Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

634 lines
18 KiB

/*
LIGHT MODULE
Copyright (C) 2016-2017 by Xose Pérez <xose dot perez at gmail dot com>
*/
#if LIGHT_PROVIDER != LIGHT_PROVIDER_NONE
#ifndef LIGHT_PROVIDER_EXPERIMENTAL_RGB_ONLY_HSV_IR
#include <Ticker.h>
#include <ArduinoJson.h>
#include <vector>
Ticker colorTicker;
typedef struct {
unsigned char pin;
bool reverse;
unsigned char value;
unsigned char shadow;
} channel_t;
std::vector<channel_t> _channels;
bool _lightState = false;
unsigned int _brightness = LIGHT_MAX_BRIGHTNESS;
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY9192
#include <my9291.h>
my9291 * _my9291;
#endif
// Gamma Correction lookup table for gamma=2.8 and 12 bit (4095) full scale
// TODO: move to PROGMEM
const unsigned short gamma_table[LIGHT_MAX_VALUE+1] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998,1016,1034,1053,1072,1091,
1110,1130,1150,1170,1190,1210,1231,1252,1273,1294,1316,1338,1360,1382,1404,1427,
1450,1473,1497,1520,1544,1568,1593,1617,1642,1667,1693,1718,1744,1770,1797,1823,
1850,1877,1905,1932,1960,1988,2017,2045,2074,2103,2133,2162,2192,2223,2253,2284,
2315,2346,2378,2410,2442,2474,2507,2540,2573,2606,2640,2674,2708,2743,2778,2813,
2849,2884,2920,2957,2993,3030,3067,3105,3143,3181,3219,3258,3297,3336,3376,3416,
3456,3496,3537,3578,3619,3661,3703,3745,3788,3831,3874,3918,3962,4006,4050,4095 };
// -----------------------------------------------------------------------------
// UTILS
// -----------------------------------------------------------------------------
void _fromRGB(const char * rgb) {
char * p = (char *) rgb;
if (strlen(p) == 0) return;
// if color begins with a # then assume HEX RGB
if (p[0] == '#') {
if (lightHasColor()) {
++p;
unsigned long value = strtoul(p, NULL, 16);
// RGBA values are interpreted like RGB + brightness
if (strlen(p) > 7) {
_channels[0].value = (value >> 24) & 0xFF;
_channels[1].value = (value >> 16) & 0xFF;
_channels[2].value = (value >> 8) & 0xFF;
_brightness = (value & 0xFF) * LIGHT_MAX_BRIGHTNESS / 255;
} else {
_channels[0].value = (value >> 16) & 0xFF;
_channels[1].value = (value >> 8) & 0xFF;
_channels[2].value = (value) & 0xFF;
}
}
// it's a temperature in mireds
} else if (p[0] == 'M') {
if (lightHasColor()) {
unsigned long mireds = atol(p + 1);
_fromMireds(mireds);
}
// it's a temperature in kelvin
} else if (p[0] == 'K') {
if (lightHasColor()) {
unsigned long kelvin = atol(p + 1);
_fromKelvin(kelvin);
}
// otherwise assume decimal values separated by commas
} else {
char * tok;
unsigned char count = 0;
unsigned char channels = _channels.size();
tok = strtok(p, ",");
while (tok != NULL) {
_channels[count].value = atoi(tok);
if (++count == channels) break;
tok = strtok(NULL, ",");
}
// RGB but less than 3 values received
if (lightHasColor() && (count < 3)) {
_channels[1].value = _channels[0].value;
_channels[2].value = _channels[0].value;
}
}
}
void _toRGB(char * rgb, size_t len, bool applyBrightness) {
if (!lightHasColor()) return;
float b = applyBrightness ? (float) _brightness / LIGHT_MAX_BRIGHTNESS : 1;
unsigned long value = 0;
value += _channels[0].value * b;
value <<= 8;
value += _channels[1].value * b;
value <<= 8;
value += _channels[2].value * b;
snprintf_P(rgb, len, PSTR("#%06X"), value);
}
void _toRGB(char * rgb, size_t len) {
_toRGB(rgb, len, false);
}
void _toLong(char * color, size_t len, bool applyBrightness) {
if (!lightHasColor()) return;
float b = applyBrightness ? (float) _brightness / LIGHT_MAX_BRIGHTNESS : 1;
snprintf_P(color, len, PSTR("%d,%d,%d"),
(int) (_channels[0].value * b),
(int) (_channels[1].value * b),
(int) (_channels[2].value * b)
);
}
void _toLong(char * color, size_t len) {
_toLong(color, len, false);
}
// Thanks to Sacha Telgenhof for sharing this code in his AiLight library
// https://github.com/stelgenhof/AiLight
void _fromKelvin(unsigned long kelvin) {
// Check we have RGB channels
if (!lightHasColor()) return;
// Calculate colors
unsigned int red = (kelvin <= 66)
? LIGHT_MAX_VALUE
: 329.698727446 * pow((kelvin - 60), -0.1332047592);
unsigned int green = (kelvin <= 66)
? 99.4708025861 * log(kelvin) - 161.1195681661
: 288.1221695283 * pow(kelvin, -0.0755148492);
unsigned int blue = (kelvin >= 66)
? LIGHT_MAX_VALUE
: ((kelvin <= 19)
? 0
: 138.5177312231 * log(kelvin - 10) - 305.0447927307);
// Save values
_channels[0].value = constrain(red, 0, LIGHT_MAX_VALUE);
_channels[1].value = constrain(green, 0, LIGHT_MAX_VALUE);
_channels[2].value = constrain(blue, 0, LIGHT_MAX_VALUE);
}
// Color temperature is measured in mireds (kelvin = 1e6/mired)
void _fromMireds(unsigned long mireds) {
if (mireds == 0) mireds = 1;
unsigned long kelvin = constrain(1000000UL / mireds, 1000, 40000) / 100;
_fromKelvin(kelvin);
}
unsigned int _toPWM(unsigned long value, bool bright, bool gamma, bool reverse) {
value = constrain(value, 0, LIGHT_MAX_VALUE);
if (bright) value *= ((float) _brightness / LIGHT_MAX_BRIGHTNESS);
unsigned int pwm = gamma ? gamma_table[value] : map(value, 0, LIGHT_MAX_VALUE, 0, LIGHT_LIMIT_PWM);
if (reverse) pwm = LIGHT_LIMIT_PWM - pwm;
return pwm;
}
// Returns a PWM valule for the given channel ID
unsigned int _toPWM(unsigned char id) {
if (id < _channels.size()) {
bool isColor = lightHasColor() && (id < 3);
bool bright = isColor;
bool gamma = isColor & (getSetting("useGamma", LIGHT_USE_GAMMA).toInt() == 1);
return _toPWM(_channels[id].shadow, bright, gamma, _channels[id].reverse);
}
return 0;
}
// -----------------------------------------------------------------------------
// PROVIDER
// -----------------------------------------------------------------------------
void _shadow() {
for (unsigned int i=0; i < _channels.size(); i++) {
_channels[i].shadow = _lightState ? _channels[i].value : 0;
}
if (lightHasColor()) {
bool useWhite = getSetting("useWhite", LIGHT_USE_WHITE).toInt() == 1;
if (_lightState && useWhite && (_channels.size() > 3)) {
if (_channels[0].shadow == _channels[1].shadow && _channels[1].shadow == _channels[2].shadow ) {
_channels[3].shadow = _channels[0].shadow * ((float) _brightness / LIGHT_MAX_BRIGHTNESS);
_channels[2].shadow = 0;
_channels[1].shadow = 0;
_channels[0].shadow = 0;
}
}
}
}
void _lightProviderUpdate() {
_shadow();
#ifdef LIGHT_ENABLE_PIN
digitalWrite(LIGHT_ENABLE_PIN, _lightState);
#endif
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY9192
if (_lightState) {
float ratio = (float) LIGHT_MAX_VALUE / LIGHT_MAX_PWM;
unsigned int red = _toPWM(0) * ratio;
unsigned int green = _toPWM(1) * ratio;
unsigned int blue = _toPWM(2) * ratio;
unsigned int white = _toPWM(3) * ratio;
unsigned int warm = _toPWM(4) * ratio;
_my9291->setColor((my9291_color_t) { red, green, blue, white, warm });
_my9291->setState(true);
} else {
_my9291->setColor((my9291_color_t) { 0, 0, 0, 0, 0 });
_my9291->setState(false);
}
#endif
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
for (unsigned int i=0; i < _channels.size(); i++) {
analogWrite(_channels[i].pin, _toPWM(i));
}
#endif
}
// -----------------------------------------------------------------------------
// PERSISTANCE
// -----------------------------------------------------------------------------
void _lightColorSave() {
for (unsigned int i=0; i < _channels.size(); i++) {
setSetting("ch", i, _channels[i].value);
}
setSetting("brightness", _brightness);
saveSettings();
}
void _lightColorRestore() {
for (unsigned int i=0; i < _channels.size(); i++) {
_channels[i].value = getSetting("ch", i, i==0 ? 255 : 0).toInt();
}
_brightness = getSetting("brightness", LIGHT_MAX_BRIGHTNESS).toInt();
lightUpdate(false, false);
}
// -----------------------------------------------------------------------------
// MQTT
// -----------------------------------------------------------------------------
void _lightMQTTCallback(unsigned int type, const char * topic, const char * payload) {
if (type == MQTT_CONNECT_EVENT) {
if (lightHasColor()) {
mqttSubscribe(MQTT_TOPIC_BRIGHTNESS);
mqttSubscribe(MQTT_TOPIC_MIRED);
mqttSubscribe(MQTT_TOPIC_KELVIN);
mqttSubscribe(MQTT_TOPIC_COLOR);
}
char buffer[strlen(MQTT_TOPIC_CHANNEL) + 3];
snprintf_P(buffer, sizeof(buffer), PSTR("%s/+"), MQTT_TOPIC_CHANNEL);
mqttSubscribe(buffer);
}
if (type == MQTT_MESSAGE_EVENT) {
// Match topic
String t = mqttSubtopic((char *) topic);
// Color temperature in mireds
if (t.equals(MQTT_TOPIC_MIRED)) {
_fromMireds(atol(payload));
lightUpdate(true, mqttForward());
}
// Color temperature in kelvins
if (t.equals(MQTT_TOPIC_KELVIN)) {
_fromKelvin(atol(payload));
lightUpdate(true, mqttForward());
}
// Color
if (t.equals(MQTT_TOPIC_COLOR)) {
lightColor(payload);
lightUpdate(true, mqttForward());
}
// Brightness
if (t.equals(MQTT_TOPIC_BRIGHTNESS)) {
_brightness = constrain(atoi(payload), 0, LIGHT_MAX_BRIGHTNESS);
lightUpdate(true, mqttForward());
}
// Channel
if (t.startsWith(MQTT_TOPIC_CHANNEL)) {
unsigned int channelID = t.substring(strlen(MQTT_TOPIC_CHANNEL)+1).toInt();
if (channelID >= _channels.size()) {
DEBUG_MSG_P(PSTR("[LIGHT] Wrong channelID (%d)\n"), channelID);
return;
}
lightChannel(channelID, atoi(payload));
lightUpdate(true, mqttForward());
}
}
}
// -----------------------------------------------------------------------------
// API
// -----------------------------------------------------------------------------
unsigned char lightChannels() {
return _channels.size();
}
bool lightHasColor() {
bool useColor = getSetting("useColor", LIGHT_USE_COLOR).toInt() == 1;
return useColor && (_channels.size() > 2);
}
unsigned char lightWhiteChannels() {
return _channels.size() % 3;
}
void lightMQTT() {
char buffer[12];
if (lightHasColor()) {
// Color
if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) {
_toRGB(buffer, 12, false);
} else {
_toLong(buffer, 12, false);
}
mqttSend(MQTT_TOPIC_COLOR, buffer);
// Brightness
snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _brightness);
mqttSend(MQTT_TOPIC_BRIGHTNESS, buffer);
}
// Channels
for (unsigned int i=0; i < _channels.size(); i++) {
snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _channels[i].value);
mqttSend(MQTT_TOPIC_CHANNEL, i, buffer);
}
}
void lightUpdate(bool save, bool forward) {
_lightProviderUpdate();
// Report color & brightness to MQTT broker
if (forward) lightMQTT();
// Report color to WS clients (using current brightness setting)
#if WEB_SUPPORT
{
DynamicJsonBuffer jsonBuffer;
JsonObject& root = jsonBuffer.createObject();
root["colorVisible"] = 1;
root["useColor"] = getSetting("useColor", LIGHT_USE_COLOR).toInt() == 1;
root["useWhite"] = getSetting("useWhite", LIGHT_USE_WHITE).toInt() == 1;
root["useGamma"] = getSetting("useGamma", LIGHT_USE_GAMMA).toInt() == 1;
if (lightHasColor()) {
root["color"] = lightColor();
root["brightness"] = lightBrightness();
}
JsonArray& channels = root.createNestedArray("channels");
for (unsigned char id=0; id < lightChannels(); id++) {
channels.add(lightChannel(id));
}
String output;
root.printTo(output);
wsSend(output.c_str());
}
#endif
#if LIGHT_SAVE_ENABLED
// Delay saving to EEPROM 5 seconds to avoid wearing it out unnecessarily
if (save) colorTicker.once(LIGHT_SAVE_DELAY, _lightColorSave);
#endif
};
#if LIGHT_SAVE_ENABLED == 0
void lightSave() {
_lightColorSave();
}
#endif
void lightState(bool state) {
_lightState = state;
}
bool lightState() {
return _lightState;
}
void lightColor(const char * color) {
_fromRGB(color);
}
String lightColor() {
char rgb[8];
_toRGB(rgb, 8, false);
return String(rgb);
}
unsigned int lightChannel(unsigned char id) {
if (id <= _channels.size()) {
return _channels[id].value;
}
return 0;
}
void lightChannel(unsigned char id, unsigned int value) {
if (id <= _channels.size()) {
_channels[id].value = constrain(value, 0, LIGHT_MAX_VALUE);
}
}
unsigned int lightBrightness() {
return _brightness;
}
void lightBrightness(unsigned int b) {
_brightness = constrain(b, 0, LIGHT_MAX_BRIGHTNESS);
}
// -----------------------------------------------------------------------------
// SETUP
// -----------------------------------------------------------------------------
void _lightAPISetup() {
#if WEB_SUPPORT
// API entry points (protected with apikey)
if (lightHasColor()) {
apiRegister(MQTT_TOPIC_COLOR, MQTT_TOPIC_COLOR,
[](char * buffer, size_t len) {
if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) {
_toRGB(buffer, len, false);
} else {
_toLong(buffer, len, false);
}
},
[](const char * payload) {
lightColor(payload);
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_BRIGHTNESS, MQTT_TOPIC_BRIGHTNESS,
[](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), _brightness);
},
[](const char * payload) {
lightBrightness(atoi(payload));
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_KELVIN, MQTT_TOPIC_KELVIN,
[](char * buffer, size_t len) {},
[](const char * payload) {
_fromKelvin(atol(payload));
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_MIRED, MQTT_TOPIC_MIRED,
[](char * buffer, size_t len) {},
[](const char * payload) {
_fromMireds(atol(payload));
lightUpdate(true, true);
}
);
}
for (unsigned int id=0; id<lightChannels(); id++) {
char url[15];
snprintf_P(url, sizeof(url), PSTR("%s/%d"), MQTT_TOPIC_CHANNEL, id);
char key[10];
snprintf_P(key, sizeof(key), PSTR("%s%d"), MQTT_TOPIC_CHANNEL, id);
apiRegister(url, key,
[id](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), lightChannel(id));
},
[id](const char * payload) {
lightChannel(id, atoi(payload));
lightUpdate(true, true);
}
);
}
#endif // WEB_SUPPORT
}
void lightSetup() {
#ifdef LIGHT_ENABLE_PIN
pinMode(LIGHT_ENABLE_PIN, OUTPUT);
#endif
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY9192
_my9291 = new my9291(MY9291_DI_PIN, MY9291_DCKI_PIN, MY9291_COMMAND, MY9291_CHANNELS);
for (unsigned char i=0; i<MY9291_CHANNELS; i++) {
_channels.push_back((channel_t) {0, false, 0});
}
#endif
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
#ifdef LIGHT_CH1_PIN
_channels.push_back((channel_t) {LIGHT_CH1_PIN, LIGHT_CH1_INVERSE, 0});
#endif
#ifdef LIGHT_CH2_PIN
_channels.push_back((channel_t) {LIGHT_CH2_PIN, LIGHT_CH2_INVERSE, 0});
#endif
#ifdef LIGHT_CH3_PIN
_channels.push_back((channel_t) {LIGHT_CH3_PIN, LIGHT_CH3_INVERSE, 0});
#endif
#ifdef LIGHT_CH4_PIN
_channels.push_back((channel_t) {LIGHT_CH4_PIN, LIGHT_CH4_INVERSE, 0});
#endif
#ifdef LIGHT_CH5_PIN
_channels.push_back((channel_t) {LIGHT_CH5_PIN, LIGHT_CH5_INVERSE, 0});
#endif
analogWriteRange(LIGHT_MAX_PWM+1);
analogWriteFreq(LIGHT_PWM_FREQUENCY);
for (unsigned int i=0; i < _channels.size(); i++) {
pinMode(_channels[i].pin, OUTPUT);
}
#endif
DEBUG_MSG_P(PSTR("[LIGHT] LIGHT_PROVIDER = %d\n"), LIGHT_PROVIDER);
DEBUG_MSG_P(PSTR("[LIGHT] Number of channels: %d\n"), _channels.size());
_lightColorRestore();
_lightAPISetup();
mqttRegister(_lightMQTTCallback);
}
void lightLoop(){
}
#endif // LIGHT_PROVIDER_EXPERIMENTAL_RGB_ONLY_HSV_IR
#endif // LIGHT_PROVIDER != LIGHT_PROVIDER_NONE