}
void _rfbParseRaw(char * raw) {
uint8_t message[RF_MAX_MESSAGE_SIZE];
int len = _rfbToArray(raw, message, 0);
if (len > 0) {
_rfbSendRawOnce(message, len);
}
}
void _rfbParseCode(char * code) {
// The payload may be a code in HEX format ([0-9A-Z]{18}) or
// the code comma the number of times to transmit it.
char * tok = strtok(code, ",");
// Check if a switch is linked to that message
unsigned char id;
unsigned char status = 0;
if (_rfbMatch(tok, id, status)) {
if (status == 2) {
relayToggle(id);
} else {
relayStatus(id, status == 1);
}
return;
}
uint8_t message[RF_MESSAGE_SIZE];
int len = _rfbToArray(tok, message, 0);
if (len) {
tok = strtok(NULL, ",");
uint8_t times = (tok != NULL) ? atoi(tok) : 1;
_rfbSend(message, times);
}
}
#if MQTT_SUPPORT
void _rfbMqttCallback(unsigned int type, const char * topic, const char * payload) {
if (type == MQTT_CONNECT_EVENT) {
char buffer[strlen(MQTT_TOPIC_RFLEARN) + 3];
snprintf_P(buffer, sizeof(buffer), PSTR("%s/+"), MQTT_TOPIC_RFLEARN);
mqttSubscribe(buffer);
if (_rfb_transmit) {
mqttSubscribe(MQTT_TOPIC_RFOUT);
}
#if !RFB_DIRECT
mqttSubscribe(MQTT_TOPIC_RFRAW);
#endif
}
if (type == MQTT_MESSAGE_EVENT) {
// Match topic
String t = mqttMagnitude((char *) topic);
// Check if should go into learn mode
if (t.startsWith(MQTT_TOPIC_RFLEARN)) {
_learnId = t.substring(strlen(MQTT_TOPIC_RFLEARN)+1).toInt();
if (_learnId >= relayCount()) {
DEBUG_MSG_P(PSTR("[RF] Wrong learnID (%d)\n"), _learnId);
return;
}
_learnStatus = (char)payload[0] != '0';
_rfbLearnImpl();
return;
}
if (t.equals(MQTT_TOPIC_RFOUT)) {
_rfbParseCode((char *) payload);
}
#if !RFB_DIRECT
if (t.equals(MQTT_TOPIC_RFRAW)) {
_rfbParseRaw((char *) payload);
}
#endif
}
}
#endif // MQTT_SUPPORT
#if API_SUPPORT
void _rfbAPISetup() {
apiRegister(MQTT_TOPIC_RFOUT,
[](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("OK"));
},
[](const char * payload) {
_rfbParseCode((char *) payload);
}
);
apiRegister(MQTT_TOPIC_RFLEARN,
[](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("OK"));
},
[](const char * payload) {
// The payload must be the relayID plus the mode (0 or 1)
char * tok = strtok((char *) payload, ",");
if (NULL == tok) return;
if (!isNumber(tok)) return;
_learnId = atoi(tok);
if (_learnId >= relayCount()) {
DEBUG_MSG_P(PSTR("[RF] Wrong learnID (%d)\n"), _learnId);
return;
}
tok = strtok(NULL, ",");
if (NULL == tok) return;
_learnStatus = (char) tok[0] != '0';
_rfbLearnImpl();
}
);
#if !RFB_DIRECT
apiRegister(MQTT_TOPIC_RFRAW,
[](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("OK"));
},
[](const char * payload) {
_rfbParseRaw((char *)payload);
}
);
#endif
}
#endif // API_SUPPORT
#if TERMINAL_SUPPORT
void _rfbInitCommands() {
terminalRegisterCommand(F("LEARN"), [](Embedis* e) {
if (e->argc < 3) {
terminalError(F("Wrong arguments"));
return;
}
int id = String(e->argv[1]).toInt();
if (id >= relayCount()) {
DEBUG_MSG_P(PSTR("-ERROR: Wrong relayID (%d)\n"), id);
return;
}
int status = String(e->argv[2]).toInt();
rfbLearn(id, status == 1);
terminalOK();
});
terminalRegisterCommand(F("FORGET"), [](Embedis* e) {
if (e->argc < 3) {
terminalError(F("Wrong arguments"));
return;
}
int id = String(e->argv[1]).toInt();
if (id >= relayCount()) {
DEBUG_MSG_P(PSTR("-ERROR: Wrong relayID (%d)\n"), id);
return;
}
int status = String(e->argv[2]).toInt();
rfbForget(id, status == 1);
terminalOK();
});
}
#endif // TERMINAL_SUPPORT
// -----------------------------------------------------------------------------
// PUBLIC
// -----------------------------------------------------------------------------
void rfbStore(unsigned char id, bool status, const char * code) {
DEBUG_MSG_P(PSTR("[RF] Storing %d-%s => '%s'\n"), id, status ? "ON" : "OFF", code);
if (status) {
setSetting({"rfbON", id}, code);
} else {
setSetting({"rfbOFF", id}, code);
}
}
String rfbRetrieve(unsigned char id, bool status) {
if (status) {
return getSetting({"rfbON", id});
} else {
return getSetting({"rfbOFF", id});
}
}
void rfbStatus(unsigned char id, bool status) {
String value = rfbRetrieve(id, status);
if (value.length() > 0) {
bool same = _rfbSameOnOff(id);
uint8_t message[RF_MAX_MESSAGE_SIZE];
int len = _rfbToArray(value.c_str(), message, 0);
if (len == RF_MESSAGE_SIZE && // probably a standard msg
(message[0] != RF_CODE_START || // raw would start with 0xAA
message[1] != RF_CODE_RFOUT_BUCKET || // followed by 0xB0,
message[2] + 4 != len || // needs a valid length,
message[len-1] != RF_CODE_STOP)) { // and finish with 0x55
if (!_rfbin) {
unsigned char times = same ? 1 : _rfb_repeat;
_rfbSend(message, times);
}
} else {
_rfbSendRawOnce(message, len); // send a raw message
}
}
_rfbin = false;
}
void rfbLearn(unsigned char id, bool status) {
_learnId = id;
_learnStatus = status;
_rfbLearnImpl();
}
void rfbForget(unsigned char id, bool status) {
char key[RF_MAX_KEY_LENGTH] = {0};
snprintf_P(key, sizeof(key), PSTR("rfb%s%d"), status ? "ON" : "OFF", id);
delSetting(key);
// Websocket update
#if WEB_SUPPORT
wsPost([id](JsonObject& root) {
_rfbWebSocketSendCodeArray(root, id, 1);
});
#endif
}
// -----------------------------------------------------------------------------
// SETUP & LOOP
// -----------------------------------------------------------------------------
void rfbSetup() {
#if MQTT_SUPPORT
mqttRegister(_rfbMqttCallback);
#endif
#if API_SUPPORT
_rfbAPISetup();
#endif
#if WEB_SUPPORT
wsRegister()
.onVisible(_rfbWebSocketOnVisible)
.onConnected(_rfbWebSocketOnConnected)
.onData(_rfbWebSocketOnData)
.onAction(_rfbWebSocketOnAction)
.onKeyCheck(_rfbWebSocketOnKeyCheck);
#endif
#if TERMINAL_SUPPORT
_rfbInitCommands();
#endif
_rfb_repeat = getSetting("rfbRepeat", RF_SEND_TIMES);
#if RFB_DIRECT
const auto rx = getSetting("rfbRX", RFB_RX_PIN);
const auto tx = getSetting("rfbTX", RFB_TX_PIN);
_rfb_receive = gpioValid(rx);
_rfb_transmit = gpioValid(tx);
if (!_rfb_transmit && !_rfb_receive) {
DEBUG_MSG_P(PSTR("[RF] Neither RX or TX are set\n"));
return;
}
_rfModem = new RCSwitch();
if (_rfb_receive) {
_rfModem->enableReceive(rx);
DEBUG_MSG_P(PSTR("[RF] RF receiver on GPIO %u\n"), rx);
}
if (_rfb_transmit) {
_rfModem->enableTransmit(tx);
_rfModem->setRepeatTransmit(_rfb_repeat);
DEBUG_MSG_P(PSTR("[RF] RF transmitter on GPIO %u\n"), tx);
}
#else
_rfb_receive = true;
_rfb_transmit = true;
#endif
// Register loop only when properly configured
espurnaRegisterLoop([]() -> void {
_rfbReceive();
_rfbSend();
});
}
#endif