/*
|
|
|
|
LIGHT MODULE
|
|
|
|
Copyright (C) 2016-2019 by Xose Pérez <xose dot perez at gmail dot com>
|
|
Copyright (C) 2019-2021 by Maxim Prokhorov <prokhorov dot max at outlook dot com>
|
|
|
|
*/
|
|
|
|
#include "light.h"
|
|
|
|
#if LIGHT_PROVIDER != LIGHT_PROVIDER_NONE
|
|
|
|
#include "api.h"
|
|
#include "broker.h"
|
|
#include "mqtt.h"
|
|
#include "relay.h"
|
|
#include "rpc.h"
|
|
#include "rtcmem.h"
|
|
#include "ws.h"
|
|
#include "libs/OnceFlag.h"
|
|
|
|
#include <Ticker.h>
|
|
#include <Schedule.h>
|
|
#include <ArduinoJson.h>
|
|
|
|
#include <array>
|
|
#include <cstring>
|
|
#include <vector>
|
|
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
|
|
#include <my92xx.h>
|
|
#endif
|
|
|
|
extern "C" {
|
|
#include "libs/fs_math.h"
|
|
}
|
|
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
|
|
|
|
// default is 8, we only need up to 5
|
|
#define PWM_CHANNEL_NUM_MAX Light::ChannelsMax
|
|
extern "C" {
|
|
#include "libs/pwm.h"
|
|
}
|
|
|
|
#endif
|
|
|
|
#include "light_config.h"
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
namespace Light {
|
|
|
|
constexpr long Rgb::Min;
|
|
constexpr long Rgb::Max;
|
|
|
|
constexpr long Hsv::HueMin;
|
|
constexpr long Hsv::HueMax;
|
|
|
|
constexpr long Hsv::SaturationMin;
|
|
constexpr long Hsv::SaturationMax;
|
|
|
|
constexpr long Hsv::ValueMin;
|
|
constexpr long Hsv::ValueMax;
|
|
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
#if RELAY_SUPPORT
|
|
|
|
// Setup virtual relays contolling the light's state
|
|
// TODO: only do per-channel setup optionally
|
|
|
|
class LightChannelProvider : public RelayProviderBase {
|
|
public:
|
|
LightChannelProvider() = delete;
|
|
explicit LightChannelProvider(unsigned char id) :
|
|
_id(id)
|
|
{}
|
|
|
|
const char* id() const {
|
|
return "light_channel";
|
|
}
|
|
|
|
void change(bool status) override {
|
|
lightState(_id, status);
|
|
lightState(true);
|
|
lightUpdate();
|
|
}
|
|
|
|
private:
|
|
unsigned char _id { RELAY_NONE };
|
|
};
|
|
|
|
class LightGlobalProvider : public RelayProviderBase {
|
|
public:
|
|
const char* id() const {
|
|
return "light_global";
|
|
}
|
|
|
|
void change(bool status) override {
|
|
lightState(status);
|
|
lightUpdate();
|
|
}
|
|
};
|
|
|
|
#endif
|
|
|
|
struct channel_t {
|
|
channel_t() = default;
|
|
|
|
// TODO: set & store pin in the provider
|
|
explicit channel_t(unsigned char pin_, bool inverse_, bool gamma_) :
|
|
pin(pin_),
|
|
inverse(inverse_),
|
|
gamma(gamma_)
|
|
{
|
|
pinMode(pin, OUTPUT);
|
|
}
|
|
|
|
explicit channel_t(unsigned char pin_) :
|
|
pin(pin_)
|
|
{
|
|
pinMode(pin, OUTPUT);
|
|
}
|
|
|
|
unsigned char pin { GPIO_NONE }; // real GPIO pin
|
|
bool inverse { false }; // re-map the value from [ValueMin:ValueMax] to [ValueMax:ValueMin]
|
|
bool gamma { false }; // apply gamma correction to the target value
|
|
|
|
bool state { true }; // is the channel ON
|
|
|
|
unsigned char inputValue { Light::ValueMin }; // raw, without the brightness
|
|
unsigned char value { Light::ValueMin }; // normalized, including brightness
|
|
unsigned char target { Light::ValueMin }; // resulting value that will be given to the provider
|
|
float current { Light::ValueMin }; // interim between input and target, used by the transition handler
|
|
};
|
|
|
|
std::vector<channel_t> _light_channels;
|
|
|
|
namespace Light {
|
|
|
|
struct Mapping {
|
|
struct Pointers {
|
|
Pointers() = default;
|
|
Pointers(const Pointers&) = default;
|
|
Pointers(Pointers&&) = default;
|
|
|
|
Pointers& operator=(const Pointers&) = default;
|
|
Pointers& operator=(Pointers&&) = default;
|
|
|
|
Pointers(channel_t* red, channel_t* green, channel_t* blue, channel_t* cold, channel_t* warm) :
|
|
_red(red),
|
|
_green(green),
|
|
_blue(blue),
|
|
_cold(cold),
|
|
_warm(warm)
|
|
{}
|
|
|
|
channel_t* red() {
|
|
return _red;
|
|
}
|
|
|
|
channel_t* green() {
|
|
return _green;
|
|
}
|
|
|
|
channel_t* blue() {
|
|
return _blue;
|
|
}
|
|
|
|
channel_t* cold() {
|
|
return _cold;
|
|
}
|
|
|
|
channel_t* warm() {
|
|
return _warm;
|
|
}
|
|
|
|
private:
|
|
channel_t* _red { nullptr };
|
|
channel_t* _green { nullptr };
|
|
channel_t* _blue { nullptr };
|
|
channel_t* _cold { nullptr };
|
|
channel_t* _warm { nullptr };
|
|
};
|
|
|
|
void reset() {
|
|
_pointers = Pointers();
|
|
}
|
|
|
|
template <typename ...Args>
|
|
void update(Args... args) {
|
|
_pointers = Pointers(std::forward<Args>(args)...);
|
|
}
|
|
|
|
long get(channel_t* ptr) {
|
|
if (ptr) {
|
|
return ptr->target;
|
|
}
|
|
|
|
return 0l;
|
|
}
|
|
|
|
void set(channel_t* ptr, long value) {
|
|
if (ptr) {
|
|
ptr->inputValue = std::clamp(value, Light::ValueMin, Light::ValueMax);
|
|
}
|
|
}
|
|
|
|
long red() {
|
|
return get(_pointers.red());
|
|
}
|
|
|
|
void red(long value) {
|
|
set(_pointers.red(), value);
|
|
}
|
|
|
|
long green() {
|
|
return get(_pointers.green());
|
|
}
|
|
|
|
void green(long value) {
|
|
set(_pointers.green(), value);
|
|
}
|
|
|
|
long blue() {
|
|
return get(_pointers.blue());
|
|
}
|
|
|
|
void blue(long value) {
|
|
set(_pointers.blue(), value);
|
|
}
|
|
|
|
long cold() {
|
|
return get(_pointers.cold());
|
|
}
|
|
|
|
void cold(long value) {
|
|
set(_pointers.cold(), value);
|
|
}
|
|
|
|
long warm() {
|
|
return get(_pointers.warm());
|
|
}
|
|
|
|
void warm(long value) {
|
|
set(_pointers.warm(), value);
|
|
}
|
|
|
|
private:
|
|
Pointers _pointers;
|
|
};
|
|
|
|
} // namespace Light
|
|
|
|
Light::Mapping _light_mapping;
|
|
|
|
void _lightUpdateMapping(size_t channels) {
|
|
switch (channels) {
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
_light_mapping.update(nullptr, nullptr, nullptr, &_light_channels[0], nullptr);
|
|
break;
|
|
case 2:
|
|
_light_mapping.update(nullptr, nullptr, nullptr, &_light_channels[0], &_light_channels[1]);
|
|
break;
|
|
case 3:
|
|
_light_mapping.update(&_light_channels[0], &_light_channels[1], &_light_channels[2], nullptr, nullptr);
|
|
break;
|
|
case 4:
|
|
_light_mapping.update(&_light_channels[0], &_light_channels[1], &_light_channels[2], &_light_channels[3], nullptr);
|
|
break;
|
|
case 5:
|
|
_light_mapping.update(&_light_channels[0], &_light_channels[1], &_light_channels[2], &_light_channels[3], &_light_channels[4]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool _light_save = LIGHT_SAVE_ENABLED;
|
|
unsigned long _light_save_delay = LIGHT_SAVE_DELAY;
|
|
Ticker _light_save_ticker;
|
|
|
|
unsigned long _light_report_delay = LIGHT_REPORT_DELAY;
|
|
Ticker _light_report_ticker;
|
|
LightReportListener _light_report;
|
|
|
|
bool _light_has_controls = false;
|
|
bool _light_has_color = false;
|
|
bool _light_use_rgb = false;
|
|
bool _light_use_white = false;
|
|
bool _light_use_cct = false;
|
|
bool _light_use_gamma = false;
|
|
|
|
bool _light_state = false;
|
|
long _light_brightness = Light::BrightnessMax;
|
|
|
|
// Default to the Philips Hue value that HA also use.
|
|
// https://developers.meethue.com/documentation/core-concepts
|
|
|
|
// TODO: We only accept this as input, thus setting 'related' channels directly
|
|
// will cause the cached mireds value to be used:
|
|
// - by brightness function in R G B CW and R G B CW WW as a factor for CW and WW channels
|
|
// - by setter in CW and CW WW modes
|
|
|
|
static_assert(Light::MiredsCold < Light::MiredsWarm, "");
|
|
|
|
long _light_cold_mireds = Light::MiredsCold;
|
|
long _light_warm_mireds = Light::MiredsWarm;
|
|
|
|
long _light_cold_kelvin = (1000000L / _light_cold_mireds);
|
|
long _light_warm_kelvin = (1000000L / _light_warm_mireds);
|
|
|
|
namespace Light {
|
|
|
|
constexpr long MiredsDefault { (MiredsCold + MiredsWarm) / 2L };
|
|
|
|
} // namespace Light
|
|
|
|
long _light_mireds { Light::MiredsDefault };
|
|
|
|
namespace {
|
|
|
|
// In case we somehow forgot to initialize the brightness func, make sure to trigger an exception.
|
|
// Just using an `nullptr` may not always trigger an error
|
|
// (also, so we also don't have to check whether the pointer is not `nullptr`)
|
|
|
|
bool _lightApplyBrightnessStub() {
|
|
panic();
|
|
return false;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
using LightBrightnessFunc = bool(*)();
|
|
LightBrightnessFunc _light_brightness_func = _lightApplyBrightnessStub;
|
|
|
|
bool _light_state_changed = false;
|
|
LightStateListener _light_state_listener = nullptr;
|
|
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
|
|
my92xx* _my92xx { nullptr };
|
|
#endif
|
|
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
|
|
std::unique_ptr<LightProvider> _light_provider;
|
|
#endif
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// UTILS
|
|
// -----------------------------------------------------------------------------
|
|
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
|
|
|
|
namespace settings {
|
|
namespace internal {
|
|
|
|
template <>
|
|
my92xx_model_t convert(const String& value) {
|
|
if (value.length() == 1) {
|
|
switch (*value.c_str()) {
|
|
case 0x01:
|
|
return MY92XX_MODEL_MY9291;
|
|
case 0x02:
|
|
return MY92XX_MODEL_MY9231;
|
|
}
|
|
} else {
|
|
if (value == "9291") {
|
|
return MY92XX_MODEL_MY9291;
|
|
} else if (value == "9231") {
|
|
return MY92XX_MODEL_MY9231;
|
|
}
|
|
}
|
|
|
|
return Light::build::my92xxModel();
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace settings
|
|
|
|
#endif
|
|
|
|
bool _setValue(unsigned char, unsigned int) __attribute__((warn_unused_result));
|
|
bool _setValue(unsigned char id, unsigned int value) {
|
|
if (_light_channels[id].value != value) {
|
|
_light_channels[id].value = value;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void _setInputValue(unsigned char id, long value) {
|
|
_light_channels[id].inputValue = std::clamp(value, Light::ValueMin, Light::ValueMax);
|
|
}
|
|
|
|
void _setRGBInputValue(long red, long green, long blue) {
|
|
_setInputValue(0, red);
|
|
_setInputValue(1, green);
|
|
_setInputValue(2, blue);
|
|
}
|
|
|
|
bool _lightApplyBrightnessChannels(size_t channels) {
|
|
auto scale = static_cast<float>(_light_brightness) / static_cast<float>(Light::BrightnessMax);
|
|
|
|
channels = std::min(channels, lightChannels());
|
|
OnceFlag changed;
|
|
|
|
for (unsigned char channel = 0; channel < lightChannels(); ++channel) {
|
|
if (channel >= channels) {
|
|
scale = 1.0f;
|
|
}
|
|
changed = _setValue(channel, _light_channels[channel].inputValue * scale);
|
|
}
|
|
|
|
return changed.get();
|
|
}
|
|
|
|
bool _lightApplyBrightnessAll() {
|
|
return _lightApplyBrightnessChannels(lightChannels());
|
|
}
|
|
|
|
bool _lightApplyBrightnessRgb() {
|
|
return _lightApplyBrightnessChannels(3);
|
|
}
|
|
|
|
// Map from normal 153...500 to 0...347, so we get a value 0...1
|
|
|
|
double _lightMiredFactor() {
|
|
auto cold = static_cast<double>(_light_cold_mireds);
|
|
auto warm = static_cast<double>(_light_warm_mireds);
|
|
auto mireds = static_cast<double>(_light_mireds);
|
|
|
|
if (cold < warm) {
|
|
return (mireds - cold) / (warm - cold);
|
|
}
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
bool _lightApplyBrightnessColor() {
|
|
OnceFlag changed;
|
|
|
|
double brightness = static_cast<double>(_light_brightness) / static_cast<double>(Light::BrightnessMax);
|
|
|
|
// Substract the common part from RGB channels and add it to white channel. So [250,150,50] -> [200,100,0,50]
|
|
unsigned char white = std::min({_light_channels[0].inputValue, _light_channels[1].inputValue, _light_channels[2].inputValue});
|
|
for (unsigned int i=0; i < 3; i++) {
|
|
changed = _setValue(i, _light_channels[i].inputValue - white);
|
|
}
|
|
|
|
// Split the White Value across 2 White LED Strips.
|
|
if (_light_use_cct) {
|
|
const double factor = _lightMiredFactor();
|
|
|
|
_light_channels[3].inputValue = 0;
|
|
changed = _setValue(3, lround((1.0 - factor) * white));
|
|
|
|
_light_channels[4].inputValue = 0;
|
|
changed = _setValue(4, lround(factor * white));
|
|
} else {
|
|
_light_channels[3].inputValue = 0;
|
|
changed = _setValue(3, white);
|
|
}
|
|
|
|
// Scale up to equal input values. So [250,150,50] -> [200,100,0,50] -> [250, 125, 0, 63]
|
|
unsigned char max_in = std::max({_light_channels[0].inputValue, _light_channels[1].inputValue, _light_channels[2].inputValue});
|
|
unsigned char max_out = std::max({_light_channels[0].value, _light_channels[1].value, _light_channels[2].value, _light_channels[3].value});
|
|
unsigned char channelSize = _light_use_cct ? 5 : 4;
|
|
|
|
if (_light_use_cct) {
|
|
max_out = std::max(max_out, _light_channels[4].value);
|
|
}
|
|
|
|
double factor = (max_out > 0) ? (double) (max_in / max_out) : 0;
|
|
for (unsigned char i=0; i < channelSize; i++) {
|
|
changed = _setValue(i, lround((double) _light_channels[i].value * factor * brightness));
|
|
}
|
|
|
|
// Scale white channel to match brightness
|
|
for (unsigned char i=3; i < channelSize; i++) {
|
|
changed = _setValue(i, constrain(static_cast<unsigned int>(_light_channels[i].value * LIGHT_WHITE_FACTOR), Light::BrightnessMin, Light::BrightnessMax));
|
|
}
|
|
|
|
// For the rest of channels, don't apply brightness, it is already in the inputValue
|
|
// i should be 4 when RGBW and 5 when RGBWW
|
|
for (unsigned char i=channelSize; i < _light_channels.size(); i++) {
|
|
changed = _setValue(i, _light_channels[i].inputValue);
|
|
}
|
|
|
|
return changed.get();
|
|
}
|
|
|
|
char _lightTag(size_t channels, unsigned char index) {
|
|
constexpr size_t Columns { 5ul };
|
|
constexpr size_t Rows { 5ul };
|
|
|
|
auto row = channels - 1ul;
|
|
if (row < Rows) {
|
|
constexpr char tags[Rows][Columns] = {
|
|
{'W', 0, 0, 0, 0},
|
|
{'W', 'C', 0, 0, 0},
|
|
{'R', 'G', 'B', 0, 0},
|
|
{'R', 'G', 'B', 'W', 0},
|
|
{'R', 'G', 'B', 'W', 'C'},
|
|
};
|
|
|
|
return tags[row][index];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
char _lightTag(unsigned char index) {
|
|
return _lightTag(_light_channels.size(), index);
|
|
}
|
|
|
|
// UI hint about channel distribution
|
|
const char* _lightDesc(size_t channels, unsigned char index) {
|
|
const __FlashStringHelper* ptr { F("UNKNOWN") };
|
|
switch (_lightTag(channels, index)) {
|
|
case 'W':
|
|
ptr = F("WARM WHITE");
|
|
break;
|
|
case 'C':
|
|
ptr = F("COLD WHITE");
|
|
break;
|
|
case 'R':
|
|
ptr = F("RED");
|
|
break;
|
|
case 'G':
|
|
ptr = F("GREEN");
|
|
break;
|
|
case 'B':
|
|
ptr = F("BLUE");
|
|
break;
|
|
}
|
|
|
|
return reinterpret_cast<const char*>(ptr);
|
|
}
|
|
|
|
const char* _lightDesc(unsigned char index) {
|
|
return _lightDesc(_light_channels.size(), index);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Input Values
|
|
// -----------------------------------------------------------------------------
|
|
|
|
void _lightFromInteger(unsigned long value, bool brightness) {
|
|
if (brightness) {
|
|
_setRGBInputValue((value >> 24) & 0xFF, (value >> 16) & 0xFF, (value >> 8) & 0xFF);
|
|
lightBrightness((value & 0xFF) * Light::BrightnessMax / 255);
|
|
} else {
|
|
_setRGBInputValue((value >> 16) & 0xFF, (value >> 8) & 0xFF, (value) & 0xFF);
|
|
}
|
|
}
|
|
|
|
void _lightFromRgbPayload(const char * rgb) {
|
|
// 9 char #........ , 11 char ...,...,...
|
|
if (!_light_has_color) return;
|
|
if (!rgb || (strlen(rgb) == 0)) return;
|
|
|
|
// HEX value is always prefixed, like CSS
|
|
// values are interpreted like RGB + optional brightness
|
|
if (rgb[0] == '#') {
|
|
_lightFromInteger(strtoul(rgb + 1, nullptr, 16), strlen(rgb + 1) > 7);
|
|
// With comma separated string, assume decimal values
|
|
} else {
|
|
const auto channels = _light_channels.size();
|
|
unsigned char count = 0;
|
|
|
|
char buf[16] = {0};
|
|
strncpy(buf, rgb, sizeof(buf) - 1);
|
|
char *tok = strtok(buf, ",");
|
|
while (tok != NULL) {
|
|
_setInputValue(count, atoi(tok));
|
|
if (++count == channels) break;
|
|
tok = strtok(NULL, ",");
|
|
}
|
|
|
|
// If less than 3 values received, set the rest to 0
|
|
if (count < 2) _setInputValue(1, 0);
|
|
if (count < 3) _setInputValue(2, 0);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// HSV string is expected to be "H,S,V", where:
|
|
// 0 <= H <= 360
|
|
// 0 <= S <= 100
|
|
// 0 <= V <= 100
|
|
|
|
void _lightFromHsvPayload(const char* hsv) {
|
|
if (!_light_has_color) return;
|
|
if (strlen(hsv) == 0) return;
|
|
|
|
char buf[16] = {0};
|
|
strncpy(buf, hsv, sizeof(buf) - 1);
|
|
|
|
unsigned char count = 0;
|
|
long values[3] = {0};
|
|
|
|
char * tok = strtok(buf, ",");
|
|
while ((count < 3) && (tok != nullptr)) {
|
|
values[count++] = atol(tok);
|
|
tok = strtok(nullptr, ",");
|
|
}
|
|
|
|
if (count != 3) {
|
|
return;
|
|
}
|
|
|
|
lightHsv({values[0], values[1], values[2]});
|
|
}
|
|
|
|
// Thanks to Sacha Telgenhof for sharing this code in his AiLight library
|
|
// https://github.com/stelgenhof/AiLight
|
|
// Color temperature is measured in mireds (kelvin = 1e6/mired)
|
|
long _toKelvin(const long mireds) {
|
|
return constrain(static_cast<long>(1000000L / mireds), _light_warm_kelvin, _light_cold_kelvin);
|
|
}
|
|
|
|
long _toMireds(const long kelvin) {
|
|
return constrain(static_cast<long>(lround(1000000L / kelvin)), _light_cold_mireds, _light_warm_mireds);
|
|
}
|
|
|
|
void _lightMireds(const long kelvin) {
|
|
_light_mireds = _toMireds(kelvin);
|
|
}
|
|
|
|
void _lightMiredsCCT(const long kelvin) {
|
|
_lightMireds(kelvin);
|
|
const auto factor = _lightMiredFactor();
|
|
|
|
auto cold = std::lround(factor * Light::ValueMax);
|
|
auto warm = std::lround((1.0 - factor) * Light::ValueMax);
|
|
|
|
_setInputValue(0, cold);
|
|
_setInputValue(1, warm);
|
|
}
|
|
|
|
// TODO: is there a sane way to deduce this back from RGB variant?
|
|
// TODO: should mireds require CCT mode, so we only deal with white value?
|
|
|
|
#if 0
|
|
|
|
long _lightCCTMireds() {
|
|
auto cold = static_cast<double>(_light_cold_mireds);
|
|
auto warm = static_cast<double>(_light_warm_mireds);
|
|
|
|
auto factor = (static_cast<double>(lightColdWhite()) / Light::ValueMax);
|
|
|
|
return cold + (factor * (warm - cold));
|
|
}
|
|
|
|
#endif
|
|
|
|
void _fromKelvin(long kelvin) {
|
|
|
|
if (!_light_has_color) {
|
|
if (_light_use_cct) {
|
|
_lightMiredsCCT(kelvin);
|
|
}
|
|
return;
|
|
}
|
|
|
|
_lightMireds(kelvin);
|
|
|
|
// adjusted by the brightness function
|
|
if (_light_use_cct) {
|
|
_setRGBInputValue(Light::ValueMax, Light::ValueMax, Light::ValueMax);
|
|
return;
|
|
}
|
|
|
|
// Calculate color values for the temperature
|
|
kelvin /= 100;
|
|
const unsigned int red = (kelvin <= 66)
|
|
? Light::ValueMax
|
|
: 329.698727446 * fs_pow((double) (kelvin - 60), -0.1332047592);
|
|
const unsigned int green = (kelvin <= 66)
|
|
? 99.4708025861 * fs_log(kelvin) - 161.1195681661
|
|
: 288.1221695283 * fs_pow((double) kelvin, -0.0755148492);
|
|
const unsigned int blue = (kelvin >= 66)
|
|
? Light::ValueMax
|
|
: ((kelvin <= 19)
|
|
? 0
|
|
: 138.5177312231 * fs_log(kelvin - 10) - 305.0447927307);
|
|
|
|
_setRGBInputValue(red, green, blue);
|
|
|
|
}
|
|
|
|
void _fromMireds(const long mireds) {
|
|
_fromKelvin(_toKelvin(mireds));
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Output Values
|
|
// -----------------------------------------------------------------------------
|
|
|
|
namespace Light {
|
|
|
|
unsigned long Rgb::asUlong() const {
|
|
return (_red << 16) | (_green << 8) | _blue;
|
|
}
|
|
|
|
} // namespace Light
|
|
|
|
Light::Rgb _lightToRgb(bool target) {
|
|
return {
|
|
(target ? _light_channels[0].target : _light_channels[0].inputValue),
|
|
(target ? _light_channels[1].target : _light_channels[1].inputValue),
|
|
(target ? _light_channels[2].target : _light_channels[2].inputValue)};
|
|
}
|
|
|
|
void _lightRgbHexPayload(Light::Rgb rgb, char* out, size_t size) {
|
|
snprintf_P(out, size, PSTR("#%06X"), rgb.asUlong());
|
|
}
|
|
|
|
void _lightRgbHexPayload(char* out, size_t size, bool target = false) {
|
|
_lightRgbHexPayload(_lightToRgb(target), out, size);
|
|
}
|
|
|
|
String _lightRgbHexPayload(bool target) {
|
|
char out[64] { 0 };
|
|
_lightRgbHexPayload(out, sizeof(out), target);
|
|
return out;
|
|
}
|
|
|
|
void _lightHsvPayload(Light::Hsv hsv, char* out, size_t len) {
|
|
snprintf(out, len, "%ld,%ld,%ld", hsv.hue(), hsv.saturation(), hsv.value());
|
|
}
|
|
|
|
void _lightHsvPayload(char* out, size_t len) {
|
|
_lightHsvPayload(lightHsv(), out, len);
|
|
}
|
|
|
|
String _lightHsvPayload() {
|
|
char out[64] { 0 };
|
|
_lightHsvPayload(out, sizeof(out));
|
|
return out;
|
|
}
|
|
|
|
void _lightRgbPayload(Light::Rgb rgb, char* out, size_t size) {
|
|
if (!_light_has_color) {
|
|
static char zeroes[] PROGMEM = "0,0,0";
|
|
if (!size || (size > sizeof(zeroes))) {
|
|
return;
|
|
}
|
|
|
|
memcpy_P(out, zeroes, sizeof(zeroes));
|
|
return;
|
|
}
|
|
|
|
snprintf_P(out, size, PSTR("%hhu,%hhu,%hhu"), rgb.red(), rgb.green(), rgb.blue());
|
|
}
|
|
|
|
void _lightRgbPayload(char* out, size_t size, bool target) {
|
|
_lightRgbPayload(_lightToRgb(target), out, size);
|
|
}
|
|
|
|
void _lightRgbPayload(char* out, size_t size) {
|
|
_lightRgbPayload(out, size, false);
|
|
}
|
|
|
|
String _lightRgbPayload(bool target = false) {
|
|
char out[32] { 0 };
|
|
_lightRgbPayload(out, sizeof(out), target);
|
|
return out;
|
|
}
|
|
|
|
void _lightFromGroupPayload(const char* payload) {
|
|
char buffer[16] = {0};
|
|
std::strncpy(buffer, payload, sizeof(buffer) - 1);
|
|
|
|
auto channels = lightChannels();
|
|
decltype(channels) channel = 0;
|
|
|
|
char* tok = std::strtok(buffer, ",");
|
|
while ((channel < channels) && (tok != nullptr)) {
|
|
char* endp { nullptr };
|
|
auto value = strtol(tok, &endp, 10);
|
|
if ((endp == tok) || (*endp != '\0') || (value >= Light::ValueMax)) {
|
|
return;
|
|
}
|
|
|
|
lightChannel(channel++, value);
|
|
tok = std::strtok(nullptr, ",");
|
|
}
|
|
}
|
|
|
|
String _lightGroupPayload(bool target) {
|
|
const auto channels = lightChannels();
|
|
|
|
String result;
|
|
result.reserve(4 * channels);
|
|
|
|
for (auto& channel : _light_channels) {
|
|
if (result.length()) result += ',';
|
|
result += String(target ? channel.target : channel.inputValue);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
int _lightAdjustValue(const int& value, const String& operation) {
|
|
if (!operation.length()) return value;
|
|
|
|
// if prefixed with a sign, treat expression as numerical operation
|
|
// otherwise, use as the new value
|
|
int updated = operation.toInt();
|
|
if (operation[0] == '+' || operation[0] == '-') {
|
|
updated = value + updated;
|
|
}
|
|
|
|
return updated;
|
|
}
|
|
|
|
void _lightAdjustBrightness(const char* payload) {
|
|
lightBrightness(_lightAdjustValue(lightBrightness(), payload));
|
|
}
|
|
|
|
void _lightAdjustBrightness(const String& payload) {
|
|
_lightAdjustBrightness(payload.c_str());
|
|
}
|
|
|
|
void _lightAdjustChannel(unsigned char id, const char* payload) {
|
|
lightChannel(id, _lightAdjustValue(lightChannel(id), payload));
|
|
}
|
|
|
|
void _lightAdjustChannel(unsigned char id, const String& payload) {
|
|
_lightAdjustChannel(id, payload.c_str());
|
|
}
|
|
|
|
void _lightAdjustKelvin(const char* payload) {
|
|
_fromKelvin(_lightAdjustValue(_toKelvin(_light_mireds), payload));
|
|
}
|
|
|
|
void _lightAdjustKelvin(const String& payload) {
|
|
_lightAdjustKelvin(payload.c_str());
|
|
}
|
|
|
|
void _lightAdjustMireds(const char* payload) {
|
|
_fromMireds(_lightAdjustValue(_light_mireds, payload));
|
|
}
|
|
|
|
void _lightAdjustMireds(const String& payload) {
|
|
_lightAdjustMireds(payload.c_str());
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// PROVIDER
|
|
// -----------------------------------------------------------------------------
|
|
|
|
namespace {
|
|
|
|
// Gamma Correction lookup table (8 bit, ~2.2)
|
|
// (TODO: could be constexpr, but the gamma table is still loaded into the RAM when marked as if it is a non-constexpr array)
|
|
uint8_t _lightGammaMap(uint8_t value) {
|
|
static uint8_t gamma[256] PROGMEM {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,
|
|
3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
|
|
6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11,
|
|
12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19,
|
|
19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28,
|
|
29, 30, 30, 31, 32, 33, 33, 34, 35, 35, 36, 37, 38, 39, 39, 40,
|
|
41, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54,
|
|
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71,
|
|
72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 89,
|
|
91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105, 106, 108, 109, 110,
|
|
112, 113, 115, 116, 118, 119, 121, 122, 123, 125, 126, 128, 130, 131, 133, 134,
|
|
136, 137, 139, 140, 142, 144, 145, 147, 149, 150, 152, 154, 155, 157, 159, 160,
|
|
162, 164, 166, 167, 169, 171, 173, 175, 176, 178, 180, 182, 184, 186, 187, 189,
|
|
191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221,
|
|
223, 225, 227, 229, 231, 233, 235, 238, 240, 242, 244, 246, 248, 251, 253, 255
|
|
};
|
|
static_assert(Light::ValueMax < (sizeof(gamma) / sizeof(gamma[0])), "Out-of-bounds array access");
|
|
|
|
return pgm_read_byte(&gamma[value]);
|
|
}
|
|
|
|
class LightTransitionHandler {
|
|
public:
|
|
using Channels = std::vector<channel_t>;
|
|
|
|
struct Transition {
|
|
float& value;
|
|
unsigned char target;
|
|
float step;
|
|
size_t count;
|
|
|
|
void debug() const {
|
|
DEBUG_MSG_P(PSTR("[LIGHT] Transition from %s to %u (step %s, %u times)\n"),
|
|
String(value, 2).c_str(), target, String(step, 2).c_str(), count);
|
|
}
|
|
};
|
|
|
|
explicit LightTransitionHandler(Channels& channels, bool state, LightTransition transition) :
|
|
_state(state),
|
|
_time(transition.time),
|
|
_step(transition.step)
|
|
{
|
|
OnceFlag delayed;
|
|
for (auto& channel : channels) {
|
|
delayed = prepare(channel, state);
|
|
}
|
|
|
|
// if nothing to do, ignore transition step & time and just schedule as soon as possible
|
|
if (!delayed) {
|
|
reset();
|
|
return;
|
|
}
|
|
|
|
DEBUG_MSG_P(PSTR("[LIGHT] Scheduled transition for %u (ms) every %u (ms)\n"), _time, _step);
|
|
}
|
|
|
|
bool prepare(channel_t& channel, bool state) {
|
|
bool target_state = state && channel.state;
|
|
|
|
channel.target = target_state ? channel.value : Light::ValueMin;
|
|
if (channel.gamma) {
|
|
channel.target = _lightGammaMap(channel.target);
|
|
}
|
|
|
|
if (channel.inverse) {
|
|
channel.target = Light::ValueMax - channel.target;
|
|
}
|
|
|
|
float diff = static_cast<float>(channel.target) - channel.current;
|
|
if (isImmediate(target_state, diff)) {
|
|
Transition transition { channel.current, channel.target, diff, 1};
|
|
_transitions.push_back(std::move(transition));
|
|
return false;
|
|
}
|
|
|
|
float step = (diff > 0.0) ? 1.0f : -1.0f;
|
|
float every = static_cast<double>(_time) / std::abs(diff);
|
|
if (every < _step) {
|
|
auto step_ref = static_cast<float>(_step);
|
|
step *= (step_ref / every);
|
|
every = step_ref;
|
|
}
|
|
size_t count = _time / every;
|
|
|
|
Transition transition { channel.current, channel.target, step, count };
|
|
transition.debug();
|
|
|
|
_transitions.push_back(std::move(transition));
|
|
|
|
return true;
|
|
}
|
|
|
|
void reset() {
|
|
_step = 10;
|
|
_time = 10;
|
|
}
|
|
|
|
template <typename StateFunc, typename ValueFunc, typename UpdateFunc>
|
|
bool run(StateFunc&& state, ValueFunc&& value, UpdateFunc&& update) {
|
|
bool next { false };
|
|
|
|
if (!_state_notified && _state) {
|
|
_state_notified = true;
|
|
state(_state);
|
|
}
|
|
|
|
for (unsigned char index = 0; index < _transitions.size(); ++index) {
|
|
auto& transition = _transitions[index];
|
|
if (!transition.count) {
|
|
continue;
|
|
}
|
|
|
|
if (--transition.count) {
|
|
transition.value += transition.step;
|
|
next = true;
|
|
} else {
|
|
transition.value = transition.target;
|
|
}
|
|
|
|
value(index, transition.value);
|
|
}
|
|
|
|
if (!_state_notified && !next && !_state) {
|
|
_state_notified = true;
|
|
state(_state);
|
|
}
|
|
|
|
update();
|
|
|
|
return next;
|
|
}
|
|
|
|
bool state() const {
|
|
return _state;
|
|
}
|
|
|
|
unsigned long step() const {
|
|
return _step;
|
|
}
|
|
|
|
unsigned long time() const {
|
|
return _time;
|
|
}
|
|
|
|
private:
|
|
bool isImmediate(bool state, float diff) {
|
|
return (!_time || (_step >= _time) || (std::abs(diff) <= std::numeric_limits<float>::epsilon()));
|
|
}
|
|
|
|
std::vector<Transition> _transitions;
|
|
bool _state_notified { false };
|
|
|
|
bool _state;
|
|
unsigned long _time;
|
|
unsigned long _step;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
struct LightUpdateHandler {
|
|
LightUpdateHandler() = default;
|
|
|
|
explicit operator bool() {
|
|
return _run;
|
|
}
|
|
|
|
void lock() {
|
|
_lock = true;
|
|
}
|
|
|
|
void unlock() {
|
|
_lock = false;
|
|
}
|
|
|
|
void reset() {
|
|
_lock = false;
|
|
_run = false;
|
|
}
|
|
|
|
void set(bool save, LightTransition transition, int report) {
|
|
if (_lock) {
|
|
panic();
|
|
}
|
|
|
|
_run = true;
|
|
|
|
_save = save;
|
|
_transition = transition;
|
|
_report = report;
|
|
}
|
|
|
|
template <typename T>
|
|
void run(T&& callback) {
|
|
if (!_run) {
|
|
panic();
|
|
}
|
|
|
|
lock();
|
|
callback(_save, _transition, _report);
|
|
reset();
|
|
}
|
|
|
|
private:
|
|
bool _save;
|
|
LightTransition _transition;
|
|
int _report;
|
|
|
|
bool _run { false };
|
|
bool _lock { false };
|
|
};
|
|
|
|
LightUpdateHandler _light_update;
|
|
bool _light_provider_update = false;
|
|
|
|
std::unique_ptr<LightTransitionHandler> _light_transition;
|
|
|
|
Ticker _light_transition_ticker;
|
|
bool _light_use_transitions = false;
|
|
unsigned long _light_transition_time = LIGHT_TRANSITION_TIME;
|
|
unsigned long _light_transition_step = LIGHT_TRANSITION_STEP;
|
|
|
|
void _lightProviderSchedule(unsigned long ms);
|
|
|
|
#if (LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER) || (LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX)
|
|
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
|
|
unsigned char _light_my92xx_channel_map[Light::ChannelsMax] = {};
|
|
#endif
|
|
|
|
// there is no PWM stop, but my92xx has some internal state control that will send 0 as values when OFF
|
|
void _lightProviderHandleState(bool state [[gnu::unused]]) {
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
|
|
_my92xx->setState(state);
|
|
#endif
|
|
}
|
|
|
|
// See cores/esp8266/WMath.cpp::map
|
|
inline bool _lightPwmMap(long value, long& result) {
|
|
constexpr auto divisor = (Light::ValueMax - Light::ValueMin);
|
|
if (divisor != 0l){
|
|
result = (value - Light::ValueMin) * (Light::PwmLimit - Light::PwmMin) / divisor + Light::PwmMin;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// both require original values to be scaled into a PWM frequency
|
|
void _lightProviderHandleValue(unsigned char channel, float value) {
|
|
long pwm;
|
|
if (!_lightPwmMap(std::lround(value), pwm)) {
|
|
return;
|
|
}
|
|
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
|
|
pwm_set_duty(pwm, channel);
|
|
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
|
|
_my92xx->setChannel(_light_my92xx_channel_map[channel], pwm);
|
|
#endif
|
|
}
|
|
|
|
void _lightProviderHandleUpdate() {
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
|
|
pwm_start();
|
|
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
|
|
_my92xx->update();
|
|
#endif
|
|
}
|
|
|
|
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
|
|
|
|
void _lightProviderHandleState(bool state) {
|
|
_light_provider->state(state);
|
|
}
|
|
|
|
void _lightProviderHandleValue(unsigned char channel, float value) {
|
|
_light_provider->channel(channel, value);
|
|
}
|
|
|
|
void _lightProviderHandleUpdate() {
|
|
_light_provider->update();
|
|
}
|
|
|
|
#endif
|
|
|
|
void _lightProviderUpdate() {
|
|
if (!_light_provider_update) {
|
|
return;
|
|
}
|
|
|
|
if (!_light_transition) {
|
|
_light_provider_update = false;
|
|
return;
|
|
}
|
|
|
|
auto next = _light_transition->run(
|
|
_lightProviderHandleState,
|
|
_lightProviderHandleValue,
|
|
_lightProviderHandleUpdate);
|
|
|
|
if (next) {
|
|
_lightProviderSchedule(_light_transition->step());
|
|
} else {
|
|
_light_transition.reset(nullptr);
|
|
}
|
|
|
|
_light_provider_update = false;
|
|
}
|
|
|
|
void _lightProviderSchedule(unsigned long ms) {
|
|
_light_transition_ticker.once_ms(ms, []() {
|
|
_light_provider_update = true;
|
|
});
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// PERSISTANCE
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// Layout should match the old union:
|
|
//
|
|
// union light_rtcmem_t {
|
|
// struct {
|
|
// uint8_t channels[Light::ChannelsMax];
|
|
// uint8_t brightness;
|
|
// uint16_t mired;
|
|
// } __attribute__((packed)) packed;
|
|
// uint64_t value;
|
|
// };
|
|
|
|
struct LightRtcmem {
|
|
// 1 2 3 4 5 6 7 8
|
|
// [ m m b c c c c c ]
|
|
// ^ ^ ^ ^ ^ channels
|
|
// ^ ~ ~ ~ ~ ~ brightness
|
|
// ^ ^ ~ ~ ~ ~ ~ ~ mireds
|
|
//
|
|
// As seen in the rtcmem dump:
|
|
// `ddccbbaa 112233ee`
|
|
// Where:
|
|
// - 1122 are mireds
|
|
// - 33 is brightness
|
|
// - aabbccddee are channels (from 0 to 5 respectively)
|
|
explicit LightRtcmem(uint64_t value) {
|
|
_mireds = (value >> (8ull * 6ull)) & 0xffffull;
|
|
_brightness = (value >> (8ull * 5ull)) & 0xffull;
|
|
|
|
_channels[4] = static_cast<uint8_t>((value >> (8ull * 4ull)));
|
|
_channels[3] = static_cast<uint8_t>((value >> (8ull * 3ull)));
|
|
_channels[2] = static_cast<uint8_t>((value >> (8ull * 2ull)));
|
|
_channels[1] = static_cast<uint8_t>((value >> (8ull * 1ull)));
|
|
_channels[0] = static_cast<uint8_t>((value & 0xffull));
|
|
}
|
|
|
|
using Channels = std::array<uint8_t, Light::ChannelsMax>;
|
|
static_assert(Light::ChannelsMax == 5, "");
|
|
|
|
LightRtcmem() {
|
|
_channels.fill(Light::ValueMin);
|
|
}
|
|
|
|
LightRtcmem(const Channels& channels, long brightness, long mireds) :
|
|
_channels(channels),
|
|
_brightness(brightness),
|
|
_mireds(mireds)
|
|
{}
|
|
|
|
uint64_t serialize() const {
|
|
return ((static_cast<uint64_t>(_mireds) & 0xffffull) << (8ull * 6ull))
|
|
| ((static_cast<uint64_t>(_brightness) & 0xffull) << (8ull * 5ull))
|
|
| (static_cast<uint64_t>(_channels[4]) << (8ull * 4ull))
|
|
| (static_cast<uint64_t>(_channels[3]) << (8ull * 3ull))
|
|
| (static_cast<uint64_t>(_channels[2]) << (8ull * 2ull))
|
|
| (static_cast<uint64_t>(_channels[1]) << (8ull * 1ull))
|
|
| (static_cast<uint64_t>(_channels[0]));
|
|
}
|
|
|
|
static Channels defaultChannels() {
|
|
Channels out;
|
|
out.fill(Light::ValueMin);
|
|
return out;
|
|
}
|
|
|
|
const Channels& channels() const {
|
|
return _channels;
|
|
}
|
|
|
|
long brightness() const {
|
|
return _brightness;
|
|
}
|
|
|
|
long mireds() const {
|
|
return _mireds;
|
|
}
|
|
|
|
private:
|
|
Channels _channels;
|
|
long _brightness { Light::BrightnessMax };
|
|
long _mireds { Light::MiredsDefault };
|
|
};
|
|
|
|
bool lightSave() {
|
|
return _light_save;
|
|
}
|
|
|
|
void lightSave(bool save) {
|
|
_light_save = save;
|
|
}
|
|
|
|
void _lightSaveRtcmem() {
|
|
auto channels = LightRtcmem::defaultChannels();
|
|
for (unsigned char channel = 0; channel < lightChannels(); ++channel) {
|
|
channels[channel] = _light_channels[channel].inputValue;
|
|
}
|
|
|
|
LightRtcmem light(channels, _light_brightness, _light_mireds);
|
|
Rtcmem->light = light.serialize();
|
|
}
|
|
|
|
void _lightRestoreRtcmem() {
|
|
uint64_t value = Rtcmem->light;
|
|
LightRtcmem light(value);
|
|
|
|
auto& channels = light.channels();
|
|
for (unsigned char channel = 0; channel < lightChannels(); ++channel) {
|
|
_light_channels[channel].inputValue = channels[channel];
|
|
}
|
|
|
|
_light_mireds = light.mireds(); // channels are already set
|
|
lightBrightness(light.brightness());
|
|
}
|
|
|
|
void _lightSaveSettings() {
|
|
if (!_light_save) {
|
|
return;
|
|
}
|
|
|
|
for (unsigned char channel = 0; channel < lightChannels(); ++channel) {
|
|
setSetting({"ch", channel}, _light_channels[channel].inputValue);
|
|
}
|
|
|
|
setSetting("brightness", _light_brightness);
|
|
setSetting("mireds", _light_mireds);
|
|
|
|
saveSettings();
|
|
}
|
|
|
|
void _lightRestoreSettings() {
|
|
for (unsigned char channel = 0; channel < lightChannels(); ++channel) {
|
|
auto value = getSetting({"ch", channel}, (channel == 0) ? Light::ValueMax : Light::ValueMin);
|
|
_light_channels[channel].inputValue = value;
|
|
}
|
|
|
|
_light_mireds = getSetting("mireds", _light_mireds);
|
|
lightBrightness(getSetting("brightness", Light::BrightnessMax));
|
|
}
|
|
|
|
bool _lightParsePayload(const char* payload) {
|
|
switch (rpcParsePayload(payload)) {
|
|
case PayloadStatus::On:
|
|
lightState(true);
|
|
break;
|
|
case PayloadStatus::Off:
|
|
lightState(false);
|
|
break;
|
|
case PayloadStatus::Toggle:
|
|
lightState(!_light_state);
|
|
break;
|
|
case PayloadStatus::Unknown:
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool _lightParsePayload(const String& payload) {
|
|
return _lightParsePayload(payload.c_str());
|
|
}
|
|
|
|
bool _lightTryParseChannel(const char* p, unsigned char& id) {
|
|
char* endp { nullptr };
|
|
const unsigned long result { strtoul(p, &endp, 10) };
|
|
if ((endp == p) || (*endp != '\0') || (result >= lightChannels())) {
|
|
DEBUG_MSG_P(PSTR("[LIGHT] Invalid channelID (%s)\n"), p);
|
|
return false;
|
|
}
|
|
|
|
id = result;
|
|
return true;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// MQTT
|
|
// -----------------------------------------------------------------------------
|
|
|
|
int _lightMqttReportMask() {
|
|
return Light::DefaultReport & ~(static_cast<int>(mqttForward() ? Light::Report::None : Light::Report::Mqtt));
|
|
}
|
|
|
|
int _lightMqttReportGroupMask() {
|
|
return _lightMqttReportMask() & ~static_cast<int>(Light::Report::MqttGroup);
|
|
}
|
|
|
|
void _lightUpdateFromMqtt(LightTransition transition) {
|
|
lightUpdate(_light_save, transition, _lightMqttReportMask());
|
|
}
|
|
|
|
void _lightUpdateFromMqtt() {
|
|
_lightUpdateFromMqtt(lightTransition());
|
|
}
|
|
|
|
void _lightUpdateFromMqttGroup() {
|
|
lightUpdate(_light_save, lightTransition(), _lightMqttReportGroupMask());
|
|
}
|
|
|
|
#if MQTT_SUPPORT
|
|
|
|
// TODO: implement per-module heartbeat mask? e.g. to exclude unwanted topics based on preference, not settings
|
|
|
|
bool _lightMqttHeartbeat(heartbeat::Mask mask) {
|
|
if (mask & heartbeat::Report::Light)
|
|
lightMQTT();
|
|
|
|
return mqttConnected();
|
|
}
|
|
|
|
void _lightMqttCallback(unsigned int type, const char * topic, const char * payload) {
|
|
|
|
String mqtt_group_color = getSetting("mqttGroupColor");
|
|
|
|
if (type == MQTT_CONNECT_EVENT) {
|
|
|
|
mqttSubscribe(MQTT_TOPIC_BRIGHTNESS);
|
|
|
|
if (_light_has_color) {
|
|
mqttSubscribe(MQTT_TOPIC_COLOR_RGB);
|
|
mqttSubscribe(MQTT_TOPIC_COLOR_HEX);
|
|
mqttSubscribe(MQTT_TOPIC_COLOR_HSV);
|
|
}
|
|
|
|
if (_light_has_color || _light_use_cct) {
|
|
mqttSubscribe(MQTT_TOPIC_MIRED);
|
|
mqttSubscribe(MQTT_TOPIC_KELVIN);
|
|
}
|
|
|
|
// Transition config (everything sent after this will use this new value)
|
|
mqttSubscribe(MQTT_TOPIC_TRANSITION);
|
|
|
|
// Group color
|
|
if (mqtt_group_color.length() > 0) mqttSubscribeRaw(mqtt_group_color.c_str());
|
|
|
|
// Channels
|
|
char buffer[strlen(MQTT_TOPIC_CHANNEL) + 3];
|
|
snprintf_P(buffer, sizeof(buffer), PSTR("%s/+"), MQTT_TOPIC_CHANNEL);
|
|
mqttSubscribe(buffer);
|
|
|
|
// Global lights control
|
|
if (!_light_has_controls) {
|
|
mqttSubscribe(MQTT_TOPIC_LIGHT);
|
|
}
|
|
}
|
|
|
|
if (type == MQTT_MESSAGE_EVENT) {
|
|
// Group color
|
|
if ((mqtt_group_color.length() > 0) && (mqtt_group_color.equals(topic))) {
|
|
_lightFromGroupPayload(payload);
|
|
_lightUpdateFromMqttGroup();
|
|
return;
|
|
}
|
|
|
|
// Match topic
|
|
String t = mqttMagnitude((char *) topic);
|
|
|
|
// Color temperature in mireds
|
|
if (t.equals(MQTT_TOPIC_MIRED)) {
|
|
_lightAdjustMireds(payload);
|
|
_lightUpdateFromMqtt();
|
|
return;
|
|
}
|
|
|
|
// Color temperature in kelvins
|
|
if (t.equals(MQTT_TOPIC_KELVIN)) {
|
|
_lightAdjustKelvin(payload);
|
|
_lightUpdateFromMqtt();
|
|
return;
|
|
}
|
|
|
|
// Color
|
|
if (t.equals(MQTT_TOPIC_COLOR_RGB) || t.equals(MQTT_TOPIC_COLOR_HEX)) {
|
|
_lightFromRgbPayload(payload);
|
|
_lightUpdateFromMqtt();
|
|
return;
|
|
}
|
|
|
|
if (t.equals(MQTT_TOPIC_COLOR_HSV)) {
|
|
_lightFromHsvPayload(payload);
|
|
_lightUpdateFromMqtt();
|
|
return;
|
|
}
|
|
|
|
// Transition setting
|
|
if (t.equals(MQTT_TOPIC_TRANSITION)) {
|
|
lightTransition(strtoul(payload, nullptr, 10), _light_transition_step);
|
|
return;
|
|
}
|
|
|
|
// Brightness
|
|
if (t.equals(MQTT_TOPIC_BRIGHTNESS)) {
|
|
_lightAdjustBrightness(payload);
|
|
_lightUpdateFromMqtt();
|
|
return;
|
|
}
|
|
|
|
// Channel
|
|
if (t.startsWith(MQTT_TOPIC_CHANNEL)) {
|
|
unsigned char id;
|
|
if (!_lightTryParseChannel(t.c_str() + strlen(MQTT_TOPIC_CHANNEL) + 1, id)) {
|
|
return;
|
|
}
|
|
|
|
_lightAdjustChannel(id, payload);
|
|
_lightUpdateFromMqtt();
|
|
return;
|
|
}
|
|
|
|
// Global
|
|
if (t.equals(MQTT_TOPIC_LIGHT)) {
|
|
_lightParsePayload(payload);
|
|
_lightUpdateFromMqtt();
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void _lightMqttSetup() {
|
|
mqttHeartbeat(_lightMqttHeartbeat);
|
|
mqttRegister(_lightMqttCallback);
|
|
}
|
|
|
|
void lightMQTT() {
|
|
char buffer[20];
|
|
|
|
if (_light_has_color) {
|
|
_lightRgbHexPayload(buffer, sizeof(buffer), true);
|
|
mqttSend(MQTT_TOPIC_COLOR_HEX, buffer);
|
|
|
|
_lightRgbPayload(buffer, sizeof(buffer), true);
|
|
mqttSend(MQTT_TOPIC_COLOR_RGB, buffer);
|
|
|
|
_lightHsvPayload(buffer, sizeof(buffer));
|
|
mqttSend(MQTT_TOPIC_COLOR_HSV, buffer);
|
|
}
|
|
|
|
if (_light_has_color || _light_use_cct) {
|
|
snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_mireds);
|
|
mqttSend(MQTT_TOPIC_MIRED, buffer);
|
|
}
|
|
|
|
for (unsigned int i=0; i < _light_channels.size(); i++) {
|
|
itoa(_light_channels[i].target, buffer, 10);
|
|
mqttSend(MQTT_TOPIC_CHANNEL, i, buffer);
|
|
}
|
|
|
|
snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_brightness);
|
|
mqttSend(MQTT_TOPIC_BRIGHTNESS, buffer);
|
|
|
|
if (!_light_has_controls) {
|
|
snprintf_P(buffer, sizeof(buffer), "%c", _light_state ? '1' : '0');
|
|
mqttSend(MQTT_TOPIC_LIGHT, buffer);
|
|
}
|
|
}
|
|
|
|
void lightMQTTGroup() {
|
|
const String mqtt_group_color = getSetting("mqttGroupColor");
|
|
if (mqtt_group_color.length()) {
|
|
mqttSendRaw(mqtt_group_color.c_str(), _lightGroupPayload(false).c_str());
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Broker
|
|
// -----------------------------------------------------------------------------
|
|
|
|
#if BROKER_SUPPORT
|
|
|
|
void lightBroker() {
|
|
for (unsigned int id = 0; id < _light_channels.size(); ++id) {
|
|
StatusBroker::Publish(MQTT_TOPIC_CHANNEL, id, _light_channels[id].value);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// API
|
|
// -----------------------------------------------------------------------------
|
|
|
|
#if API_SUPPORT
|
|
|
|
template <typename T>
|
|
bool _lightApiTryHandle(ApiRequest& request, T&& callback) {
|
|
auto id_param = request.wildcard(0);
|
|
unsigned char id;
|
|
if (!_lightTryParseChannel(id_param.c_str(), id)) {
|
|
return false;
|
|
}
|
|
|
|
return callback(id);
|
|
}
|
|
|
|
bool _lightApiRgbSetter(ApiRequest& request) {
|
|
lightColor(request.param(F("value")), true);
|
|
lightUpdate();
|
|
return true;
|
|
}
|
|
|
|
void _lightApiSetup() {
|
|
|
|
if (_light_has_color) {
|
|
|
|
apiRegister(F(MQTT_TOPIC_COLOR_RGB),
|
|
[](ApiRequest& request) {
|
|
request.send(_lightRgbPayload(true));
|
|
return true;
|
|
},
|
|
_lightApiRgbSetter
|
|
);
|
|
|
|
apiRegister(F(MQTT_TOPIC_COLOR_HEX),
|
|
[](ApiRequest& request) {
|
|
request.send(_lightRgbHexPayload(true));
|
|
return true;
|
|
},
|
|
_lightApiRgbSetter
|
|
);
|
|
|
|
apiRegister(F(MQTT_TOPIC_COLOR_HSV),
|
|
[](ApiRequest& request) {
|
|
request.send(_lightHsvPayload());
|
|
return true;
|
|
},
|
|
[](ApiRequest& request) {
|
|
lightColor(request.param(F("value")), false);
|
|
lightUpdate();
|
|
return true;
|
|
}
|
|
);
|
|
|
|
apiRegister(F(MQTT_TOPIC_MIRED),
|
|
[](ApiRequest& request) {
|
|
request.send(String(_light_mireds));
|
|
return true;
|
|
},
|
|
[](ApiRequest& request) {
|
|
_lightAdjustMireds(request.param(F("value")));
|
|
lightUpdate();
|
|
return true;
|
|
}
|
|
);
|
|
|
|
apiRegister(F(MQTT_TOPIC_KELVIN),
|
|
[](ApiRequest& request) {
|
|
request.send(String(_toKelvin(_light_mireds)));
|
|
return true;
|
|
},
|
|
[](ApiRequest& request) {
|
|
_lightAdjustKelvin(request.param(F("value")));
|
|
lightUpdate();
|
|
return true;
|
|
}
|
|
);
|
|
|
|
}
|
|
|
|
apiRegister(F(MQTT_TOPIC_TRANSITION),
|
|
[](ApiRequest& request) {
|
|
request.send(String(lightTransitionTime()));
|
|
return true;
|
|
},
|
|
[](ApiRequest& request) {
|
|
auto value = request.param(F("value"));
|
|
lightTransition(strtoul(value.c_str(), nullptr, 10), _light_transition_step);
|
|
return true;
|
|
}
|
|
);
|
|
|
|
apiRegister(F(MQTT_TOPIC_BRIGHTNESS),
|
|
[](ApiRequest& request) {
|
|
request.send(String(static_cast<int>(_light_brightness)));
|
|
return true;
|
|
},
|
|
[](ApiRequest& request) {
|
|
_lightAdjustBrightness(request.param(F("value")));
|
|
lightUpdate();
|
|
return true;
|
|
}
|
|
);
|
|
|
|
apiRegister(F(MQTT_TOPIC_CHANNEL "/+"),
|
|
[](ApiRequest& request) {
|
|
return _lightApiTryHandle(request, [&](unsigned char id) {
|
|
request.send(String(static_cast<int>(_light_channels[id].target)));
|
|
return true;
|
|
});
|
|
},
|
|
[](ApiRequest& request) {
|
|
return _lightApiTryHandle(request, [&](unsigned char id) {
|
|
_lightAdjustChannel(id, request.param(F("value")));
|
|
lightUpdate();
|
|
return true;
|
|
});
|
|
}
|
|
);
|
|
|
|
if (!_light_has_controls) {
|
|
apiRegister(F(MQTT_TOPIC_LIGHT),
|
|
[](ApiRequest& request) {
|
|
request.send(lightState() ? "1" : "0");
|
|
return true;
|
|
},
|
|
[](ApiRequest& request) {
|
|
_lightParsePayload(request.param(F("value")));
|
|
lightUpdate();
|
|
return true;
|
|
}
|
|
);
|
|
}
|
|
}
|
|
|
|
#endif // API_SUPPORT
|
|
|
|
|
|
#if WEB_SUPPORT
|
|
|
|
bool _lightWebSocketOnKeyCheck(const char * key, JsonVariant& value) {
|
|
if (strncmp(key, "light", 5) == 0) return true;
|
|
if (strncmp(key, "use", 3) == 0) return true;
|
|
if (strncmp(key, "lt", 2) == 0) return true;
|
|
return false;
|
|
}
|
|
|
|
void _lightWebSocketStatus(JsonObject& root) {
|
|
if (_light_has_color) {
|
|
if (_light_use_rgb) {
|
|
root["rgb"] = lightRgbPayload();
|
|
} else {
|
|
root["hsv"] = lightHsvPayload();
|
|
}
|
|
}
|
|
if (_light_use_cct) {
|
|
JsonObject& mireds = root.createNestedObject("mireds");
|
|
mireds["value"] = _light_mireds;
|
|
mireds["cold"] = _light_cold_mireds;
|
|
mireds["warm"] = _light_warm_mireds;
|
|
root["useCCT"] = _light_use_cct;
|
|
}
|
|
JsonArray& channels = root.createNestedArray("channels");
|
|
for (unsigned char id=0; id < _light_channels.size(); id++) {
|
|
channels.add(lightChannel(id));
|
|
}
|
|
root["brightness"] = lightBrightness();
|
|
root["lightstate"] = lightState();
|
|
}
|
|
|
|
void _lightWebSocketOnVisible(JsonObject& root) {
|
|
root["colorVisible"] = 1;
|
|
}
|
|
|
|
void _lightWebSocketOnConnected(JsonObject& root) {
|
|
root["mqttGroupColor"] = getSetting("mqttGroupColor");
|
|
root["useColor"] = _light_has_color;
|
|
root["useWhite"] = _light_use_white;
|
|
root["useGamma"] = _light_use_gamma;
|
|
root["useTransitions"] = _light_use_transitions;
|
|
root["useRGB"] = _light_use_rgb;
|
|
root["ltSave"] = _light_save;
|
|
root["ltTime"] = _light_transition_time;
|
|
root["ltStep"] = _light_transition_step;
|
|
#if RELAY_SUPPORT
|
|
root["ltRelay"] = getSetting("ltRelay", 1 == LIGHT_RELAY_ENABLED);
|
|
#endif
|
|
}
|
|
|
|
void _lightWebSocketOnAction(uint32_t client_id, const char * action, JsonObject& data) {
|
|
|
|
if (_light_has_color) {
|
|
if (strcmp(action, "color") == 0) {
|
|
if (data.containsKey("rgb")) {
|
|
_lightFromRgbPayload(data["rgb"].as<const char*>());
|
|
lightUpdate();
|
|
}
|
|
if (data.containsKey("hsv")) {
|
|
_lightFromHsvPayload(data["hsv"].as<const char*>());
|
|
lightUpdate();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (strcmp(action, "mireds") == 0) {
|
|
_fromMireds(data["mireds"]);
|
|
lightUpdate();
|
|
}
|
|
|
|
if (strcmp(action, "channel") == 0) {
|
|
if (data.containsKey("id") && data.containsKey("value")) {
|
|
lightChannel(data["id"].as<unsigned char>(), data["value"].as<int>());
|
|
lightUpdate();
|
|
}
|
|
}
|
|
|
|
if (strcmp(action, "brightness") == 0) {
|
|
if (data.containsKey("value")) {
|
|
lightBrightness(data["value"].as<int>());
|
|
lightUpdate();
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#if TERMINAL_SUPPORT
|
|
|
|
void _lightInitCommands() {
|
|
|
|
terminalRegisterCommand(F("LIGHT"), [](const terminal::CommandContext& ctx) {
|
|
if (ctx.argc > 1) {
|
|
if (!_lightParsePayload(ctx.argv[1].c_str())) {
|
|
terminalError(ctx, F("Invalid payload"));
|
|
return;
|
|
}
|
|
lightUpdate();
|
|
}
|
|
|
|
ctx.output.printf("%s\n", _light_state ? "ON" : "OFF");
|
|
terminalOK(ctx);
|
|
});
|
|
|
|
terminalRegisterCommand(F("BRIGHTNESS"), [](const terminal::CommandContext& ctx) {
|
|
if (ctx.argc > 1) {
|
|
_lightAdjustBrightness(ctx.argv[1].c_str());
|
|
lightUpdate();
|
|
}
|
|
ctx.output.printf("%ld\n", lightBrightness());
|
|
terminalOK(ctx);
|
|
});
|
|
|
|
terminalRegisterCommand(F("CHANNEL"), [](const terminal::CommandContext& ctx) {
|
|
auto channels = lightChannels();
|
|
if (!channels) {
|
|
terminalError(ctx, F("No channels configured"));
|
|
return;
|
|
}
|
|
|
|
auto id = -1;
|
|
if (ctx.argc > 1) {
|
|
id = ctx.argv[1].toInt();
|
|
}
|
|
|
|
auto description = [&](unsigned char channel) {
|
|
ctx.output.printf("#%hhu (%s): %hhu\n", channel, _lightDesc(channels, channel), _light_channels[channel].inputValue);
|
|
};
|
|
|
|
if (id < 0 || id >= static_cast<decltype(id)>(channels)) {
|
|
for (unsigned char index = 0; index < channels; ++index) {
|
|
description(index);
|
|
}
|
|
terminalOK(ctx);
|
|
return;
|
|
}
|
|
|
|
if (ctx.argc > 2) {
|
|
_lightAdjustChannel(id, ctx.argv[2].c_str());
|
|
lightUpdate();
|
|
}
|
|
|
|
description(id);
|
|
terminalOK(ctx);
|
|
});
|
|
|
|
terminalRegisterCommand(F("RGB"), [](const terminal::CommandContext& ctx) {
|
|
if (ctx.argc > 1) {
|
|
_lightFromRgbPayload(ctx.argv[1].c_str());
|
|
lightUpdate();
|
|
}
|
|
ctx.output.println(lightRgbPayload());
|
|
terminalOK(ctx);
|
|
});
|
|
|
|
terminalRegisterCommand(F("HSV"), [](const terminal::CommandContext& ctx) {
|
|
if (ctx.argc > 1) {
|
|
_lightFromHsvPayload(ctx.argv[1].c_str());
|
|
lightUpdate();
|
|
}
|
|
ctx.output.println(lightHsvPayload());
|
|
terminalOK(ctx);
|
|
});
|
|
|
|
terminalRegisterCommand(F("KELVIN"), [](const terminal::CommandContext& ctx) {
|
|
if (ctx.argc > 1) {
|
|
_lightAdjustKelvin(ctx.argv[1].c_str());
|
|
lightUpdate();
|
|
}
|
|
ctx.output.printf("%ld\n", _toKelvin(_light_mireds));
|
|
terminalOK(ctx);
|
|
});
|
|
|
|
terminalRegisterCommand(F("MIRED"), [](const terminal::CommandContext& ctx) {
|
|
if (ctx.argc > 1) {
|
|
_lightAdjustMireds(ctx.argv[1]);
|
|
lightUpdate();
|
|
}
|
|
ctx.output.printf("%ld\n", _light_mireds);
|
|
terminalOK(ctx);
|
|
});
|
|
|
|
}
|
|
|
|
#endif // TERMINAL_SUPPORT
|
|
|
|
size_t lightChannels() {
|
|
return _light_channels.size();
|
|
}
|
|
|
|
bool lightHasColor() {
|
|
return _light_has_color;
|
|
}
|
|
|
|
bool lightUseCCT() {
|
|
return _light_use_cct;
|
|
}
|
|
|
|
bool lightUseRGB() {
|
|
return _light_use_rgb;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
Light::Rgb lightRgb() {
|
|
return {_light_mapping.red(), _light_mapping.green(), _light_mapping.blue()};
|
|
}
|
|
|
|
void lightRgb(Light::Rgb rgb) {
|
|
_setRGBInputValue(rgb.red(), rgb.green(), rgb.blue());
|
|
}
|
|
|
|
Light::Hsv _lightHsv(Light::Rgb rgb) {
|
|
auto r = static_cast<double>(rgb.red()) / Light::ValueMax;
|
|
auto g = static_cast<double>(rgb.green()) / Light::ValueMax;
|
|
auto b = static_cast<double>(rgb.blue()) / Light::ValueMax;
|
|
|
|
auto max = std::max({r, g, b});
|
|
auto min = std::min({r, g, b});
|
|
|
|
auto v = max;
|
|
|
|
if (min != max) {
|
|
auto s = (max - min) / max;
|
|
|
|
auto delta = max - min;
|
|
auto rc = (max - r) / delta;
|
|
auto gc = (max - g) / delta;
|
|
auto bc = (max - b) / delta;
|
|
|
|
double h { 0.0 };
|
|
if (r == max) {
|
|
h = bc - gc;
|
|
} else if (g == max) {
|
|
h = 2.0 + rc - bc;
|
|
} else {
|
|
h = 4.0 + gc - rc;
|
|
}
|
|
|
|
h = fs_fmod((h / 6.0), 1.0);
|
|
if (h < 0.0) {
|
|
h = 1.0 + h;
|
|
}
|
|
|
|
return Light::Hsv(
|
|
std::lround(h * 360.0),
|
|
std::lround(s * 100.0),
|
|
std::lround(v * 100.0));
|
|
}
|
|
|
|
return Light::Hsv(Light::Hsv::HueMin, Light::Hsv::SaturationMin, v);
|
|
|
|
}
|
|
|
|
Light::Hsv lightHsv() {
|
|
return _lightHsv(lightRgb());
|
|
}
|
|
|
|
// HSV to RGB transformation -----------------------------------------------
|
|
//
|
|
// INPUT: [0,100,57]
|
|
// IS: [145,0,0]
|
|
// SHOULD: [255,0,0]
|
|
|
|
void lightHsv(Light::Hsv hsv) {
|
|
double r { 0.0 };
|
|
double g { 0.0 };
|
|
double b { 0.0 };
|
|
|
|
auto v = static_cast<double>(hsv.value()) / 100.0;
|
|
long brightness { std::lround(v * static_cast<double>(Light::BrightnessMax)) };
|
|
|
|
if (hsv.saturation()) {
|
|
auto h = hsv.hue();
|
|
if (h < 0) {
|
|
h = 0;
|
|
} else if (h >= 360) {
|
|
h = 359;
|
|
}
|
|
|
|
auto s = static_cast<double>(hsv.saturation()) / 100.0;
|
|
|
|
auto c = v * s;
|
|
|
|
auto hmod2 = fs_fmod(static_cast<double>(h) / 60.0, 2.0);
|
|
auto x = c * (1.0 - std::abs(hmod2 - 1.0));
|
|
|
|
auto m = v - c;
|
|
|
|
if ((0 <= h) && (h < 60)) {
|
|
r = c;
|
|
g = x;
|
|
} else if ((60 <= h) && (h < 120)) {
|
|
r = x;
|
|
g = c;
|
|
} else if ((120 <= h) && (h < 180)) {
|
|
g = c;
|
|
b = x;
|
|
} else if ((180 <= h) && (h < 240)) {
|
|
g = x;
|
|
b = c;
|
|
} else if ((240 <= h) && (h < 300)) {
|
|
r = x;
|
|
b = c;
|
|
} else if ((300 <= h) && (h < 360)) {
|
|
r = c;
|
|
b = x;
|
|
}
|
|
|
|
r = (r + m) * 255.0;
|
|
g = (g + m) * 255.0;
|
|
b = (b + m) * 255.0;
|
|
} else {
|
|
r = brightness;
|
|
g = brightness;
|
|
b = brightness;
|
|
}
|
|
|
|
lightBrightness(brightness);
|
|
_setRGBInputValue(r, g, b);
|
|
}
|
|
|
|
void lightHs(long hue, long saturation) {
|
|
lightHsv({hue, saturation, Light::Hsv::ValueMax});
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
void lightSetReportListener(LightReportListener func) {
|
|
_light_report = func;
|
|
}
|
|
|
|
void _lightReport(int report) {
|
|
#if MQTT_SUPPORT
|
|
if (report & Light::Report::Mqtt) {
|
|
lightMQTT();
|
|
}
|
|
|
|
if (report & Light::Report::MqttGroup) {
|
|
lightMQTTGroup();
|
|
}
|
|
#endif
|
|
|
|
#if WEB_SUPPORT
|
|
if (report & Light::Report::Web) {
|
|
wsPost(_lightWebSocketStatus);
|
|
}
|
|
#endif
|
|
|
|
#if BROKER_SUPPORT
|
|
if (report & Light::Report::Broker) {
|
|
lightBroker();
|
|
}
|
|
#endif
|
|
|
|
if (_light_report) {
|
|
_light_report();
|
|
}
|
|
}
|
|
|
|
void _lightReport(Light::Report report) {
|
|
_lightReport(static_cast<int>(report));
|
|
}
|
|
|
|
// Called in the loop() when we received lightUpdate(...) values
|
|
|
|
void _lightUpdate() {
|
|
if (!_light_update) {
|
|
return;
|
|
}
|
|
|
|
auto changed = _light_brightness_func();
|
|
if (!_light_state_changed && !changed) {
|
|
_light_update.reset();
|
|
return;
|
|
}
|
|
|
|
_light_state_changed = false;
|
|
|
|
_light_update.run([](bool save, LightTransition transition, int report) {
|
|
// Channel output values will be set by the handler class and the specified provider
|
|
// We either set the values immediately or schedule an ongoing transition
|
|
_light_transition = std::make_unique<LightTransitionHandler>(_light_channels, _light_state, transition);
|
|
_lightProviderSchedule(_light_transition->step());
|
|
|
|
// Send current state to all available 'report' targets
|
|
// (make sure to delay the report, in case lightUpdate is called repeatedly)
|
|
_light_report_ticker.once_ms(_light_report_delay, [report]() {
|
|
_lightReport(report);
|
|
});
|
|
|
|
// Always save to RTCMEM, optionally preserve the state in the settings storage
|
|
_lightSaveRtcmem();
|
|
if (save) {
|
|
_light_save_ticker.once_ms(_light_save_delay, _lightSaveSettings);
|
|
}
|
|
});
|
|
}
|
|
|
|
void lightUpdate(bool save, LightTransition transition, int report) {
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
|
|
if (!_light_provider) {
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (!lightChannels()) {
|
|
return;
|
|
}
|
|
|
|
_light_update.set(save, transition, report);
|
|
}
|
|
|
|
void lightUpdate(bool save, LightTransition transition, Light::Report report) {
|
|
lightUpdate(save, transition, static_cast<int>(report));
|
|
}
|
|
|
|
void lightUpdate(LightTransition transition) {
|
|
lightUpdate(_light_save, transition, Light::DefaultReport);
|
|
}
|
|
|
|
void lightUpdate(bool save) {
|
|
lightUpdate(save, lightTransition(), Light::DefaultReport);
|
|
}
|
|
|
|
void lightUpdate() {
|
|
lightUpdate(lightTransition());
|
|
}
|
|
|
|
void lightState(unsigned char id, bool state) {
|
|
if (id >= _light_channels.size()) return;
|
|
if (_light_channels[id].state != state) {
|
|
_light_channels[id].state = state;
|
|
_light_state_changed = true;
|
|
}
|
|
}
|
|
|
|
bool lightState(unsigned char id) {
|
|
if (id >= _light_channels.size()) return false;
|
|
return _light_channels[id].state;
|
|
}
|
|
|
|
void lightState(bool state) {
|
|
if (_light_state != state) {
|
|
_light_state = state;
|
|
if (_light_state_listener) {
|
|
_light_state_listener(state);
|
|
}
|
|
_light_state_changed = true;
|
|
}
|
|
}
|
|
|
|
bool lightState() {
|
|
return _light_state;
|
|
}
|
|
|
|
void lightColor(const char* color, bool rgb) {
|
|
DEBUG_MSG_P(PSTR("[LIGHT] %s: %s\n"), rgb ? "RGB" : "HSV", color);
|
|
if (rgb) {
|
|
_lightFromRgbPayload(color);
|
|
} else {
|
|
_lightFromHsvPayload(color);
|
|
}
|
|
}
|
|
|
|
void lightColor(const String& color, bool rgb) {
|
|
lightColor(color.c_str(), rgb);
|
|
}
|
|
|
|
void lightColor(const char* color) {
|
|
lightColor(color, true);
|
|
}
|
|
|
|
void lightColor(const String& color) {
|
|
lightColor(color.c_str());
|
|
}
|
|
|
|
void lightColor(unsigned long color) {
|
|
_lightFromInteger(color, false);
|
|
}
|
|
|
|
String lightRgbPayload() {
|
|
char str[12];
|
|
_lightRgbPayload(str, sizeof(str));
|
|
return str;
|
|
}
|
|
|
|
String lightHsvPayload() {
|
|
char str[12];
|
|
_lightHsvPayload(str, sizeof(str));
|
|
return str;
|
|
}
|
|
|
|
String lightColor() {
|
|
return _light_use_rgb ? lightRgbPayload() : lightHsvPayload();
|
|
}
|
|
|
|
long lightRed() {
|
|
return _light_mapping.red();
|
|
}
|
|
|
|
void lightRed(long value) {
|
|
_light_mapping.red(value);
|
|
}
|
|
|
|
long lightGreen() {
|
|
return _light_mapping.green();
|
|
}
|
|
|
|
void lightGreen(long value) {
|
|
_light_mapping.green(value);
|
|
}
|
|
|
|
long lightBlue() {
|
|
return _light_mapping.blue();
|
|
}
|
|
|
|
void lightBlue(long value) {
|
|
_light_mapping.blue(value);
|
|
}
|
|
|
|
long lightWarmWhite() {
|
|
return _light_mapping.warm();
|
|
}
|
|
|
|
void lightWarmWhite(long value) {
|
|
_light_mapping.warm(value);
|
|
}
|
|
|
|
long lightColdWhite() {
|
|
return _light_mapping.cold();
|
|
}
|
|
|
|
void lightColdWhite(long value) {
|
|
_light_mapping.cold(value);
|
|
}
|
|
|
|
void lightMireds(long mireds) {
|
|
_fromMireds(mireds);
|
|
}
|
|
|
|
Light::MiredsRange lightMiredsRange() {
|
|
return { _light_cold_mireds, _light_warm_mireds };
|
|
}
|
|
|
|
long lightChannel(unsigned char id) {
|
|
if (id >= _light_channels.size()) return 0;
|
|
return _light_channels[id].inputValue;
|
|
}
|
|
|
|
void lightChannel(unsigned char id, long value) {
|
|
if (id >= _light_channels.size()) return;
|
|
_setInputValue(id, value);
|
|
}
|
|
|
|
void lightChannelStep(unsigned char id, long steps, long multiplier) {
|
|
lightChannel(id, static_cast<int>(lightChannel(id)) + (steps * multiplier));
|
|
}
|
|
|
|
long lightBrightness() {
|
|
return _light_brightness;
|
|
}
|
|
|
|
void lightBrightness(long brightness) {
|
|
_light_brightness = constrain(brightness, Light::BrightnessMin, Light::BrightnessMax);
|
|
}
|
|
|
|
void lightBrightnessStep(long steps, long multiplier) {
|
|
lightBrightness(static_cast<int>(_light_brightness) + (steps * multiplier));
|
|
}
|
|
|
|
unsigned long lightTransitionTime() {
|
|
return _light_use_transitions ? _light_transition_time : 0;
|
|
}
|
|
|
|
unsigned long lightTransitionStep() {
|
|
return _light_use_transitions ? _light_transition_step : 0;
|
|
}
|
|
|
|
LightTransition lightTransition() {
|
|
return {lightTransitionTime(), lightTransitionStep()};
|
|
}
|
|
|
|
void lightTransition(unsigned long time, unsigned long step) {
|
|
bool save { false };
|
|
|
|
_light_use_transitions = (time && step);
|
|
if (_light_use_transitions) {
|
|
save = true;
|
|
_light_transition_time = time;
|
|
_light_transition_step = step;
|
|
}
|
|
|
|
setSetting("useTransitions", _light_use_transitions);
|
|
if (save) {
|
|
setSetting("ltTime", _light_transition_time);
|
|
setSetting("ltStep", _light_transition_step);
|
|
}
|
|
|
|
saveSettings();
|
|
}
|
|
|
|
void lightTransition(LightTransition transition) {
|
|
lightTransition(transition.time, transition.step);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// SETUP
|
|
// -----------------------------------------------------------------------------
|
|
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
|
|
const unsigned long _light_iomux[16] PROGMEM = {
|
|
PERIPHS_IO_MUX_GPIO0_U, PERIPHS_IO_MUX_U0TXD_U, PERIPHS_IO_MUX_GPIO2_U, PERIPHS_IO_MUX_U0RXD_U,
|
|
PERIPHS_IO_MUX_GPIO4_U, PERIPHS_IO_MUX_GPIO5_U, PERIPHS_IO_MUX_SD_CLK_U, PERIPHS_IO_MUX_SD_DATA0_U,
|
|
PERIPHS_IO_MUX_SD_DATA1_U, PERIPHS_IO_MUX_SD_DATA2_U, PERIPHS_IO_MUX_SD_DATA3_U, PERIPHS_IO_MUX_SD_CMD_U,
|
|
PERIPHS_IO_MUX_MTDI_U, PERIPHS_IO_MUX_MTCK_U, PERIPHS_IO_MUX_MTMS_U, PERIPHS_IO_MUX_MTDO_U
|
|
};
|
|
|
|
const unsigned long _light_iofunc[16] PROGMEM = {
|
|
FUNC_GPIO0, FUNC_GPIO1, FUNC_GPIO2, FUNC_GPIO3,
|
|
FUNC_GPIO4, FUNC_GPIO5, FUNC_GPIO6, FUNC_GPIO7,
|
|
FUNC_GPIO8, FUNC_GPIO9, FUNC_GPIO10, FUNC_GPIO11,
|
|
FUNC_GPIO12, FUNC_GPIO13, FUNC_GPIO14, FUNC_GPIO15
|
|
};
|
|
|
|
#endif
|
|
|
|
namespace {
|
|
|
|
inline bool _lightUseGamma(size_t channels, unsigned char index) {
|
|
switch (_lightTag(channels, index)) {
|
|
case 'R':
|
|
case 'G':
|
|
case 'B':
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
inline bool _lightUseGamma(unsigned char index) {
|
|
return _lightUseGamma(_light_channels.size(), index);
|
|
}
|
|
|
|
void _lightConfigure() {
|
|
auto channels = _light_channels.size();
|
|
|
|
_light_has_color = getSetting("useColor", 1 == LIGHT_USE_COLOR);
|
|
if (_light_has_color && (channels < 3)) {
|
|
_light_has_color = false;
|
|
setSetting("useColor", _light_has_color);
|
|
}
|
|
|
|
_light_use_white = getSetting("useWhite", 1 == LIGHT_USE_WHITE);
|
|
if (_light_use_white && (channels < 4) && (channels != 2)) {
|
|
_light_use_white = false;
|
|
setSetting("useWhite", _light_use_white);
|
|
}
|
|
|
|
if (_light_has_color) {
|
|
if (_light_use_white) {
|
|
_light_brightness_func = _lightApplyBrightnessColor;
|
|
} else {
|
|
_light_brightness_func = _lightApplyBrightnessRgb;
|
|
}
|
|
} else {
|
|
_light_brightness_func = _lightApplyBrightnessAll;
|
|
}
|
|
|
|
_light_use_cct = getSetting("useCCT", 1 == LIGHT_USE_CCT);
|
|
if (_light_use_cct && (((channels < 5) && (channels != 2)) || !_light_use_white)) {
|
|
_light_use_cct = false;
|
|
setSetting("useCCT", _light_use_cct);
|
|
}
|
|
|
|
_light_use_rgb = getSetting("useRGB", 1 == LIGHT_USE_RGB);
|
|
|
|
_light_cold_mireds = getSetting("ltColdMired", Light::MiredsCold);
|
|
_light_warm_mireds = getSetting("ltWarmMired", Light::MiredsWarm);
|
|
_light_cold_kelvin = (1000000L / _light_cold_mireds);
|
|
_light_warm_kelvin = (1000000L / _light_warm_mireds);
|
|
|
|
_light_use_transitions = getSetting("useTransitions", 1 == LIGHT_USE_TRANSITIONS);
|
|
_light_save = getSetting("ltSave", 1 == LIGHT_SAVE_ENABLED);
|
|
_light_save_delay = getSetting("ltSaveDelay", LIGHT_SAVE_DELAY);
|
|
_light_transition_time = getSetting("ltTime", LIGHT_TRANSITION_TIME);
|
|
_light_transition_step = getSetting("ltStep", LIGHT_TRANSITION_STEP);
|
|
|
|
_light_use_gamma = getSetting("useGamma", 1 == LIGHT_USE_GAMMA);
|
|
for (unsigned char index = 0; index < lightChannels(); ++index) {
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
|
|
_light_my92xx_channel_map[index] = getSetting({"ltMy92xxCh", index}, Light::build::my92xxChannel(index));
|
|
#endif
|
|
_light_channels[index].inverse = getSetting({"ltInv", index}, Light::build::inverse(index));
|
|
_light_channels[index].gamma = (_light_has_color && _light_use_gamma) && _lightUseGamma(channels, index);
|
|
}
|
|
|
|
}
|
|
|
|
#if RELAY_SUPPORT
|
|
|
|
void _lightRelaySupport() {
|
|
if (!getSetting("ltRelay", 1 == LIGHT_RELAY_ENABLED)) {
|
|
return;
|
|
}
|
|
|
|
if (_light_has_controls) {
|
|
return;
|
|
}
|
|
|
|
auto next_id = relayCount();
|
|
if (relayAdd(std::make_unique<LightGlobalProvider>())) {
|
|
_light_state_listener = [next_id](bool state) {
|
|
relayStatus(next_id, state);
|
|
};
|
|
_light_has_controls = true;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
void _lightBoot() {
|
|
auto channels = _light_channels.size();
|
|
if (channels) {
|
|
DEBUG_MSG_P(PSTR("[LIGHT] Number of channels: %u\n"), channels);
|
|
|
|
_lightUpdateMapping(channels);
|
|
|
|
_lightConfigure();
|
|
if (rtcmemStatus()) {
|
|
_lightRestoreRtcmem();
|
|
} else {
|
|
_lightRestoreSettings();
|
|
}
|
|
|
|
_light_state_changed = true;
|
|
lightUpdate(false);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
|
|
|
|
// Custom provider is expected to:
|
|
// - register a controller class via `lightSetProvider(...)`
|
|
// - use `lightAdd()` N times to create N channels that will be handled via the controller
|
|
// Once that's done, we 'boot' the provider and disable further calls to the `lightAdd()`
|
|
|
|
void lightSetProvider(std::unique_ptr<LightProvider>&& ptr) {
|
|
_light_provider = std::move(ptr);
|
|
}
|
|
|
|
bool lightAdd() {
|
|
enum class State {
|
|
None,
|
|
Scheduled,
|
|
Done
|
|
};
|
|
|
|
static State state { State::None };
|
|
if (State::Done == state) {
|
|
return false;
|
|
}
|
|
|
|
if (_light_channels.size() < Light::ChannelsMax) {
|
|
_light_channels.emplace_back(GPIO_NONE);
|
|
if (State::Scheduled != state) {
|
|
state = State::Scheduled;
|
|
schedule_function([]() {
|
|
_lightBoot();
|
|
state = State::Done;
|
|
});
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
#else
|
|
|
|
bool lightAdd() {
|
|
return false;
|
|
}
|
|
|
|
#endif // LIGHT_PROVIDER_CUSTOM
|
|
|
|
void _lightProviderDebug() {
|
|
DEBUG_MSG_P(PSTR("[LIGHT] Provider: "
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_NONE
|
|
"NONE"
|
|
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
|
|
"DIMMER"
|
|
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
|
|
"MY92XX"
|
|
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
|
|
"CUSTOM"
|
|
#endif
|
|
"\n"));
|
|
}
|
|
|
|
void _lightSettingsMigrate(int version) {
|
|
if (!version || (version >= 5)) {
|
|
return;
|
|
}
|
|
|
|
delSettingPrefix({
|
|
"chGPIO",
|
|
"chLogic",
|
|
"myChips",
|
|
"myDCKGPIO",
|
|
"myDIGPIO"
|
|
});
|
|
delSetting("lightProvider");
|
|
delSetting("useCSS");
|
|
|
|
moveSetting("lightTime", "ltTime");
|
|
moveSetting("lightColdMired", "ltColdMired");
|
|
moveSetting("lightWarmMired", "ltWarmMired");
|
|
}
|
|
|
|
void lightSetup() {
|
|
_lightSettingsMigrate(migrateVersion());
|
|
|
|
const auto enable_pin = getSetting("ltEnableGPIO", Light::build::enablePin());
|
|
if (enable_pin != GPIO_NONE) {
|
|
pinMode(enable_pin, OUTPUT);
|
|
digitalWrite(enable_pin, HIGH);
|
|
}
|
|
|
|
_light_channels.reserve(Light::ChannelsMax);
|
|
|
|
_lightProviderDebug();
|
|
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
|
|
{
|
|
// TODO: library API specifies some hard-coded amount of channels, based off of the model and chips
|
|
// we always map channel index 1-to-1, to simplify hw config, but most of the time there are less active channels
|
|
// than the value generated by the lib (ref. `my92xx::getChannels()`)
|
|
auto channels = getSetting("ltMy92xxChannels", Light::build::my92xxChannels());
|
|
_my92xx = new my92xx(
|
|
getSetting("ltMy92xxModel", Light::build::my92xxModel()),
|
|
getSetting("ltMy92xxChips", Light::build::my92xxChips()),
|
|
getSetting("ltMy92xxDiGPIO", Light::build::my92xxDiPin()),
|
|
getSetting("ltMy92xxDckiGPIO", Light::build::my92xxDckiPin()),
|
|
Light::build::my92xxCommand());
|
|
for (unsigned char index = 0; index < channels; ++index) {
|
|
_light_channels.emplace_back(GPIO_NONE);
|
|
}
|
|
}
|
|
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
|
|
{
|
|
// Initial duty value (will be passed to pwm_set_duty(...), OFF in this case)
|
|
uint32_t pwm_duty_init[Light::ChannelsMax] = {0};
|
|
|
|
// 3-tuples of MUX_REGISTER, MUX_VALUE and GPIO number
|
|
uint32_t io_info[Light::ChannelsMax][3];
|
|
|
|
for (unsigned char index = 0; index < Light::ChannelsMax; ++index) {
|
|
|
|
// Load up until first GPIO_NONE. Allow settings to override, but not remove values
|
|
const auto pin = getSetting({"ltDimmerGPIO", index}, Light::build::channelPin(index));
|
|
if (!gpioValid(pin)) {
|
|
break;
|
|
}
|
|
|
|
_light_channels.emplace_back(pin);
|
|
|
|
io_info[index][0] = pgm_read_dword(&_light_iomux[pin]);
|
|
io_info[index][1] = pgm_read_dword(&_light_iofunc[pin]);
|
|
io_info[index][2] = pin;
|
|
pinMode(pin, OUTPUT);
|
|
|
|
}
|
|
|
|
// with 0 channels this should not do anything at all and provider will never call pwm_set_duty(...)
|
|
pwm_init(Light::PwmMax, pwm_duty_init, _light_channels.size(), io_info);
|
|
pwm_start();
|
|
}
|
|
#endif
|
|
|
|
_lightBoot();
|
|
|
|
#if RELAY_SUPPORT
|
|
_lightRelaySupport();
|
|
#endif
|
|
|
|
#if WEB_SUPPORT
|
|
wsRegister()
|
|
.onVisible(_lightWebSocketOnVisible)
|
|
.onConnected(_lightWebSocketOnConnected)
|
|
.onData(_lightWebSocketStatus)
|
|
.onAction(_lightWebSocketOnAction)
|
|
.onKeyCheck(_lightWebSocketOnKeyCheck);
|
|
#endif
|
|
|
|
#if API_SUPPORT
|
|
_lightApiSetup();
|
|
#endif
|
|
|
|
#if MQTT_SUPPORT
|
|
_lightMqttSetup();
|
|
#endif
|
|
|
|
#if TERMINAL_SUPPORT
|
|
_lightInitCommands();
|
|
#endif
|
|
|
|
espurnaRegisterReload(_lightConfigure);
|
|
espurnaRegisterLoop([]() {
|
|
_lightUpdate();
|
|
_lightProviderUpdate();
|
|
});
|
|
|
|
}
|
|
|
|
#endif // LIGHT_PROVIDER != LIGHT_PROVIDER_NONE
|