Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1379 lines
42 KiB

/*
LIGHT MODULE
Copyright (C) 2016-2019 by Xose Pérez <xose dot perez at gmail dot com>
*/
#if LIGHT_PROVIDER != LIGHT_PROVIDER_NONE
#include "light.h"
#include <Ticker.h>
#include <Schedule.h>
#include <ArduinoJson.h>
#include <vector>
extern "C" {
#include "libs/fs_math.h"
}
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
#define PWM_CHANNEL_NUM_MAX LIGHT_CHANNELS
extern "C" {
#include "libs/pwm.h"
}
#endif
// -----------------------------------------------------------------------------
Ticker _light_comms_ticker;
Ticker _light_save_ticker;
Ticker _light_transition_ticker;
struct channel_t {
unsigned char pin; // real GPIO pin
bool reverse; // wether we should invert the value before using it
bool state; // is the channel ON
unsigned char inputValue; // raw value, without the brightness
unsigned char value; // normalized value, including brightness
unsigned char target; // target value
double current; // transition value
};
std::vector<channel_t> _light_channel;
bool _light_has_color = false;
bool _light_use_white = false;
bool _light_use_cct = false;
bool _light_use_gamma = false;
bool _light_provider_update = false;
bool _light_use_transitions = false;
unsigned int _light_transition_time = LIGHT_TRANSITION_TIME;
bool _light_dirty = false;
bool _light_state = false;
unsigned char _light_brightness = Light::BRIGHTNESS_MAX;
unsigned int _light_mireds = lround((Light::MIREDS_COLDWHITE + Light::MIREDS_WARMWHITE) / 2);
using light_brightness_func_t = void();
light_brightness_func_t* _light_brightness_func = nullptr;
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
#include <my92xx.h>
my92xx * _my92xx;
ARRAYINIT(unsigned char, _light_channel_map, MY92XX_MAPPING);
#endif
// UI hint about channel distribution
const char _light_channel_desc[5][5] PROGMEM = {
{'W', 0, 0, 0, 0},
{'W', 'C', 0, 0, 0},
{'R', 'G', 'B', 0, 0},
{'R', 'G', 'B', 'W', 0},
{'R', 'G', 'B', 'W', 'C'}
};
static_assert((LIGHT_CHANNELS * LIGHT_CHANNELS) <= (sizeof(_light_channel_desc)), "Out-of-bounds array access");
// Gamma Correction lookup table (8 bit)
const unsigned char _light_gamma_table[] PROGMEM = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11,
12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19,
19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28,
29, 30, 30, 31, 32, 33, 33, 34, 35, 35, 36, 37, 38, 39, 39, 40,
41, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71,
72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 89,
91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105, 106, 108, 109, 110,
112, 113, 115, 116, 118, 119, 121, 122, 123, 125, 126, 128, 130, 131, 133, 134,
136, 137, 139, 140, 142, 144, 145, 147, 149, 150, 152, 154, 155, 157, 159, 160,
162, 164, 166, 167, 169, 171, 173, 175, 176, 178, 180, 182, 184, 186, 187, 189,
191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221,
223, 225, 227, 229, 231, 233, 235, 238, 240, 242, 244, 246, 248, 251, 253, 255
};
static_assert(Light::VALUE_MAX <= sizeof(_light_gamma_table), "Out-of-bounds array access");
// -----------------------------------------------------------------------------
// UTILS
// -----------------------------------------------------------------------------
void _setValue(const unsigned char id, const unsigned int value) {
if (_light_channel[id].value != value) {
_light_channel[id].value = value;
_light_dirty = true;
}
}
void _setInputValue(const unsigned char id, const unsigned int value) {
if (_light_channel[id].inputValue != value) {
_light_channel[id].inputValue = value;
_light_dirty = true;
}
}
void _setRGBInputValue(unsigned char red, unsigned char green, unsigned char blue) {
_setInputValue(0, constrain(red, Light::VALUE_MIN, Light::VALUE_MAX));
_setInputValue(1, constrain(green, Light::VALUE_MIN, Light::VALUE_MAX));
_setInputValue(2, constrain(blue, Light::VALUE_MIN, Light::VALUE_MAX));
}
void _setCCTInputValue(unsigned char warm, unsigned char cold) {
_setInputValue(0, constrain(warm, Light::VALUE_MIN, Light::VALUE_MAX));
_setInputValue(1, constrain(cold, Light::VALUE_MIN, Light::VALUE_MAX));
}
void _lightApplyBrightness(size_t channels = lightChannels()) {
double brightness = static_cast<double>(_light_brightness) / static_cast<double>(Light::BRIGHTNESS_MAX);
channels = std::min(channels, lightChannels());
for (unsigned char i=0; i < lightChannels(); i++) {
if (i >= channels) brightness = 1;
_setValue(i, _light_channel[i].inputValue * brightness);
}
}
void _lightApplyBrightnessColor() {
double brightness = static_cast<double>(_light_brightness) / static_cast<double>(Light::BRIGHTNESS_MAX);
// Substract the common part from RGB channels and add it to white channel. So [250,150,50] -> [200,100,0,50]
unsigned char white = std::min(_light_channel[0].inputValue, std::min(_light_channel[1].inputValue, _light_channel[2].inputValue));
for (unsigned int i=0; i < 3; i++) {
_setValue(i, _light_channel[i].inputValue - white);
}
// Split the White Value across 2 White LED Strips.
if (_light_use_cct) {
// This change the range from 153-500 to 0-347 so we get a value between 0 and 1 in the end.
double miredFactor = ((double) _light_mireds - (double) Light::MIREDS_COLDWHITE)/((double) Light::MIREDS_WARMWHITE - (double) Light::MIREDS_COLDWHITE);
// set cold white
_light_channel[3].inputValue = 0;
_setValue(3, lround(((double) 1.0 - miredFactor) * white));
// set warm white
_light_channel[4].inputValue = 0;
_setValue(4, lround(miredFactor * white));
} else {
_light_channel[3].inputValue = 0;
_setValue(3, white);
}
// Scale up to equal input values. So [250,150,50] -> [200,100,0,50] -> [250, 125, 0, 63]
unsigned char max_in = std::max(_light_channel[0].inputValue, std::max(_light_channel[1].inputValue, _light_channel[2].inputValue));
unsigned char max_out = std::max(std::max(_light_channel[0].value, _light_channel[1].value), std::max(_light_channel[2].value, _light_channel[3].value));
unsigned char channelSize = _light_use_cct ? 5 : 4;
if (_light_use_cct) {
max_out = std::max(max_out, _light_channel[4].value);
}
double factor = (max_out > 0) ? (double) (max_in / max_out) : 0;
for (unsigned char i=0; i < channelSize; i++) {
_setValue(i, lround((double) _light_channel[i].value * factor * brightness));
}
// Scale white channel to match brightness
for (unsigned char i=3; i < channelSize; i++) {
_setValue(i, constrain(static_cast<unsigned int>(_light_channel[i].value * LIGHT_WHITE_FACTOR), Light::BRIGHTNESS_MIN, Light::BRIGHTNESS_MAX));
}
// For the rest of channels, don't apply brightness, it is already in the inputValue
// i should be 4 when RGBW and 5 when RGBWW
for (unsigned char i=channelSize; i < _light_channel.size(); i++) {
_setValue(i, _light_channel[i].inputValue);
}
}
String lightDesc(unsigned char id) {
if (id >= _light_channel.size()) return FPSTR(pstr_unknown);
const char tag = pgm_read_byte(&_light_channel_desc[_light_channel.size() - 1][id]);
switch (tag) {
case 'W': return F("WARM WHITE");
case 'C': return F("COLD WHITE");
case 'R': return F("RED");
case 'G': return F("GREEN");
case 'B': return F("BLUE");
default: break;
}
return FPSTR(pstr_unknown);
}
// -----------------------------------------------------------------------------
// Input Values
// -----------------------------------------------------------------------------
void _fromLong(unsigned long value, bool brightness) {
if (brightness) {
_setRGBInputValue((value >> 24) & 0xFF, (value >> 16) & 0xFF, (value >> 8) & 0xFF);
lightBrightness((value & 0xFF) * Light::BRIGHTNESS_MAX / 255);
} else {
_setRGBInputValue((value >> 16) & 0xFF, (value >> 8) & 0xFF, (value) & 0xFF);
}
}
void _fromRGB(const char * rgb) {
// 9 char #........ , 11 char ...,...,...
if (!_light_has_color) return;
if (!rgb || (strlen(rgb) == 0)) return;
// HEX value is always prefixed, like CSS
// values are interpreted like RGB + optional brightness
if (rgb[0] == '#') {
_fromLong(strtoul(rgb + 1, nullptr, 16), strlen(rgb + 1) > 7);
// With comma separated string, assume decimal values
} else {
const auto channels = _light_channel.size();
unsigned char count = 0;
char buf[16] = {0};
strncpy(buf, rgb, sizeof(buf) - 1);
char *tok = strtok(buf, ",");
while (tok != NULL) {
_setInputValue(count, atoi(tok));
if (++count == channels) break;
tok = strtok(NULL, ",");
}
// If less than 3 values received, set the rest to 0
if (count < 2) _setInputValue(1, 0);
if (count < 3) _setInputValue(2, 0);
return;
}
}
// HSV string is expected to be "H,S,V", where:
// 0 <= H <= 360
// 0 <= S <= 100
// 0 <= V <= 100
void _fromHSV(const char * hsv) {
if (!_light_has_color) return;
if (strlen(hsv) == 0) return;
char buf[16] = {0};
strncpy(buf, hsv, sizeof(buf) - 1);
unsigned char count = 0;
unsigned int value[3] = {0};
char * tok = strtok(buf, ",");
while (tok != NULL) {
value[count] = atoi(tok);
if (++count == 3) break;
tok = strtok(NULL, ",");
}
if (count != 3) return;
// HSV to RGB transformation -----------------------------------------------
//INPUT: [0,100,57]
//IS: [145,0,0]
//SHOULD: [255,0,0]
const double h = (value[0] == 360) ? 0 : (double) value[0] / 60.0;
const double f = (h - floor(h));
const double s = (double) value[1] / 100.0;
_light_brightness = lround((double) value[2] * (static_cast<double>(Light::BRIGHTNESS_MAX) / 100.0)); // (default 255/100)
const unsigned char p = lround(Light::VALUE_MAX * (1.0 - s));
const unsigned char q = lround(Light::VALUE_MAX * (1.0 - s * f));
const unsigned char t = lround(Light::VALUE_MAX * (1.0 - s * (1.0 - f)));
switch (int(h)) {
case 0:
_setRGBInputValue(Light::VALUE_MAX, t, p);
break;
case 1:
_setRGBInputValue(q, Light::VALUE_MAX, p);
break;
case 2:
_setRGBInputValue(p, Light::VALUE_MAX, t);
break;
case 3:
_setRGBInputValue(p, q, Light::VALUE_MAX);
break;
case 4:
_setRGBInputValue(t, p, Light::VALUE_MAX);
break;
case 5:
_setRGBInputValue(Light::VALUE_MAX, p, q);
break;
default:
_setRGBInputValue(Light::VALUE_MIN, Light::VALUE_MIN, Light::VALUE_MIN);
break;
}
}
// Thanks to Sacha Telgenhof for sharing this code in his AiLight library
// https://github.com/stelgenhof/AiLight
// Color temperature is measured in mireds (kelvin = 1e6/mired)
long _toKelvin(const long mireds) {
return constrain(static_cast<long>(1000000L / mireds), Light::KELVIN_WARMWHITE, Light::KELVIN_COLDWHITE);
}
long _toMireds(const long kelvin) {
return constrain(static_cast<long>(lround(1000000L / kelvin)), Light::MIREDS_COLDWHITE, Light::MIREDS_WARMWHITE);
}
void _lightMireds(const long kelvin) {
_light_mireds = _toMireds(kelvin);
}
void _lightMiredsCCT(const long kelvin) {
_lightMireds(kelvin);
// This change the range from 153-500 to 0-347 so we get a value between 0 and 1 in the end.
const double factor = ((double) _light_mireds - (double) Light::MIREDS_COLDWHITE)/((double) Light::MIREDS_WARMWHITE - (double) Light::MIREDS_COLDWHITE);
_setCCTInputValue(
lround(factor * Light::VALUE_MAX),
lround(((double) 1.0 - factor) * Light::VALUE_MAX)
);
}
void _fromKelvin(long kelvin) {
if (!_light_has_color) {
if (!_light_use_cct) return;
_lightMiredsCCT(kelvin);
return;
}
_lightMireds(kelvin);
if (_light_use_cct) {
_setRGBInputValue(Light::VALUE_MAX, Light::VALUE_MAX, Light::VALUE_MAX);
return;
}
// Calculate colors
kelvin /= 100;
const unsigned int red = (kelvin <= 66)
? Light::VALUE_MAX
: 329.698727446 * fs_pow((double) (kelvin - 60), -0.1332047592);
const unsigned int green = (kelvin <= 66)
? 99.4708025861 * fs_log(kelvin) - 161.1195681661
: 288.1221695283 * fs_pow((double) kelvin, -0.0755148492);
const unsigned int blue = (kelvin >= 66)
? Light::VALUE_MAX
: ((kelvin <= 19)
? 0
: 138.5177312231 * fs_log(kelvin - 10) - 305.0447927307);
_setRGBInputValue(red, green, blue);
}
void _fromMireds(const long mireds) {
_fromKelvin(_toKelvin(mireds));
}
// -----------------------------------------------------------------------------
// Output Values
// -----------------------------------------------------------------------------
void _toRGB(char * rgb, size_t len, bool target = false) {
unsigned long value = 0;
value += target ? _light_channel[0].target : _light_channel[0].inputValue;
value <<= 8;
value += target ? _light_channel[1].target : _light_channel[1].inputValue;
value <<= 8;
value += target ? _light_channel[2].target : _light_channel[2].inputValue;
snprintf_P(rgb, len, PSTR("#%06X"), value);
}
void _toHSV(char * hsv, size_t len) {
double h {0.}, s {0.}, v {0.};
double r {0.}, g {0.}, b {0.};
double min {0.}, max {0.};
r = static_cast<double>(_light_channel[0].target) / Light::VALUE_MAX;
g = static_cast<double>(_light_channel[1].target) / Light::VALUE_MAX;
b = static_cast<double>(_light_channel[2].target) / Light::VALUE_MAX;
min = std::min(r, std::min(g, b));
max = std::max(r, std::max(g, b));
v = 100.0 * max;
if (v == 0) {
h = s = 0;
} else {
s = 100.0 * (max - min) / max;
if (s == 0) {
h = 0;
} else {
if (max == r) {
if (g >= b) {
h = 0.0 + 60.0 * (g - b) / (max - min);
} else {
h = 360.0 + 60.0 * (g - b) / (max - min);
}
} else if (max == g) {
h = 120.0 + 60.0 * (b - r) / (max - min);
} else {
h = 240.0 + 60.0 * (r - g) / (max - min);
}
}
}
// Convert to string. Using lround, since we can't (yet) printf floats
snprintf(hsv, len, "%d,%d,%d",
static_cast<int>(lround(h)),
static_cast<int>(lround(s)),
static_cast<int>(lround(v))
);
}
void _toLong(char * color, size_t len, bool target) {
if (!_light_has_color) return;
snprintf_P(color, len, PSTR("%u,%u,%u"),
(target ? _light_channel[0].target : _light_channel[0].inputValue),
(target ? _light_channel[1].target : _light_channel[1].inputValue),
(target ? _light_channel[2].target : _light_channel[2].inputValue)
);
}
void _toLong(char * color, size_t len) {
_toLong(color, len, false);
}
void _toCSV(char * buffer, size_t len, bool applyBrightness, bool target) {
char num[10];
float b = applyBrightness ? (float) _light_brightness / Light::BRIGHTNESS_MAX : 1;
for (unsigned char i=0; i<_light_channel.size(); i++) {
itoa((target ? _light_channel[i].target : _light_channel[i].inputValue) * b, num, 10);
if (i>0) strncat(buffer, ",", len--);
strncat(buffer, num, len);
len = len - strlen(num);
}
}
void _toCSV(char * buffer, size_t len, bool applyBrightness) {
_toCSV(buffer, len, applyBrightness, false);
}
// See cores/esp8266/WMath.cpp::map
// Redefining as local method here to avoid breaking in unexpected ways in inputs like (0, 0, 0, 0, 1)
template <typename T, typename Tin, typename Tout> T _lightMap(T x, Tin in_min, Tin in_max, Tout out_min, Tout out_max) {
auto divisor = (in_max - in_min);
if (divisor == 0){
return -1; //AVR returns -1, SAM returns 0
}
return (x - in_min) * (out_max - out_min) / divisor + out_min;
}
int _lightAdjustValue(const int& value, const String& operation) {
if (!operation.length()) return value;
// if prefixed with a sign, treat expression as numerical operation
// otherwise, use as the new value
int updated = operation.toInt();
if (operation[0] == '+' || operation[0] == '-') {
updated = value + updated;
}
return updated;
}
void _lightAdjustBrightness(const char *payload) {
lightBrightness(_lightAdjustValue(lightBrightness(), payload));
}
void _lightAdjustChannel(unsigned char id, const char *payload) {
lightChannel(id, _lightAdjustValue(lightChannel(id), payload));
}
void _lightAdjustKelvin(const char *payload) {
_fromKelvin(_lightAdjustValue(_toKelvin(_light_mireds), payload));
}
void _lightAdjustMireds(const char *payload) {
_fromMireds(_lightAdjustValue(_light_mireds, payload));
}
// -----------------------------------------------------------------------------
// PROVIDER
// -----------------------------------------------------------------------------
unsigned int _toPWM(unsigned int value, bool gamma, bool reverse) {
value = constrain(value, Light::VALUE_MIN, Light::VALUE_MAX);
if (gamma) value = pgm_read_byte(_light_gamma_table + value);
if (Light::VALUE_MAX != Light::PWM_LIMIT) value = _lightMap(value, Light::VALUE_MIN, Light::VALUE_MAX, Light::PWM_MIN, Light::PWM_LIMIT);
if (reverse) value = LIGHT_LIMIT_PWM - value;
return value;
}
// Returns a PWM value for the given channel ID
unsigned int _toPWM(unsigned char id) {
bool useGamma = _light_use_gamma && _light_has_color && (id < 3);
return _toPWM(_light_channel[id].current, useGamma, _light_channel[id].reverse);
}
void _lightTransition(unsigned long step) {
// Transitions based on current step. If step == 0, then it is the last transition
for (auto& channel : _light_channel) {
if (!step) {
channel.current = channel.target;
} else {
channel.current += (double) (channel.target - channel.current) / (step + 1);
}
}
}
void _lightProviderUpdate(unsigned long steps) {
if (_light_provider_update) return;
_light_provider_update = true;
_lightTransition(--steps);
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
for (unsigned char i=0; i<_light_channel.size(); i++) {
_my92xx->setChannel(_light_channel_map[i], _toPWM(i));
}
_my92xx->setState(true);
_my92xx->update();
#endif
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
for (unsigned int i=0; i < _light_channel.size(); i++) {
pwm_set_duty(_toPWM(i), i);
}
pwm_start();
#endif
// This is not the final value, update again
if (steps) _light_transition_ticker.once_ms(LIGHT_TRANSITION_STEP, _lightProviderScheduleUpdate, steps);
_light_provider_update = false;
}
void _lightProviderScheduleUpdate(unsigned long steps) {
schedule_function(std::bind(_lightProviderUpdate, steps));
}
// -----------------------------------------------------------------------------
// PERSISTANCE
// -----------------------------------------------------------------------------
union light_rtcmem_t {
struct {
uint8_t channels[5];
uint8_t brightness;
uint16_t mired;
} packed;
uint64_t value;
};
#define LIGHT_RTCMEM_CHANNELS_MAX sizeof(light_rtcmem_t().packed.channels)
void _lightSaveRtcmem() {
if (lightChannels() > LIGHT_RTCMEM_CHANNELS_MAX) return;
light_rtcmem_t light;
for (unsigned int i=0; i < lightChannels(); i++) {
light.packed.channels[i] = _light_channel[i].inputValue;
}
light.packed.brightness = _light_brightness;
light.packed.mired = _light_mireds;
Rtcmem->light = light.value;
}
void _lightRestoreRtcmem() {
if (lightChannels() > LIGHT_RTCMEM_CHANNELS_MAX) return;
light_rtcmem_t light;
light.value = Rtcmem->light;
for (unsigned int i=0; i < lightChannels(); i++) {
_light_channel[i].inputValue = light.packed.channels[i];
}
_light_brightness = light.packed.brightness;
_light_mireds = light.packed.mired;
}
void _lightSaveSettings() {
for (unsigned int i=0; i < _light_channel.size(); i++) {
setSetting("ch", i, _light_channel[i].inputValue);
}
setSetting("brightness", _light_brightness);
setSetting("mireds", _light_mireds);
saveSettings();
}
void _lightRestoreSettings() {
for (unsigned int i=0; i < _light_channel.size(); i++) {
_light_channel[i].inputValue = getSetting("ch", i, (i == 0) ? Light::VALUE_MAX : 0).toInt();
}
_light_brightness = getSetting("brightness", Light::BRIGHTNESS_MAX).toInt();
_light_mireds = getSetting("mireds", _light_mireds).toInt();
}
// -----------------------------------------------------------------------------
// MQTT
// -----------------------------------------------------------------------------
#if MQTT_SUPPORT
void _lightMQTTCallback(unsigned int type, const char * topic, const char * payload) {
String mqtt_group_color = getSetting("mqttGroupColor");
if (type == MQTT_CONNECT_EVENT) {
mqttSubscribe(MQTT_TOPIC_BRIGHTNESS);
if (_light_has_color) {
mqttSubscribe(MQTT_TOPIC_COLOR_RGB);
mqttSubscribe(MQTT_TOPIC_COLOR_HSV);
mqttSubscribe(MQTT_TOPIC_TRANSITION);
}
if (_light_has_color || _light_use_cct) {
mqttSubscribe(MQTT_TOPIC_MIRED);
mqttSubscribe(MQTT_TOPIC_KELVIN);
}
// Group color
if (mqtt_group_color.length() > 0) mqttSubscribeRaw(mqtt_group_color.c_str());
// Channels
char buffer[strlen(MQTT_TOPIC_CHANNEL) + 3];
snprintf_P(buffer, sizeof(buffer), PSTR("%s/+"), MQTT_TOPIC_CHANNEL);
mqttSubscribe(buffer);
}
if (type == MQTT_MESSAGE_EVENT) {
// Group color
if ((mqtt_group_color.length() > 0) & (mqtt_group_color.equals(topic))) {
lightColor(payload, true);
lightUpdate(true, mqttForward(), false);
return;
}
// Match topic
String t = mqttMagnitude((char *) topic);
// Color temperature in mireds
if (t.equals(MQTT_TOPIC_MIRED)) {
_lightAdjustMireds(payload);
lightUpdate(true, mqttForward());
return;
}
// Color temperature in kelvins
if (t.equals(MQTT_TOPIC_KELVIN)) {
_lightAdjustKelvin(payload);
lightUpdate(true, mqttForward());
return;
}
// Color
if (t.equals(MQTT_TOPIC_COLOR_RGB)) {
lightColor(payload, true);
lightUpdate(true, mqttForward());
return;
}
if (t.equals(MQTT_TOPIC_COLOR_HSV)) {
lightColor(payload, false);
lightUpdate(true, mqttForward());
return;
}
// Brightness
if (t.equals(MQTT_TOPIC_BRIGHTNESS)) {
_lightAdjustBrightness(payload);
lightUpdate(true, mqttForward());
return;
}
// Transitions
if (t.equals(MQTT_TOPIC_TRANSITION)) {
lightTransitionTime(atol(payload));
return;
}
// Channel
if (t.startsWith(MQTT_TOPIC_CHANNEL)) {
unsigned int channelID = t.substring(strlen(MQTT_TOPIC_CHANNEL)+1).toInt();
if (channelID >= _light_channel.size()) {
DEBUG_MSG_P(PSTR("[LIGHT] Wrong channelID (%d)\n"), channelID);
return;
}
_lightAdjustChannel(channelID, payload);
lightUpdate(true, mqttForward());
return;
}
}
}
void lightMQTT() {
char buffer[20];
if (_light_has_color) {
// Color
if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) {
_toRGB(buffer, sizeof(buffer), true);
} else {
_toLong(buffer, sizeof(buffer), true);
}
mqttSend(MQTT_TOPIC_COLOR_RGB, buffer);
_toHSV(buffer, sizeof(buffer));
mqttSend(MQTT_TOPIC_COLOR_HSV, buffer);
}
if (_light_has_color || _light_use_cct) {
// Mireds
snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_mireds);
mqttSend(MQTT_TOPIC_MIRED, buffer);
}
// Channels
for (unsigned int i=0; i < _light_channel.size(); i++) {
itoa(_light_channel[i].target, buffer, 10);
mqttSend(MQTT_TOPIC_CHANNEL, i, buffer);
}
// Brightness
snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_brightness);
mqttSend(MQTT_TOPIC_BRIGHTNESS, buffer);
}
void lightMQTTGroup() {
String mqtt_group_color = getSetting("mqttGroupColor");
if (mqtt_group_color.length()>0) {
char buffer[20];
_toCSV(buffer, sizeof(buffer), true);
mqttSendRaw(mqtt_group_color.c_str(), buffer);
}
}
#endif
// -----------------------------------------------------------------------------
// Broker
// -----------------------------------------------------------------------------
#if BROKER_SUPPORT
void lightBroker() {
char buffer[10];
for (unsigned int i=0; i < _light_channel.size(); i++) {
itoa(_light_channel[i].inputValue, buffer, 10);
brokerPublish(BROKER_MSG_TYPE_STATUS, MQTT_TOPIC_CHANNEL, i, buffer);
}
}
#endif
// -----------------------------------------------------------------------------
// API
// -----------------------------------------------------------------------------
size_t lightChannels() {
return _light_channel.size();
}
bool lightHasColor() {
return _light_has_color;
}
bool lightUseCCT() {
return _light_use_cct;
}
void _lightComms(const unsigned char mask) {
// Report color and brightness to MQTT broker
#if MQTT_SUPPORT
if (mask & Light::COMMS_NORMAL) lightMQTT();
if (mask & Light::COMMS_GROUP) lightMQTTGroup();
#endif
// Report color to WS clients (using current brightness setting)
#if WEB_SUPPORT
wsPost(_lightWebSocketStatus);
#endif
// Report channels to local broker
#if BROKER_SUPPORT
lightBroker();
#endif
}
void lightUpdate(bool save, bool forward, bool group_forward) {
// Calculate values based on inputs and brightness
_light_brightness_func();
// Only update if a channel has changed
if (!_light_dirty) return;
_light_dirty = false;
// Update channels
for (unsigned int i=0; i < _light_channel.size(); i++) {
_light_channel[i].target = _light_state && _light_channel[i].state ? _light_channel[i].value : 0;
//DEBUG_MSG_P("[LIGHT] Channel #%u target value: %u\n", i, _light_channel[i].target);
}
// Channel transition will be handled by the provider function
// User can configure total transition time, step time is a fixed value
const unsigned long steps = _light_use_transitions ? _light_transition_time / LIGHT_TRANSITION_STEP : 1;
_light_transition_ticker.once_ms(LIGHT_TRANSITION_STEP, _lightProviderScheduleUpdate, steps);
// Delay every communication 100ms to avoid jamming
const unsigned char mask =
((forward) ? Light::COMMS_NORMAL : Light::COMMS_NONE) |
((group_forward) ? Light::COMMS_GROUP : Light::COMMS_NONE);
_light_comms_ticker.once_ms(LIGHT_COMMS_DELAY, _lightComms, mask);
_lightSaveRtcmem();
#if LIGHT_SAVE_ENABLED
// Delay saving to EEPROM 5 seconds to avoid wearing it out unnecessarily
if (save) _light_save_ticker.once(LIGHT_SAVE_DELAY, _lightSaveSettings);
#endif
};
void lightUpdate(bool save, bool forward) {
lightUpdate(save, forward, true);
}
#if LIGHT_SAVE_ENABLED == 0
void lightSave() {
_lightSaveSettings();
}
#endif
void lightState(unsigned char i, bool state) {
if (_light_channel[i].state != state) {
_light_channel[i].state = state;
_light_dirty = true;
}
}
bool lightState(unsigned char i) {
return _light_channel[i].state;
}
void lightState(bool state) {
if (_light_state != state) {
_light_state = state;
_light_dirty = true;
}
}
bool lightState() {
return _light_state;
}
void lightColor(const char * color, bool rgb) {
DEBUG_MSG_P(PSTR("[LIGHT] %s: %s\n"), rgb ? "RGB" : "HSV", color);
if (rgb) {
_fromRGB(color);
} else {
_fromHSV(color);
}
}
void lightColor(const char * color) {
lightColor(color, true);
}
void lightColor(unsigned long color) {
_fromLong(color, false);
}
String lightColor(bool rgb) {
char str[12];
if (rgb) {
_toRGB(str, sizeof(str));
} else {
_toHSV(str, sizeof(str));
}
return String(str);
}
String lightColor() {
return lightColor(true);
}
long lightChannel(unsigned char id) {
if (id <= _light_channel.size()) {
return _light_channel[id].inputValue;
}
return 0;
}
void lightChannel(unsigned char id, long value) {
if (id > _light_channel.size()) return;
_setInputValue(id, constrain(value, Light::VALUE_MIN, Light::VALUE_MAX));
}
void lightChannelStep(unsigned char id, long steps, long multiplier) {
lightChannel(id, static_cast<int>(lightChannel(id)) + (steps * multiplier));
}
long lightBrightness() {
return _light_brightness;
}
void lightBrightness(long brightness) {
_light_brightness = constrain(brightness, Light::BRIGHTNESS_MIN, Light::BRIGHTNESS_MAX);
}
void lightBrightnessStep(long steps, long multiplier) {
lightBrightness(static_cast<int>(_light_brightness) + (steps * multiplier));
}
unsigned int lightTransitionTime() {
if (_light_use_transitions) {
return _light_transition_time;
} else {
return 0;
}
}
void lightTransitionTime(unsigned long m) {
if (0 == m) {
_light_use_transitions = false;
} else {
_light_use_transitions = true;
_light_transition_time = m;
}
setSetting("useTransitions", _light_use_transitions);
setSetting("lightTime", _light_transition_time);
saveSettings();
}
// -----------------------------------------------------------------------------
// SETUP
// -----------------------------------------------------------------------------
#if WEB_SUPPORT
bool _lightWebSocketOnKeyCheck(const char * key, JsonVariant& value) {
if (strncmp(key, "light", 5) == 0) return true;
if (strncmp(key, "use", 3) == 0) return true;
return false;
}
void _lightWebSocketStatus(JsonObject& root) {
if (_light_has_color) {
if (getSetting("useRGB", LIGHT_USE_RGB).toInt() == 1) {
root["rgb"] = lightColor(true);
} else {
root["hsv"] = lightColor(false);
}
}
if (_light_use_cct) {
root["useCCT"] = _light_use_cct;
root["mireds"] = _light_mireds;
}
JsonArray& channels = root.createNestedArray("channels");
for (unsigned char id=0; id < _light_channel.size(); id++) {
channels.add(lightChannel(id));
}
root["brightness"] = lightBrightness();
}
void _lightWebSocketOnVisible(JsonObject& root) {
root["colorVisible"] = 1;
}
void _lightWebSocketOnConnected(JsonObject& root) {
root["mqttGroupColor"] = getSetting("mqttGroupColor");
root["useColor"] = _light_has_color;
root["useWhite"] = _light_use_white;
root["useGamma"] = _light_use_gamma;
root["useTransitions"] = _light_use_transitions;
root["useCSS"] = getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1;
root["useRGB"] = getSetting("useRGB", LIGHT_USE_RGB).toInt() == 1;
root["lightTime"] = _light_transition_time;
_lightWebSocketStatus(root);
}
void _lightWebSocketOnAction(uint32_t client_id, const char * action, JsonObject& data) {
if (_light_has_color) {
if (strcmp(action, "color") == 0) {
if (data.containsKey("rgb")) {
lightColor(data["rgb"], true);
lightUpdate(true, true);
}
if (data.containsKey("hsv")) {
lightColor(data["hsv"], false);
lightUpdate(true, true);
}
}
}
if (_light_use_cct) {
if (strcmp(action, "mireds") == 0) {
_fromMireds(data["mireds"]);
lightUpdate(true, true);
}
}
if (strcmp(action, "channel") == 0) {
if (data.containsKey("id") && data.containsKey("value")) {
lightChannel(data["id"].as<unsigned char>(), data["value"].as<int>());
lightUpdate(true, true);
}
}
if (strcmp(action, "brightness") == 0) {
if (data.containsKey("value")) {
lightBrightness(data["value"].as<int>());
lightUpdate(true, true);
}
}
}
#endif
#if API_SUPPORT
void _lightAPISetup() {
if (_light_has_color) {
apiRegister(MQTT_TOPIC_COLOR_RGB,
[](char * buffer, size_t len) {
if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) {
_toRGB(buffer, len, true);
} else {
_toLong(buffer, len, true);
}
},
[](const char * payload) {
lightColor(payload, true);
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_COLOR_HSV,
[](char * buffer, size_t len) {
_toHSV(buffer, len);
},
[](const char * payload) {
lightColor(payload, false);
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_KELVIN,
[](char * buffer, size_t len) {},
[](const char * payload) {
_lightAdjustKelvin(payload);
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_MIRED,
[](char * buffer, size_t len) {},
[](const char * payload) {
_lightAdjustMireds(payload);
lightUpdate(true, true);
}
);
}
for (unsigned int id=0; id<_light_channel.size(); id++) {
char key[15];
snprintf_P(key, sizeof(key), PSTR("%s/%d"), MQTT_TOPIC_CHANNEL, id);
apiRegister(key,
[id](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), _light_channel[id].target);
},
[id](const char * payload) {
_lightAdjustChannel(id, payload);
lightUpdate(true, true);
}
);
}
apiRegister(MQTT_TOPIC_TRANSITION,
[](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), lightTransitionTime());
},
[](const char * payload) {
lightTransitionTime(atol(payload));
}
);
apiRegister(MQTT_TOPIC_BRIGHTNESS,
[](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), _light_brightness);
},
[](const char * payload) {
_lightAdjustBrightness(payload);
lightUpdate(true, true);
}
);
}
#endif // API_SUPPORT
#if TERMINAL_SUPPORT
void _lightInitCommands() {
terminalRegisterCommand(F("BRIGHTNESS"), [](Embedis* e) {
if (e->argc > 1) {
_lightAdjustBrightness(e->argv[1]);
lightUpdate(true, true);
}
DEBUG_MSG_P(PSTR("Brightness: %u\n"), lightBrightness());
terminalOK();
});
terminalRegisterCommand(F("CHANNEL"), [](Embedis* e) {
if (e->argc < 2) {
terminalError(F("CHANNEL <ID> [<VALUE>]"));
return;
}
const int id = String(e->argv[1]).toInt();
if (id < 0 || id >= lightChannels()) {
terminalError(F("Channel value out of range"));
return;
}
if (e->argc > 2) {
_lightAdjustChannel(id, e->argv[2]);
lightUpdate(true, true);
}
DEBUG_MSG_P(PSTR("Channel #%u (%s): %d\n"), id, lightDesc(id).c_str(), lightChannel(id));
terminalOK();
});
terminalRegisterCommand(F("COLOR"), [](Embedis* e) {
if (e->argc > 1) {
lightColor(e->argv[1]);
lightUpdate(true, true);
}
DEBUG_MSG_P(PSTR("Color: %s\n"), lightColor().c_str());
terminalOK();
});
terminalRegisterCommand(F("KELVIN"), [](Embedis* e) {
if (e->argc > 1) {
_lightAdjustKelvin(e->argv[1]);
lightUpdate(true, true);
}
DEBUG_MSG_P(PSTR("Color: %s\n"), lightColor().c_str());
terminalOK();
});
terminalRegisterCommand(F("MIRED"), [](Embedis* e) {
if (e->argc > 1) {
_lightAdjustMireds(e->argv[1]);
lightUpdate(true, true);
}
DEBUG_MSG_P(PSTR("Color: %s\n"), lightColor().c_str());
terminalOK();
});
}
#endif // TERMINAL_SUPPORT
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
const unsigned long _light_iomux[16] PROGMEM = {
PERIPHS_IO_MUX_GPIO0_U, PERIPHS_IO_MUX_U0TXD_U, PERIPHS_IO_MUX_GPIO2_U, PERIPHS_IO_MUX_U0RXD_U,
PERIPHS_IO_MUX_GPIO4_U, PERIPHS_IO_MUX_GPIO5_U, PERIPHS_IO_MUX_SD_CLK_U, PERIPHS_IO_MUX_SD_DATA0_U,
PERIPHS_IO_MUX_SD_DATA1_U, PERIPHS_IO_MUX_SD_DATA2_U, PERIPHS_IO_MUX_SD_DATA3_U, PERIPHS_IO_MUX_SD_CMD_U,
PERIPHS_IO_MUX_MTDI_U, PERIPHS_IO_MUX_MTCK_U, PERIPHS_IO_MUX_MTMS_U, PERIPHS_IO_MUX_MTDO_U
};
const unsigned long _light_iofunc[16] PROGMEM = {
FUNC_GPIO0, FUNC_GPIO1, FUNC_GPIO2, FUNC_GPIO3,
FUNC_GPIO4, FUNC_GPIO5, FUNC_GPIO6, FUNC_GPIO7,
FUNC_GPIO8, FUNC_GPIO9, FUNC_GPIO10, FUNC_GPIO11,
FUNC_GPIO12, FUNC_GPIO13, FUNC_GPIO14, FUNC_GPIO15
};
#endif
void _lightConfigure() {
_light_has_color = getSetting("useColor", LIGHT_USE_COLOR).toInt() == 1;
if (_light_has_color && (_light_channel.size() < 3)) {
_light_has_color = false;
setSetting("useColor", _light_has_color);
}
_light_use_white = getSetting("useWhite", LIGHT_USE_WHITE).toInt() == 1;
if (_light_use_white && (_light_channel.size() < 4) && (_light_channel.size() != 2)) {
_light_use_white = false;
setSetting("useWhite", _light_use_white);
}
if (_light_has_color) {
if (_light_use_white) {
_light_brightness_func = _lightApplyBrightnessColor;
} else {
_light_brightness_func = []() { _lightApplyBrightness(3); };
}
} else {
_light_brightness_func = []() { _lightApplyBrightness(); };
}
_light_use_cct = getSetting("useCCT", LIGHT_USE_CCT).toInt() == 1;
if (_light_use_cct && (((_light_channel.size() < 5) && (_light_channel.size() != 2)) || !_light_use_white)) {
_light_use_cct = false;
setSetting("useCCT", _light_use_cct);
}
_light_use_gamma = getSetting("useGamma", LIGHT_USE_GAMMA).toInt() == 1;
_light_use_transitions = getSetting("useTransitions", LIGHT_USE_TRANSITIONS).toInt() == 1;
_light_transition_time = getSetting("lightTime", LIGHT_TRANSITION_TIME).toInt();
}
void lightSetup() {
#ifdef LIGHT_ENABLE_PIN
pinMode(LIGHT_ENABLE_PIN, OUTPUT);
digitalWrite(LIGHT_ENABLE_PIN, HIGH);
#endif
_light_channel.reserve(LIGHT_CHANNELS);
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
_my92xx = new my92xx(MY92XX_MODEL, MY92XX_CHIPS, MY92XX_DI_PIN, MY92XX_DCKI_PIN, MY92XX_COMMAND);
for (unsigned char i=0; i<LIGHT_CHANNELS; i++) {
_light_channel.push_back((channel_t) {0, false, true, 0, 0, 0});
}
#endif
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
#ifdef LIGHT_CH1_PIN
_light_channel.push_back((channel_t) {LIGHT_CH1_PIN, LIGHT_CH1_INVERSE, true, 0, 0, 0});
#endif
#ifdef LIGHT_CH2_PIN
_light_channel.push_back((channel_t) {LIGHT_CH2_PIN, LIGHT_CH2_INVERSE, true, 0, 0, 0});
#endif
#ifdef LIGHT_CH3_PIN
_light_channel.push_back((channel_t) {LIGHT_CH3_PIN, LIGHT_CH3_INVERSE, true, 0, 0, 0});
#endif
#ifdef LIGHT_CH4_PIN
_light_channel.push_back((channel_t) {LIGHT_CH4_PIN, LIGHT_CH4_INVERSE, true, 0, 0, 0});
#endif
#ifdef LIGHT_CH5_PIN
_light_channel.push_back((channel_t) {LIGHT_CH5_PIN, LIGHT_CH5_INVERSE, true, 0, 0, 0});
#endif
uint32 pwm_duty_init[PWM_CHANNEL_NUM_MAX];
uint32 io_info[PWM_CHANNEL_NUM_MAX][3];
for (unsigned int i=0; i < _light_channel.size(); i++) {
const auto pin = _light_channel.at(i).pin;
pwm_duty_init[i] = 0;
io_info[i][0] = pgm_read_dword(&_light_iomux[pin]);
io_info[i][1] = pgm_read_dword(&_light_iofunc[pin]);
io_info[i][2] = pin;
pinMode(pin, OUTPUT);
}
pwm_init(LIGHT_MAX_PWM, pwm_duty_init, PWM_CHANNEL_NUM_MAX, io_info);
pwm_start();
#endif
DEBUG_MSG_P(PSTR("[LIGHT] LIGHT_PROVIDER = %d\n"), LIGHT_PROVIDER);
DEBUG_MSG_P(PSTR("[LIGHT] Number of channels: %d\n"), _light_channel.size());
_lightConfigure();
if (rtcmemStatus()) {
_lightRestoreRtcmem();
} else {
_lightRestoreSettings();
}
lightUpdate(false, false);
#if WEB_SUPPORT
wsRegister()
.onVisible(_lightWebSocketOnVisible)
.onConnected(_lightWebSocketOnConnected)
.onAction(_lightWebSocketOnAction)
.onKeyCheck(_lightWebSocketOnKeyCheck);
#endif
#if API_SUPPORT
_lightAPISetup();
#endif
#if MQTT_SUPPORT
mqttRegister(_lightMQTTCallback);
#endif
#if TERMINAL_SUPPORT
_lightInitCommands();
#endif
// Main callbacks
espurnaRegisterReload([]() {
#if LIGHT_SAVE_ENABLED == 0
lightSave();
#endif
_lightConfigure();
});
}
#endif // LIGHT_PROVIDER != LIGHT_PROVIDER_NONE