Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

683 lines
21 KiB

/*
SENSOR MODULE
Copyright (C) 2016-2017 by Xose Pérez <xose dot perez at gmail dot com>
*/
#if SENSOR_SUPPORT
#include <vector>
#include "filters/MaxFilter.h"
#include "filters/MedianFilter.h"
#include "filters/MovingAverageFilter.h"
#include "sensors/BaseSensor.h"
typedef struct {
BaseSensor * sensor;
unsigned char local; // Local index in its provider
unsigned char type; // Type of measurement
unsigned char global; // Global index in its type
double current; // Current (last) value, unfiltered
double filtered; // Filtered (averaged) value
double reported; // Last reported value
double min_change; // Minimum value change to report
BaseFilter * filter; // Filter object
} sensor_magnitude_t;
std::vector<BaseSensor *> _sensors;
std::vector<sensor_magnitude_t> _magnitudes;
unsigned char _counts[MAGNITUDE_MAX];
bool _sensor_realtime = API_REAL_TIME_VALUES;
unsigned long _sensor_read_interval = 1000 * SENSOR_READ_INTERVAL;
unsigned int _sensor_report_every = SENSOR_REPORT_EVERY;
unsigned char _sensor_temperature_units = SENSOR_TEMPERATURE_UNITS;
double _sensor_temperature_correction = SENSOR_TEMPERATURE_CORRECTION;
// -----------------------------------------------------------------------------
// Private
// -----------------------------------------------------------------------------
String _magnitudeTopic(unsigned char type) {
char buffer[16] = {0};
if (type < MAGNITUDE_MAX) strncpy_P(buffer, magnitude_topics[type], sizeof(buffer));
return String(buffer);
}
unsigned char _magnitudeDecimals(unsigned char type) {
if (type < MAGNITUDE_MAX) return pgm_read_byte(magnitude_decimals + type);
return 0;
}
String _magnitudeUnits(unsigned char type) {
char buffer[8] = {0};
if (type < MAGNITUDE_MAX) {
if ((type == MAGNITUDE_TEMPERATURE) && (_sensor_temperature_units == TMP_FAHRENHEIT)) {
strncpy_P(buffer, magnitude_fahrenheit, sizeof(buffer));
} else {
strncpy_P(buffer, magnitude_units[type], sizeof(buffer));
}
}
return String(buffer);
}
double _magnitudeProcess(unsigned char type, double value) {
if (type == MAGNITUDE_TEMPERATURE) {
if (_sensor_temperature_units == TMP_FAHRENHEIT) value = value * 1.8 + 32;
value = value + _sensor_temperature_correction;
}
return roundTo(value, _magnitudeDecimals(type));
}
// -----------------------------------------------------------------------------
#if WEB_SUPPORT
void _sensorWebSocketSendData(JsonObject& root) {
char buffer[10];
bool hasTemperature = false;
JsonArray& list = root.createNestedArray("magnitudes");
for (unsigned char i=0; i<_magnitudes.size(); i++) {
sensor_magnitude_t magnitude = _magnitudes[i];
unsigned char decimals = _magnitudeDecimals(magnitude.type);
dtostrf(magnitude.current, 1-sizeof(buffer), decimals, buffer);
JsonObject& element = list.createNestedObject();
element["index"] = int(magnitude.global);
element["type"] = int(magnitude.type);
element["value"] = String(buffer);
element["units"] = _magnitudeUnits(magnitude.type);
element["description"] = magnitude.sensor->slot(magnitude.local);
element["error"] = magnitude.sensor->error();
if (magnitude.type == MAGNITUDE_TEMPERATURE) hasTemperature = true;
}
if (hasTemperature) root["temperatureVisible"] = 1;
}
void _sensorWebSocketStart(JsonObject& root) {
for (unsigned char i=0; i<_sensors.size(); i++) {
BaseSensor * sensor = _sensors[i];
#if EMON_ANALOG_SUPPORT
if (sensor->getID() == SENSOR_EMON_ANALOG_ID) {
root["emonVisible"] = 1;
root["pwrVoltage"] = ((EmonAnalogSensor *) sensor)->getVoltage();
}
#endif
#if HLW8012_SUPPORT
if (sensor->getID() == SENSOR_HLW8012_ID) {
root["hlwVisible"] = 1;
}
#endif
}
if (_magnitudes.size() > 0) {
root["sensorsVisible"] = 1;
//root["apiRealTime"] = _sensor_realtime;
root["tmpUnits"] = _sensor_temperature_units;
root["tmpCorrection"] = _sensor_temperature_correction;
root["snsRead"] = _sensor_read_interval / 1000;
root["snsReport"] = _sensor_report_every;
}
/*
// Sensors manifest
JsonArray& manifest = root.createNestedArray("manifest");
#if BMX280_SUPPORT
BMX280Sensor::manifest(manifest);
#endif
// Sensors configuration
JsonArray& sensors = root.createNestedArray("sensors");
for (unsigned char i; i<_sensors.size(); i++) {
JsonObject& sensor = sensors.createNestedObject();
sensor["index"] = i;
sensor["id"] = _sensors[i]->getID();
_sensors[i]->getConfig(sensor);
}
*/
}
void _sensorAPISetup() {
for (unsigned char magnitude_id=0; magnitude_id<_magnitudes.size(); magnitude_id++) {
sensor_magnitude_t magnitude = _magnitudes[magnitude_id];
String topic = _magnitudeTopic(magnitude.type);
if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) topic = topic + "/" + String(magnitude.global);
apiRegister(topic.c_str(), [magnitude_id](char * buffer, size_t len) {
sensor_magnitude_t magnitude = _magnitudes[magnitude_id];
unsigned char decimals = _magnitudeDecimals(magnitude.type);
double value = _sensor_realtime ? magnitude.current : magnitude.filtered;
dtostrf(value, 1-len, decimals, buffer);
});
}
}
#endif
void _sensorTick() {
for (unsigned char i=0; i<_sensors.size(); i++) {
_sensors[i]->tick();
}
}
void _sensorPre() {
for (unsigned char i=0; i<_sensors.size(); i++) {
_sensors[i]->pre();
if (!_sensors[i]->status()) {
DEBUG_MSG_P(PSTR("[SENSOR] Error reading data from %s (error: %d)\n"),
_sensors[i]->description().c_str(),
_sensors[i]->error()
);
}
}
}
void _sensorPost() {
for (unsigned char i=0; i<_sensors.size(); i++) {
_sensors[i]->post();
}
}
// -----------------------------------------------------------------------------
// Sensor initialization
// -----------------------------------------------------------------------------
void _sensorInit() {
#if ANALOG_SUPPORT
{
AnalogSensor * sensor = new AnalogSensor();
_sensors.push_back(sensor);
}
#endif
#if BMX280_SUPPORT
{
BMX280Sensor * sensor = new BMX280Sensor();
sensor->setAddress(BMX280_ADDRESS);
_sensors.push_back(sensor);
}
#endif
#if DALLAS_SUPPORT
{
DallasSensor * sensor = new DallasSensor();
sensor->setGPIO(DALLAS_PIN);
_sensors.push_back(sensor);
}
#endif
#if DHT_SUPPORT
{
DHTSensor * sensor = new DHTSensor();
sensor->setGPIO(DHT_PIN);
sensor->setType(DHT_TYPE);
_sensors.push_back(sensor);
}
#endif
#if DIGITAL_SUPPORT
{
DigitalSensor * sensor = new DigitalSensor();
sensor->setGPIO(DIGITAL_PIN);
sensor->setMode(DIGITAL_PIN_MODE);
sensor->setDefault(DIGITAL_DEFAULT_STATE);
_sensors.push_back(sensor);
}
#endif
#if ECH1560_SUPPORT
{
ECH1560Sensor * sensor = new ECH1560Sensor();
sensor->setCLK(ECH1560_CLK_PIN);
sensor->setMISO(ECH1560_MISO_PIN);
sensor->setInverted(ECH1560_INVERTED);
_sensors.push_back(sensor);
}
#endif
#if EMON_ADC121_SUPPORT
{
EmonADC121Sensor * sensor = new EmonADC121Sensor();
sensor->setAddress(EMON_ADC121_I2C_ADDRESS);
sensor->setVoltage(EMON_MAINS_VOLTAGE);
sensor->setReference(EMON_REFERENCE_VOLTAGE);
sensor->setCurrentRatio(0, EMON_CURRENT_RATIO);
_sensors.push_back(sensor);
}
#endif
#if EMON_ADS1X15_SUPPORT
{
EmonADS1X15Sensor * sensor = new EmonADS1X15Sensor();
sensor->setAddress(EMON_ADS1X15_I2C_ADDRESS);
sensor->setType(EMON_ADS1X15_TYPE);
sensor->setMask(EMON_ADS1X15_MASK);
sensor->setGain(EMON_ADS1X15_GAIN);
sensor->setVoltage(EMON_MAINS_VOLTAGE);
sensor->setCurrentRatio(0, EMON_CURRENT_RATIO);
sensor->setCurrentRatio(1, EMON_CURRENT_RATIO);
sensor->setCurrentRatio(2, EMON_CURRENT_RATIO);
sensor->setCurrentRatio(3, EMON_CURRENT_RATIO);
_sensors.push_back(sensor);
}
#endif
#if EMON_ANALOG_SUPPORT
{
EmonAnalogSensor * sensor = new EmonAnalogSensor();
sensor->setVoltage(EMON_MAINS_VOLTAGE);
sensor->setReference(EMON_REFERENCE_VOLTAGE);
sensor->setCurrentRatio(0, EMON_CURRENT_RATIO);
_sensors.push_back(sensor);
}
#endif
#if EVENTS_SUPPORT
{
EventSensor * sensor = new EventSensor();
sensor->setGPIO(EVENTS_PIN);
sensor->setMode(EVENTS_PIN_MODE);
sensor->setDebounceTime(EVENTS_DEBOUNCE);
sensor->setInterruptMode(EVENTS_INTERRUPT_MODE);
_sensors.push_back(sensor);
}
#endif
#if HLW8012_SUPPORT
{
HLW8012Sensor * sensor = new HLW8012Sensor();
sensor->setSEL(HLW8012_SEL_PIN);
sensor->setCF(HLW8012_CF_PIN);
sensor->setCF1(HLW8012_CF1_PIN);
sensor->setSELCurrent(HLW8012_SEL_CURRENT);
_sensors.push_back(sensor);
}
#endif
#if MHZ19_SUPPORT
{
MHZ19Sensor * sensor = new MHZ19Sensor();
sensor->setRX(MHZ19_RX_PIN);
sensor->setTX(MHZ19_TX_PIN);
_sensors.push_back(sensor);
}
#endif
#if PMSX003_SUPPORT
{
PMSX003Sensor * sensor = new PMSX003Sensor();
sensor->setRX(PMS_RX_PIN);
sensor->setTX(PMS_TX_PIN);
_sensors.push_back(sensor);
}
#endif
#if SHT3X_I2C_SUPPORT
{
SHT3XI2CSensor * sensor = new SHT3XI2CSensor();
sensor->setAddress(SHT3X_I2C_ADDRESS);
_sensors.push_back(sensor);
}
#endif
#if SI7021_SUPPORT
{
SI7021Sensor * sensor = new SI7021Sensor();
sensor->setAddress(SI7021_ADDRESS);
_sensors.push_back(sensor);
}
#endif
#if V9261F_SUPPORT
{
V9261FSensor * sensor = new V9261FSensor();
sensor->setRX(V9261F_PIN);
sensor->setInverted(V9261F_PIN_INVERSE);
_sensors.push_back(sensor);
}
#endif
}
void _sensorConfigure() {
double value;
for (unsigned char i=0; i<_sensors.size(); i++) {
#if EMON_ANALOG_SUPPORT
if (_sensors[i]->getID() == SENSOR_EMON_ANALOG_ID) {
EmonAnalogSensor * sensor = (EmonAnalogSensor *) _sensors[i];
if (value = getSetting("pwrExpectedP", 0).toInt() == 0) {
value = getSetting("pwrRatioC", EMON_CURRENT_RATIO).toFloat();
if (value > 0) sensor->setCurrentRatio(0, value);
} else {
sensor->expectedPower(0, value);
setSetting("pwrRatioC", sensor->getCurrentRatio(0));
}
if (getSetting("pwrResetCalibration", 0).toInt() == 1) {
sensor->setCurrentRatio(0, EMON_CURRENT_RATIO);
delSetting("pwrRatioC");
}
sensor->setVoltage(getSetting("pwrVoltage", EMON_MAINS_VOLTAGE).toInt());
}
#endif // EMON_ANALOG_SUPPORT
// Force sensor to reload config
_sensors[i]->begin();
#if HLW8012_SUPPORT
if (_sensors[i]->getID() == SENSOR_HLW8012_ID) {
HLW8012Sensor * sensor = (HLW8012Sensor *) _sensors[i];
if (value = getSetting("pwrExpectedC", 0).toFloat()) {
sensor->expectedCurrent(value);
setSetting("pwrRatioC", sensor->getCurrentRatio());
} else {
value = getSetting("pwrRatioC", 0).toFloat();
if (value > 0) sensor->setCurrentRatio(value);
}
if (value = getSetting("pwrExpectedV", 0).toInt()) {
sensor->expectedVoltage(value);
setSetting("pwrRatioV", sensor->getVoltageRatio());
} else {
value = getSetting("pwrRatioV", 0).toFloat();
if (value > 0) sensor->setVoltageRatio(value);
}
if (value = getSetting("pwrExpectedP", 0).toInt()) {
sensor->expectedPower(value);
setSetting("pwrRatioP", sensor->getPowerRatio());
} else {
value = getSetting("pwrRatioP", 0).toFloat();
if (value > 0) sensor->setPowerRatio(value);
}
if (getSetting("pwrResetCalibration", 0).toInt() == 1) {
sensor->resetRatios();
delSetting("pwrRatioC");
delSetting("pwrRatioV");
delSetting("pwrRatioP");
}
}
#endif // HLW8012_SUPPORT
}
// General sensor settings
_sensor_read_interval = 1000 * constrain(getSetting("snsRead", SENSOR_READ_INTERVAL).toInt(), SENSOR_READ_MIN_INTERVAL, SENSOR_READ_MAX_INTERVAL);
_sensor_report_every = constrain(getSetting("snsReport", SENSOR_REPORT_EVERY).toInt(), SENSOR_REPORT_MIN_EVERY, SENSOR_REPORT_MAX_EVERY);
_sensor_realtime = getSetting("apiRealTime", API_REAL_TIME_VALUES).toInt() == 1;
_sensor_temperature_units = getSetting("tmpUnits", SENSOR_TEMPERATURE_UNITS).toInt();
_sensor_temperature_correction = getSetting("tmpCorrection", SENSOR_TEMPERATURE_CORRECTION).toFloat();
// Update filter sizes
for (unsigned char i=0; i<_magnitudes.size(); i++) {
_magnitudes[i].filter->resize(_sensor_report_every);
}
// Save settings
delSetting("pwrExpectedP");
delSetting("pwrExpectedC");
delSetting("pwrExpectedV");
delSetting("pwrResetCalibration");
//saveSettings();
}
void _magnitudesInit() {
for (unsigned char i=0; i<_sensors.size(); i++) {
BaseSensor * sensor = _sensors[i];
DEBUG_MSG_P(PSTR("[SENSOR] %s\n"), sensor->description().c_str());
if (sensor->error() != 0) DEBUG_MSG_P(PSTR("[SENSOR] -> ERROR %d\n"), sensor->error());
for (unsigned char k=0; k<sensor->count(); k++) {
unsigned char type = sensor->type(k);
sensor_magnitude_t new_magnitude;
new_magnitude.sensor = sensor;
new_magnitude.local = k;
new_magnitude.type = type;
new_magnitude.global = _counts[type];
new_magnitude.current = 0;
new_magnitude.filtered = 0;
new_magnitude.reported = 0;
new_magnitude.min_change = 0;
if (type == MAGNITUDE_DIGITAL) {
new_magnitude.filter = new MaxFilter();
} else if (type == MAGNITUDE_EVENTS) {
new_magnitude.filter = new MovingAverageFilter();
} else {
new_magnitude.filter = new MedianFilter();
}
new_magnitude.filter->resize(_sensor_report_every);
_magnitudes.push_back(new_magnitude);
DEBUG_MSG_P(PSTR("[SENSOR] -> %s:%d\n"), _magnitudeTopic(type).c_str(), _counts[type]);
_counts[type] = _counts[type] + 1;
}
}
}
// -----------------------------------------------------------------------------
// Public
// -----------------------------------------------------------------------------
unsigned char sensorCount() {
return _sensors.size();
}
unsigned char magnitudeCount() {
return _magnitudes.size();
}
String magnitudeName(unsigned char index) {
if (index < _magnitudes.size()) {
sensor_magnitude_t magnitude = _magnitudes[index];
return magnitude.sensor->slot(magnitude.local);
}
return String();
}
unsigned char magnitudeType(unsigned char index) {
if (index < _magnitudes.size()) {
return int(_magnitudes[index].type);
}
return MAGNITUDE_NONE;
}
unsigned char magnitudeIndex(unsigned char index) {
if (index < _magnitudes.size()) {
return int(_magnitudes[index].global);
}
return 0;
}
// -----------------------------------------------------------------------------
void sensorSetup() {
// Load sensors
_sensorInit();
// Configure stored values
_sensorConfigure();
// Load magnitudes
_magnitudesInit();
#if WEB_SUPPORT
// Websockets
wsOnSendRegister(_sensorWebSocketStart);
wsOnSendRegister(_sensorWebSocketSendData);
wsOnAfterParseRegister(_sensorConfigure);
// API
_sensorAPISetup();
#endif
}
void sensorLoop() {
static unsigned long last_update = 0;
static unsigned long report_count = 0;
if (_magnitudes.size() == 0) return;
// Tick hook
_sensorTick();
// Check if we should read new data
if (millis() - last_update > _sensor_read_interval) {
last_update = millis();
report_count = (report_count + 1) % _sensor_report_every;
double current;
double filtered;
char buffer[64];
// Pre-read hook
_sensorPre();
// Get readings
for (unsigned char i=0; i<_magnitudes.size(); i++) {
sensor_magnitude_t magnitude = _magnitudes[i];
if (magnitude.sensor->status()) {
unsigned char decimals = _magnitudeDecimals(magnitude.type);
current = magnitude.sensor->value(magnitude.local);
magnitude.filter->add(current);
// Special case
if (magnitude.type == MAGNITUDE_EVENTS) current = magnitude.filter->result();
current = _magnitudeProcess(magnitude.type, current);
_magnitudes[i].current = current;
// Debug
#if SENSOR_DEBUG
{
dtostrf(current, 1-sizeof(buffer), decimals, buffer);
DEBUG_MSG_P(PSTR("[SENSOR] %s - %s: %s%s\n"),
magnitude.sensor->slot(magnitude.local).c_str(),
_magnitudeTopic(magnitude.type).c_str(),
buffer,
_magnitudeUnits(magnitude.type).c_str()
);
}
#endif // SENSOR_DEBUG
// Time to report (we do it every _sensor_report_every readings)
if (report_count == 0) {
filtered = magnitude.filter->result();
magnitude.filter->reset();
filtered = _magnitudeProcess(magnitude.type, filtered);
_magnitudes[i].filtered = filtered;
// Check if there is a minimum change threshold to report
if (fabs(filtered - magnitude.reported) >= magnitude.min_change) {
_magnitudes[i].reported = filtered;
dtostrf(filtered, 1-sizeof(buffer), decimals, buffer);
#if MQTT_SUPPORT
if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) {
mqttSend(_magnitudeTopic(magnitude.type).c_str(), magnitude.global, buffer);
} else {
mqttSend(_magnitudeTopic(magnitude.type).c_str(), buffer);
}
#endif // MQTT_SUPPORT
#if INFLUXDB_SUPPORT
if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) {
idbSend(_magnitudeTopic(magnitude.type).c_str(), magnitude.global, buffer);
} else {
idbSend(_magnitudeTopic(magnitude.type).c_str(), buffer);
}
#endif // INFLUXDB_SUPPORT
#if DOMOTICZ_SUPPORT
{
char key[15];
snprintf_P(key, sizeof(key), PSTR("dczMagnitude%d"), i);
if (magnitude.type == MAGNITUDE_HUMIDITY) {
int status;
if (filtered > 70) {
status = HUMIDITY_WET;
} else if (filtered > 45) {
status = HUMIDITY_COMFORTABLE;
} else if (filtered > 30) {
status = HUMIDITY_NORMAL;
} else {
status = HUMIDITY_DRY;
}
char status_buf[5];
itoa(status, status_buf, 10);
domoticzSend(key, buffer, status_buf);
} else {
domoticzSend(key, 0, buffer);
}
}
#endif // DOMOTICZ_SUPPORT
} // if (fabs(filtered - magnitude.reported) >= magnitude.min_change)
} // if (report_count == 0)
} // if (magnitude.sensor->status())
} // for (unsigned char i=0; i<_magnitudes.size(); i++)
// Post-read hook
_sensorPost();
#if WEB_SUPPORT
wsSend(_sensorWebSocketSendData);
#endif
}
}
#endif // SENSOR_SUPPORT