Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

533 lines
18 KiB

/*
SENSOR MODULE
Copyright (C) 2016-2017 by Xose Pérez <xose dot perez at gmail dot com>
*/
#include <vector>
#include "filters/MaxFilter.h"
#include "filters/MedianFilter.h"
#include "filters/MovingAverageFilter.h"
#include "sensors/BaseSensor.h"
typedef struct {
BaseSensor * sensor;
unsigned char local; // Local index in its provider
magnitude_t type; // Type of measurement
unsigned char global; // Global index in its type
double current; // Current (last) value, unfiltered
double filtered; // Filtered (averaged) value
double reported; // Last reported value
double min_change; // Minimum value change to report
BaseFilter * filter; // Filter object
} sensor_magnitude_t;
std::vector<BaseSensor *> _sensors;
std::vector<sensor_magnitude_t> _magnitudes;
unsigned char _counts[MAGNITUDE_MAX];
bool _sensor_realtime = API_REAL_TIME_VALUES;
unsigned char _sensor_temperature_units = SENSOR_TEMPERATURE_UNITS;
double _sensor_temperature_correction = SENSOR_TEMPERATURE_CORRECTION;
// -----------------------------------------------------------------------------
// Private
// -----------------------------------------------------------------------------
String _sensorTopic(magnitude_t type) {
if (type == MAGNITUDE_TEMPERATURE) return String(SENSOR_TEMPERATURE_TOPIC);
if (type == MAGNITUDE_HUMIDITY) return String(SENSOR_HUMIDITY_TOPIC);
if (type == MAGNITUDE_PRESSURE) return String(SENSOR_PRESSURE_TOPIC);
if (type == MAGNITUDE_CURRENT) return String(SENSOR_CURRENT_TOPIC);
if (type == MAGNITUDE_VOLTAGE) return String(SENSOR_VOLTAGE_TOPIC);
if (type == MAGNITUDE_POWER_ACTIVE) return String(SENSOR_ACTIVE_POWER_TOPIC);
if (type == MAGNITUDE_POWER_APPARENT) return String(SENSOR_APPARENT_POWER_TOPIC);
if (type == MAGNITUDE_POWER_REACTIVE) return String(SENSOR_REACTIVE_POWER_TOPIC);
if (type == MAGNITUDE_POWER_FACTOR) return String(SENSOR_POWER_FACTOR_TOPIC);
if (type == MAGNITUDE_ENERGY) return String(SENSOR_ENERGY_TOPIC);
if (type == MAGNITUDE_ENERGY_DELTA) return String(SENSOR_ENERGY_DELTA_TOPIC);
if (type == MAGNITUDE_ANALOG) return String(SENSOR_ANALOG_TOPIC);
if (type == MAGNITUDE_DIGITAL) return String(SENSOR_DIGITAL_TOPIC);
if (type == MAGNITUDE_EVENTS) return String(SENSOR_EVENTS_TOPIC);
if (type == MAGNITUDE_PM1dot0) return String(SENSOR_PM1dot0_TOPIC);
if (type == MAGNITUDE_PM2dot5) return String(SENSOR_PM2dot5_TOPIC);
if (type == MAGNITUDE_PM10) return String(SENSOR_PM10_TOPIC);
if (type == MAGNITUDE_CO2) return String(SENSOR_CO2_TOPIC);
return String(SENSOR_UNKNOWN_TOPIC);
}
unsigned char _sensorDecimals(magnitude_t type) {
if (type == MAGNITUDE_TEMPERATURE) return SENSOR_TEMPERATURE_DECIMALS;
if (type == MAGNITUDE_HUMIDITY) return SENSOR_HUMIDITY_DECIMALS;
if (type == MAGNITUDE_PRESSURE) return SENSOR_PRESSURE_DECIMALS;
if (type == MAGNITUDE_CURRENT) return SENSOR_CURRENT_DECIMALS;
if (type == MAGNITUDE_VOLTAGE) return SENSOR_VOLTAGE_DECIMALS;
if (type == MAGNITUDE_POWER_ACTIVE) return SENSOR_POWER_DECIMALS;
if (type == MAGNITUDE_POWER_APPARENT) return SENSOR_POWER_DECIMALS;
if (type == MAGNITUDE_POWER_REACTIVE) return SENSOR_POWER_DECIMALS;
if (type == MAGNITUDE_POWER_FACTOR) return SENSOR_POWER_FACTOR_DECIMALS;
if (type == MAGNITUDE_ENERGY) return SENSOR_ENERGY_DECIMALS;
if (type == MAGNITUDE_ENERGY_DELTA) return SENSOR_ENERGY_DECIMALS;
if (type == MAGNITUDE_ANALOG) return SENSOR_ANALOG_DECIMALS;
if (type == MAGNITUDE_EVENTS) return SENSOR_EVENTS_DECIMALS;
if (type == MAGNITUDE_PM1dot0) return SENSOR_PM1dot0_DECIMALS;
if (type == MAGNITUDE_PM2dot5) return SENSOR_PM2dot5_DECIMALS;
if (type == MAGNITUDE_PM10) return SENSOR_PM10_DECIMALS;
if (type == MAGNITUDE_CO2) return SENSOR_CO2_DECIMALS;
return 0;
}
String _sensorUnits(magnitude_t type) {
if (type == MAGNITUDE_TEMPERATURE) return (_sensor_temperature_units == TMP_CELSIUS) ? String("C") : String("F");
if (type == MAGNITUDE_HUMIDITY) return String("%");
if (type == MAGNITUDE_PRESSURE) return String("hPa");
if (type == MAGNITUDE_CURRENT) return String("A");
if (type == MAGNITUDE_VOLTAGE) return String("V");
if (type == MAGNITUDE_POWER_ACTIVE) return String("W");
if (type == MAGNITUDE_POWER_APPARENT) return String("W");
if (type == MAGNITUDE_POWER_REACTIVE) return String("W");
if (type == MAGNITUDE_POWER_FACTOR) return String("%");
if (type == MAGNITUDE_ENERGY) return String("J");
if (type == MAGNITUDE_ENERGY_DELTA) return String("J");
if (type == MAGNITUDE_EVENTS) return String("/min");
if (type == MAGNITUDE_PM1dot0) return String("µg/m3");
if (type == MAGNITUDE_PM2dot5) return String("µg/m3");
if (type == MAGNITUDE_PM10) return String("µg/m3");
if (type == MAGNITUDE_CO2) return String("ppm");
return String();
}
double _sensorProcess(magnitude_t type, double value) {
if (type == MAGNITUDE_TEMPERATURE) {
if (_sensor_temperature_units == TMP_FAHRENHEIT) value = value * 1.8 + 32;
value = value + _sensor_temperature_correction;
}
return roundTo(value, _sensorDecimals(type));
}
void _sensorConfigure() {
_sensor_realtime = getSetting("apiRealTime", API_REAL_TIME_VALUES).toInt() == 1;
_sensor_temperature_units = getSetting("tmpUnits", SENSOR_TEMPERATURE_UNITS).toInt();
_sensor_temperature_correction = getSetting("tmpCorrection", SENSOR_TEMPERATURE_CORRECTION).toFloat();
}
#if WEB_SUPPORT
void _sensorWebSocketOnSend(JsonObject& root) {
char buffer[10];
bool hasTemperature = false;
JsonArray& list = root.createNestedArray("magnitudes");
for (unsigned char i=0; i<_magnitudes.size(); i++) {
sensor_magnitude_t magnitude = _magnitudes[i];
unsigned char decimals = _sensorDecimals(magnitude.type);
dtostrf(magnitude.current, 1-sizeof(buffer), decimals, buffer);
JsonObject& element = list.createNestedObject();
element["type"] = int(magnitude.type);
element["value"] = String(buffer);
element["units"] = _sensorUnits(magnitude.type);
element["description"] = magnitude.sensor->slot(magnitude.local);
element["error"] = magnitude.sensor->error();
if (magnitude.type == MAGNITUDE_TEMPERATURE) hasTemperature = true;
}
//root["apiRealTime"] = _sensor_realtime;
root["tmpUnits"] = _sensor_temperature_units;
root["tmpCorrection"] = _sensor_temperature_correction;
if (hasTemperature) root["temperatureVisible"] = 1;
}
void _sensorAPISetup() {
for (unsigned char magnitude_id=0; magnitude_id<_magnitudes.size(); magnitude_id++) {
sensor_magnitude_t magnitude = _magnitudes[magnitude_id];
String topic = _sensorTopic(magnitude.type);
if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) topic = topic + "/" + String(magnitude.global);
apiRegister(topic.c_str(), topic.c_str(), [magnitude_id](char * buffer, size_t len) {
sensor_magnitude_t magnitude = _magnitudes[magnitude_id];
unsigned char decimals = _sensorDecimals(magnitude.type);
double value = _sensor_realtime ? magnitude.current : magnitude.filtered;
dtostrf(value, 1-len, decimals, buffer);
});
}
}
#endif
void _sensorTick() {
for (unsigned char i=0; i<_sensors.size(); i++) {
_sensors[i]->tick();
}
}
void _sensorPre() {
for (unsigned char i=0; i<_sensors.size(); i++) {
_sensors[i]->pre();
if (!_sensors[i]->status()) {
DEBUG_MSG("[SENSOR] Error reading data from %s (error: %d)\n",
_sensors[i]->name().c_str(),
_sensors[i]->error()
);
}
}
}
void _sensorPost() {
for (unsigned char i=0; i<_sensors.size(); i++) {
_sensors[i]->post();
}
}
// -----------------------------------------------------------------------------
// Sensor initialization
// -----------------------------------------------------------------------------
void _sensorRegister(BaseSensor * sensor) {
sensor->begin();
_sensors.push_back(sensor);
}
void _sensorInit() {
#if ANALOG_SUPPORT
{
AnalogSensor * sensor = new AnalogSensor();
_sensorRegister(sensor);
}
#endif
#if BMX280_SUPPORT
{
BMX280Sensor * sensor = new BMX280Sensor();
sensor->setAddress(BMX280_ADDRESS);
_sensorRegister(sensor);
}
#endif
#if DALLAS_SUPPORT
{
DallasSensor * sensor = new DallasSensor();
sensor->setGPIO(DALLAS_PIN);
_sensorRegister(sensor);
}
#endif
#if DHT_SUPPORT
{
DHTSensor * sensor = new DHTSensor();
sensor->setGPIO(DHT_PIN);
sensor->setType(DHT_TYPE);
_sensorRegister(sensor);
}
#endif
#if DIGITAL_SUPPORT
{
DigitalSensor * sensor = new DigitalSensor();
sensor->setGPIO(DIGITAL_PIN);
sensor->setMode(DIGITAL_PIN_MODE);
sensor->setDefault(DIGITAL_DEFAULT_STATE);
_sensorRegister(sensor);
}
#endif
#if EMON_ADC121_SUPPORT
{
EmonADC121Sensor * sensor = new EmonADC121Sensor();
sensor->setAddress(EMON_ADC121_I2C_ADDRESS);
sensor->setVoltage(EMON_MAINS_VOLTAGE);
sensor->setReference(EMON_REFERENCE_VOLTAGE);
sensor->setCurrentRatio(0, EMON_CURRENT_RATIO);
_sensorRegister(sensor);
}
#endif
#if EMON_ADS1X15_SUPPORT
{
EmonADS1X15Sensor * sensor = new EmonADS1X15Sensor();
sensor->setAddress(EMON_ADS1X15_I2C_ADDRESS);
sensor->setType(EMON_ADS1X15_TYPE);
sensor->setMask(EMON_ADS1X15_MASK);
sensor->setGain(EMON_ADS1X15_GAIN);
sensor->setVoltage(EMON_MAINS_VOLTAGE);
sensor->setCurrentRatio(0, EMON_CURRENT_RATIO);
sensor->setCurrentRatio(1, EMON_CURRENT_RATIO);
sensor->setCurrentRatio(2, EMON_CURRENT_RATIO);
sensor->setCurrentRatio(3, EMON_CURRENT_RATIO);
_sensorRegister(sensor);
}
#endif
#if EMON_ANALOG_SUPPORT
{
EmonAnalogSensor * sensor = new EmonAnalogSensor();
sensor->setVoltage(EMON_MAINS_VOLTAGE);
sensor->setReference(EMON_REFERENCE_VOLTAGE);
sensor->setCurrentRatio(0, EMON_CURRENT_RATIO);
_sensorRegister(sensor);
}
#endif
#if EVENTS_SUPPORT
{
EventSensor * sensor = new EventSensor();
sensor->setGPIO(EVENTS_PIN);
sensor->setMode(EVENTS_PIN_MODE);
sensor->setDebounceTime(EVENTS_DEBOUNCE);
sensor->setInterruptMode(EVENTS_INTERRUPT_MODE);
_sensorRegister(sensor);
}
#endif
#if MHZ19_SUPPORT
{
MHZ19Sensor * sensor = new MHZ19Sensor();
sensor->setRX(MHZ19_RX_PIN);
sensor->setTX(MHZ19_TX_PIN);
_sensorRegister(sensor);
}
#endif
#if PMSX003_SUPPORT
{
PMSX003Sensor * sensor = new PMSX003Sensor();
sensor->setRX(PMS_RX_PIN);
sensor->setTX(PMS_TX_PIN);
_sensorRegister(sensor);
}
#endif
#if SI7021_SUPPORT
{
SI7021Sensor * sensor = new SI7021Sensor();
sensor->setAddress(SI7021_ADDRESS);
_sensorRegister(sensor);
}
#endif
}
void _magnitudesInit() {
for (unsigned char i=0; i<_sensors.size(); i++) {
BaseSensor * sensor = _sensors[i];
DEBUG_MSG("[SENSOR] %s\n", sensor->name().c_str());
if (sensor->error() != 0) DEBUG_MSG("[SENSOR] -> ERROR %d\n", sensor->error());
for (unsigned char k=0; k<sensor->count(); k++) {
magnitude_t type = sensor->type(k);
sensor_magnitude_t new_magnitude;
new_magnitude.sensor = sensor;
new_magnitude.local = k;
new_magnitude.type = type;
new_magnitude.global = _counts[type];
new_magnitude.current = 0;
new_magnitude.filtered = 0;
new_magnitude.reported = 0;
new_magnitude.min_change = 0;
if (type == MAGNITUDE_DIGITAL) {
new_magnitude.filter = new MaxFilter();
} else if (type == MAGNITUDE_EVENTS) {
new_magnitude.filter = new MovingAverageFilter(SENSOR_REPORT_EVERY);
} else {
new_magnitude.filter = new MedianFilter();
}
_magnitudes.push_back(new_magnitude);
DEBUG_MSG("[SENSOR] -> %s:%d\n", _sensorTopic(type).c_str(), _counts[type]);
_counts[type] = _counts[type] + 1;
}
}
}
// -----------------------------------------------------------------------------
// Public
// -----------------------------------------------------------------------------
unsigned char sensorCount() {
return _sensors.size();
}
unsigned char magnitudeCount() {
return _magnitudes.size();
}
String magnitudeName(unsigned char index) {
if (index < _magnitudes.size()) {
sensor_magnitude_t magnitude = _magnitudes[index];
return magnitude.sensor->slot(magnitude.local);
}
return String();
}
unsigned char magnitudeType(unsigned char index) {
if (index < _magnitudes.size()) {
return int(_magnitudes[index].type);
}
return MAGNITUDE_NONE;
}
// -----------------------------------------------------------------------------
void sensorSetup() {
// Load sensors
_sensorInit();
// Load magnitudes
_magnitudesInit();
#if WEB_SUPPORT
// Websockets
wsOnSendRegister(_sensorWebSocketOnSend);
wsOnAfterParseRegister(_sensorConfigure);
// API
_sensorAPISetup();
#endif
}
void sensorLoop() {
static unsigned long last_update = 0;
static unsigned long report_count = 0;
// Tick hook
_sensorTick();
// Check if we should read new data
if (millis() - last_update > SENSOR_READ_INTERVAL) {
last_update = millis();
report_count = (report_count + 1) % SENSOR_REPORT_EVERY;
double current;
double filtered;
char buffer[64];
// Pre-read hook
_sensorPre();
// Get readings
for (unsigned char i=0; i<_magnitudes.size(); i++) {
sensor_magnitude_t magnitude = _magnitudes[i];
if (magnitude.sensor->status()) {
unsigned char decimals = _sensorDecimals(magnitude.type);
current = magnitude.sensor->value(magnitude.local);
magnitude.filter->add(current);
// Special case
if (magnitude.type == MAGNITUDE_EVENTS) current = magnitude.filter->result();
current = _sensorProcess(magnitude.type, current);
_magnitudes[i].current = current;
// Debug
#if SENSOR_DEBUG
{
dtostrf(current, 1-sizeof(buffer), decimals, buffer);
DEBUG_MSG("[SENSOR] %s - %s: %s%s\n",
magnitude.sensor->slot(magnitude.local).c_str(),
_sensorTopic(magnitude.type).c_str(),
buffer,
_sensorUnits(magnitude.type).c_str()
);
}
#endif
// Time to report (we do it every SENSOR_REPORT_EVERY readings)
if (report_count == 0) {
filtered = magnitude.filter->result();
magnitude.filter->reset();
filtered = _sensorProcess(magnitude.type, filtered);
_magnitudes[i].filtered = filtered;
// Check if there is a minimum change threshold to report
if (fabs(filtered - magnitude.reported) >= magnitude.min_change) {
_magnitudes[i].reported = filtered;
dtostrf(filtered, 1-sizeof(buffer), decimals, buffer);
#if MQTT_SUPPORT
if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) {
mqttSend(_sensorTopic(magnitude.type).c_str(), magnitude.global, buffer);
} else {
mqttSend(_sensorTopic(magnitude.type).c_str(), buffer);
}
#endif
#if INFLUXDB_SUPPORT
if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) {
idbSend(_sensorTopic(magnitude.type).c_str(), magnitude.global, buffer);
} else {
idbSend(_sensorTopic(magnitude.type).c_str(), buffer);
}
#endif
#if DOMOTICZ_SUPPORT
{
char key[15];
snprintf_P(key, sizeof(key), PSTR("dczSensor%d"), i);
if (magnitude.type == MAGNITUDE_HUMIDITY) {
int status;
if (filtered > 70) {
status = HUMIDITY_WET;
} else if (filtered > 45) {
status = HUMIDITY_COMFORTABLE;
} else if (filtered > 30) {
status = HUMIDITY_NORMAL;
} else {
status = HUMIDITY_DRY;
}
char status_buf[5];
itoa(status, status_buf, 10);
domoticzSend(key, buffer, status_buf);
} else {
domoticzSend(key, 0, buffer);
}
}
#endif
} // if (fabs(filtered - magnitude.reported) >= magnitude.min_change)
} // if (report_count == 0)
} // if (magnitude.sensor->status())
} // for (unsigned char i=0; i<_magnitudes.size(); i++)
// Post-read hook
_sensorPost();
#if WEB_SUPPORT
wsSend(_sensorWebSocketOnSend);
#endif
}
}