Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

264 lines
7.8 KiB

// -----------------------------------------------------------------------------
// ECH1560 based power monitor
// Copyright (C) 2017 by Xose Pérez <xose dot perez at gmail dot com>
// -----------------------------------------------------------------------------
#pragma once
#include "Arduino.h"
#include "BaseSensor.h"
class ECH1560Sensor : public BaseSensor {
public:
// ---------------------------------------------------------------------
// Public
// ---------------------------------------------------------------------
ECH1560Sensor(): BaseSensor() {
_count = 3;
_sensor_id = SENSOR_ECH1560_ID;
}
~ECH1560Sensor() {
if (_interrupt_gpio != GPIO_NONE) detach(_interrupt_gpio);
}
// ---------------------------------------------------------------------
void setCLK(unsigned char clk) {
if (_clk == clk) return;
_clk = clk;
_dirty = true;
}
void setMISO(unsigned char miso) {
if (_miso == miso) return;
_miso = miso;
_dirty = true;
}
void setInverted(bool inverted) {
_inverted = inverted;
}
// ---------------------------------------------------------------------
unsigned char getCLK() {
return _clk;
}
unsigned char getMISO() {
return _miso;
}
bool getInverted() {
return _inverted;
}
// ---------------------------------------------------------------------
// Sensor API
// ---------------------------------------------------------------------
// Initialization method, must be idempotent
void begin() {
if (!_dirty) return;
_dirty = false;
pinMode(_clk, INPUT);
pinMode(_miso, INPUT);
if (_interrupt_gpio != GPIO_NONE) detach(_interrupt_gpio);
attach(this, _clk, RISING);
}
// Interrupt attach callback
void attached(unsigned char gpio) {
BaseSensor::attached(gpio);
_interrupt_gpio = gpio;
}
// Interrupt detach callback
void detached(unsigned char gpio) {
BaseSensor::detached(gpio);
if (_interrupt_gpio == gpio) _interrupt_gpio = GPIO_NONE;
}
void ICACHE_RAM_ATTR handleInterrupt() {
_isr();
}
// Descriptive name of the sensor
String description() {
char buffer[25];
snprintf(buffer, sizeof(buffer), "ECH1560 @ GPIO(%i,%i)", _clk, _miso);
return String(buffer);
}
// Type for slot # index
magnitude_t type(unsigned char index) {
_error = SENSOR_ERROR_OK;
if (index == 0) return MAGNITUDE_CURRENT;
if (index == 1) return MAGNITUDE_VOLTAGE;
if (index == 2) return MAGNITUDE_POWER_APPARENT;
_error = SENSOR_ERROR_OUT_OF_RANGE;
return MAGNITUDE_NONE;
}
// Current value for slot # index
double value(unsigned char index) {
_error = SENSOR_ERROR_OK;
if (index == 0) return _current;
if (index == 1) return _voltage;
if (index == 2) return _apparent;
_error = SENSOR_ERROR_OUT_OF_RANGE;
return 0;
}
protected:
// ---------------------------------------------------------------------
// Protected
// ---------------------------------------------------------------------
void ICACHE_RAM_ATTR _isr() {
// if we are trying to find the sync-time (CLK goes high for 1-2ms)
if (_dosync == false) {
_clk_count = 0;
// register how long the ClkHigh is high to evaluate if we are at the part wher clk goes high for 1-2 ms
while (digitalRead(_clk) == HIGH) {
_clk_count += 1;
delayMicroseconds(30); //can only use delayMicroseconds in an interrupt.
}
// if the Clk was high between 1 and 2 ms than, its a start of a SPI-transmission
if (_clk_count >= 33 && _clk_count <= 67) {
_dosync = true;
}
// we are in sync and logging CLK-highs
} else {
// increment an integer to keep track of how many bits we have read.
_bits_count += 1;
_nextbit = true;
}
}
void _sync() {
unsigned int byte1 = 0;
unsigned int byte2 = 0;
unsigned int byte3 = 0;
_bits_count = 0;
while (_bits_count < 40); // skip the uninteresting 5 first bytes
_bits_count = 0;
while (_bits_count < 24) { // loop through the next 3 Bytes (6-8) and save byte 6 and 7 in Ba and Bb
if (_nextbit) {
if (_bits_count < 9) { // first Byte/8 bits in Ba
byte1 = byte1 << 1;
if (digitalRead(_miso) == HIGH) byte1 |= 1;
_nextbit = false;
} else if (_bits_count < 17) { // bit 9-16 is byte 7, stor in Bb
byte2 = byte2 << 1;
if (digitalRead(_miso) == HIGH) byte2 |= 1;
_nextbit = false;
}
}
}
if (byte2 != 3) { // if bit Bb is not 3, we have reached the important part, U is allready in Ba and Bb and next 8 Bytes will give us the Power.
// voltage = 2 * (Ba + Bb / 255)
_voltage = 2.0 * ((float) byte1 + (float) byte2 / 255.0);
// power:
_bits_count = 0;
while (_bits_count < 40); // skip the uninteresting 5 first bytes
_bits_count = 0;
byte1 = 0;
byte2 = 0;
byte3 = 0;
while (_bits_count < 24) { //store byte 6, 7 and 8 in Ba and Bb & Bc.
if (_nextbit) {
if (_bits_count < 9) {
byte1 = byte1 << 1;
if (digitalRead(_miso) == HIGH) byte1 |= 1;
_nextbit = false;
} else if (_bits_count < 17) {
byte2 = byte2 << 1;
if (digitalRead(_miso) == HIGH) byte2 |= 1;
_nextbit = false;
} else {
byte3 = byte3 << 1;
if (digitalRead(_miso) == HIGH) byte3 |= 1;
_nextbit = false;
}
}
}
if (_inverted) {
byte1 = 255 - byte1;
byte2 = 255 - byte2;
byte3 = 255 - byte3;
}
// power = (Ba*255+Bb+Bc/255)/2
_apparent = ( (float) byte1 * 255 + (float) byte2 + (float) byte3 / 255.0) / 2;
_current = _apparent / _voltage;
_dosync = false;
}
// If Bb is not 3 or something else than 0, something is wrong!
if (byte2 == 0) _dosync = false;
}
// ---------------------------------------------------------------------
unsigned char _clk = 0;
unsigned char _miso = 0;
unsigned char _interrupt_gpio = GPIO_NONE;
bool _inverted = false;
volatile long _bits_count = 0;
volatile long _clk_count = 0;
volatile bool _dosync = false;
volatile bool _nextbit = true;
double _apparent = 0;
double _voltage = 0;
double _current = 0;
unsigned char _data[24];
};