Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

363 lines
12 KiB

// -----------------------------------------------------------------------------
// ECH1560 based power monitor
// Copyright (C) 2017-2019 by Xose Pérez <xose dot perez at gmail dot com>
// -----------------------------------------------------------------------------
#if SENSOR_SUPPORT && ECH1560_SUPPORT
#pragma once
#include <Arduino.h>
#include "../debug.h"
#include "BaseSensor.h"
#include "BaseEmonSensor.h"
class ECH1560Sensor : public BaseEmonSensor {
public:
// ---------------------------------------------------------------------
// Public
// ---------------------------------------------------------------------
ECH1560Sensor(): _data() {
_count = 3;
_sensor_id = SENSOR_ECH1560_ID;
}
~ECH1560Sensor() {
_enableInterrupts(false);
}
// ---------------------------------------------------------------------
void setCLK(unsigned char clk) {
if (_clk == clk) return;
_clk = clk;
_dirty = true;
}
void setMISO(unsigned char miso) {
if (_miso == miso) return;
_miso = miso;
_dirty = true;
}
void setInverted(bool inverted) {
_inverted = inverted;
}
// ---------------------------------------------------------------------
unsigned char getCLK() {
return _clk;
}
unsigned char getMISO() {
return _miso;
}
bool getInverted() {
return _inverted;
}
// ---------------------------------------------------------------------
// Sensor API
// ---------------------------------------------------------------------
// Initialization method, must be idempotent
void begin() {
if (!_dirty) return;
pinMode(_clk, INPUT);
pinMode(_miso, INPUT);
_enableInterrupts(true);
_dirty = false;
_ready = true;
}
// Loop-like method, call it in your main loop
void tick() {
if (_dosync) _sync();
}
// Descriptive name of the sensor
String description() {
char buffer[35];
snprintf(buffer, sizeof(buffer), "ECH1560 (CLK,SDO) @ GPIO(%u,%u)", _clk, _miso);
return String(buffer);
}
// Descriptive name of the slot # index
String slot(unsigned char index) {
return description();
};
// Address of the sensor (it could be the GPIO or I2C address)
String address(unsigned char index) {
char buffer[6];
snprintf(buffer, sizeof(buffer), "%u:%u", _clk, _miso);
return String(buffer);
}
// Type for slot # index
unsigned char type(unsigned char index) {
if (index == 0) return MAGNITUDE_CURRENT;
if (index == 1) return MAGNITUDE_VOLTAGE;
if (index == 2) return MAGNITUDE_POWER_APPARENT;
if (index == 3) return MAGNITUDE_ENERGY;
return MAGNITUDE_NONE;
}
// Current value for slot # index
double value(unsigned char index) {
if (index == 0) return _current;
if (index == 1) return _voltage;
if (index == 2) return _apparent;
if (index == 3) return getEnergy();
return 0;
}
void ICACHE_RAM_ATTR handleInterrupt(unsigned char gpio) {
UNUSED(gpio);
// if we are trying to find the sync-time (CLK goes high for 1-2ms)
if (_dosync == false) {
_clk_count = 0;
// register how long the ClkHigh is high to evaluate if we are at the part where clk goes high for 1-2 ms
while (digitalRead(_clk) == HIGH) {
_clk_count += 1;
delayMicroseconds(30); //can only use delayMicroseconds in an interrupt.
}
// if the Clk was high between 1 and 2 ms than, its a start of a SPI-transmission
if (_clk_count >= 33 && _clk_count <= 67) {
_dosync = true;
}
// we are in sync and logging CLK-highs
} else {
// increment an integer to keep track of how many bits we have read.
_bits_count += 1;
_nextbit = true;
}
}
protected:
// ---------------------------------------------------------------------
// Interrupt management
// ---------------------------------------------------------------------
void _attach(ECH1560Sensor * instance, unsigned char gpio, unsigned char mode);
void _detach(unsigned char gpio);
void _enableInterrupts(bool value) {
static unsigned char _interrupt_clk = GPIO_NONE;
if (value) {
if (_interrupt_clk != _clk) {
if (_interrupt_clk != GPIO_NONE) _detach(_interrupt_clk);
_attach(this, _clk, RISING);
_interrupt_clk = _clk;
}
} else if (_interrupt_clk != GPIO_NONE) {
_detach(_interrupt_clk);
_interrupt_clk = GPIO_NONE;
}
}
// ---------------------------------------------------------------------
// Protected
// ---------------------------------------------------------------------
void _sync() {
unsigned int byte1 = 0;
unsigned int byte2 = 0;
unsigned int byte3 = 0;
_bits_count = 0;
while (_bits_count < 40); // skip the uninteresting 5 first bytes
_bits_count = 0;
while (_bits_count < 24) { // loop through the next 3 Bytes (6-8) and save byte 6 and 7 in byte1 and byte2
if (_nextbit) {
if (_bits_count < 9) { // first Byte/8 bits in byte1
byte1 = byte1 << 1;
if (digitalRead(_miso) == HIGH) byte1 |= 1;
_nextbit = false;
} else if (_bits_count < 17) { // bit 9-16 is byte 7, store in byte2
byte2 = byte2 << 1;
if (digitalRead(_miso) == HIGH) byte2 |= 1;
_nextbit = false;
}
}
}
if (byte2 != 3) { // if bit byte2 is not 3, we have reached the important part, U is allready in byte1 and byte2 and next 8 Bytes will give us the Power.
// voltage = 2 * (byte1 + byte2 / 255)
_voltage = 2.0 * ((float) byte1 + (float) byte2 / 255.0);
// power:
_bits_count = 0;
while (_bits_count < 40); // skip the uninteresting 5 first bytes
_bits_count = 0;
byte1 = 0;
byte2 = 0;
byte3 = 0;
while (_bits_count < 24) { //store byte 6, 7 and 8 in byte1 and byte2 & byte3.
if (_nextbit) {
if (_bits_count < 9) {
byte1 = byte1 << 1;
if (digitalRead(_miso) == HIGH) byte1 |= 1;
_nextbit = false;
} else if (_bits_count < 17) {
byte2 = byte2 << 1;
if (digitalRead(_miso) == HIGH) byte2 |= 1;
_nextbit = false;
} else {
byte3 = byte3 << 1;
if (digitalRead(_miso) == HIGH) byte3 |= 1;
_nextbit = false;
}
}
}
if (_inverted) {
byte1 = 255 - byte1;
byte2 = 255 - byte2;
byte3 = 255 - byte3;
}
// power = (byte1*255+byte2+byte3/255)/2
_apparent = ( (float) byte1 * 255 + (float) byte2 + (float) byte3 / 255.0) / 2;
_current = _apparent / _voltage;
static unsigned long last = 0;
if (last > 0) {
_energy[0] += sensor::Ws {
static_cast<uint32_t>(_apparent * (millis() - last) / 1000)
};
}
last = millis();
_dosync = false;
}
// If byte2 is not 3 or something else than 0, something is wrong!
if (byte2 == 0) {
_dosync = false;
#if SENSOR_DEBUG
DEBUG_MSG_P(PSTR("Nothing connected, or out of sync!\n"));
#endif
}
}
// ---------------------------------------------------------------------
unsigned char _clk = 0;
unsigned char _miso = 0;
bool _inverted = false;
volatile long _bits_count = 0;
volatile long _clk_count = 0;
volatile bool _dosync = false;
volatile bool _nextbit = true;
double _apparent = 0;
double _voltage = 0;
double _current = 0;
unsigned char _data[24];
};
// -----------------------------------------------------------------------------
// Interrupt helpers
// -----------------------------------------------------------------------------
ECH1560Sensor * _ech1560_sensor_instance[10] = {NULL};
void ICACHE_RAM_ATTR _ech1560_sensor_isr(unsigned char gpio) {
unsigned char index = gpio > 5 ? gpio-6 : gpio;
if (_ech1560_sensor_instance[index]) {
_ech1560_sensor_instance[index]->handleInterrupt(gpio);
}
}
void ICACHE_RAM_ATTR _ech1560_sensor_isr_0() { _ech1560_sensor_isr(0); }
void ICACHE_RAM_ATTR _ech1560_sensor_isr_1() { _ech1560_sensor_isr(1); }
void ICACHE_RAM_ATTR _ech1560_sensor_isr_2() { _ech1560_sensor_isr(2); }
void ICACHE_RAM_ATTR _ech1560_sensor_isr_3() { _ech1560_sensor_isr(3); }
void ICACHE_RAM_ATTR _ech1560_sensor_isr_4() { _ech1560_sensor_isr(4); }
void ICACHE_RAM_ATTR _ech1560_sensor_isr_5() { _ech1560_sensor_isr(5); }
void ICACHE_RAM_ATTR _ech1560_sensor_isr_12() { _ech1560_sensor_isr(12); }
void ICACHE_RAM_ATTR _ech1560_sensor_isr_13() { _ech1560_sensor_isr(13); }
void ICACHE_RAM_ATTR _ech1560_sensor_isr_14() { _ech1560_sensor_isr(14); }
void ICACHE_RAM_ATTR _ech1560_sensor_isr_15() { _ech1560_sensor_isr(15); }
static void (*_ech1560_sensor_isr_list[10])() = {
_ech1560_sensor_isr_0, _ech1560_sensor_isr_1, _ech1560_sensor_isr_2,
_ech1560_sensor_isr_3, _ech1560_sensor_isr_4, _ech1560_sensor_isr_5,
_ech1560_sensor_isr_12, _ech1560_sensor_isr_13, _ech1560_sensor_isr_14,
_ech1560_sensor_isr_15
};
void ECH1560Sensor::_attach(ECH1560Sensor * instance, unsigned char gpio, unsigned char mode) {
if (!gpioValid(gpio)) return;
_detach(gpio);
unsigned char index = gpio > 5 ? gpio-6 : gpio;
_ech1560_sensor_instance[index] = instance;
attachInterrupt(gpio, _ech1560_sensor_isr_list[index], mode);
#if SENSOR_DEBUG
DEBUG_MSG_P(PSTR("[SENSOR] GPIO%d interrupt attached to %s\n"), gpio, instance->description().c_str());
#endif
}
void ECH1560Sensor::_detach(unsigned char gpio) {
if (!gpioValid(gpio)) return;
unsigned char index = gpio > 5 ? gpio-6 : gpio;
if (_ech1560_sensor_instance[index]) {
detachInterrupt(gpio);
#if SENSOR_DEBUG
DEBUG_MSG_P(PSTR("[SENSOR] GPIO%d interrupt detached from %s\n"), gpio, _ech1560_sensor_instance[index]->description().c_str());
#endif
_ech1560_sensor_instance[index] = NULL;
}
}
#endif // SENSOR_SUPPORT && ECH1560_SUPPORT