Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1320 lines
47 KiB

/*
SENSOR MODULE
Copyright (C) 2016-2018 by Xose Pérez <xose dot perez at gmail dot com>
Module key prefix: sns
Magnitude-based key prefix: pwr ene cur vol tmp hum
Sensor-based key previs: air am ana bh bmx cse dht dig ds ech emon evt gei guv hlw mhz ntc pms pzem sht son tmp3x v92
*/
#if SENSOR_SUPPORT
#include <vector>
#include "filters/LastFilter.h"
#include "filters/MaxFilter.h"
#include "filters/MedianFilter.h"
#include "filters/MovingAverageFilter.h"
#include "sensors/BaseSensor.h"
typedef struct {
BaseSensor * sensor; // Sensor object
BaseFilter * filter; // Filter object
unsigned char local; // Local index in its provider
unsigned char type; // Type of measurement
unsigned char global; // Global index in its type
double current; // Current (last) value, unfiltered
double reported; // Last reported value
double min_change; // Minimum value change to report
double max_change; // Maximum value change to report
} sensor_magnitude_t;
std::vector<BaseSensor *> _sensors;
std::vector<sensor_magnitude_t> _magnitudes;
bool _sensors_ready = false;
unsigned char _counts[MAGNITUDE_MAX];
bool _sensor_realtime = API_REAL_TIME_VALUES;
unsigned long _sensor_read_interval = 1000 * SENSOR_READ_INTERVAL;
unsigned char _sensor_report_every = SENSOR_REPORT_EVERY;
unsigned char _sensor_save_every = SENSOR_SAVE_EVERY;
unsigned char _sensor_power_units = SENSOR_POWER_UNITS;
unsigned char _sensor_energy_units = SENSOR_ENERGY_UNITS;
unsigned char _sensor_temperature_units = SENSOR_TEMPERATURE_UNITS;
double _sensor_temperature_correction = SENSOR_TEMPERATURE_CORRECTION;
double _sensor_humidity_correction = SENSOR_HUMIDITY_CORRECTION;
String _sensor_energy_reset_ts = String();
// -----------------------------------------------------------------------------
// Private
// -----------------------------------------------------------------------------
unsigned char _magnitudeDecimals(unsigned char type) {
// Hardcoded decimals (these should be linked to the unit, instead of the magnitude)
if (type == MAGNITUDE_ENERGY ||
type == MAGNITUDE_ENERGY_DELTA) {
if (_sensor_energy_units == ENERGY_KWH) return 3;
}
if (type == MAGNITUDE_POWER_ACTIVE ||
type == MAGNITUDE_POWER_APPARENT ||
type == MAGNITUDE_POWER_REACTIVE) {
if (_sensor_power_units == POWER_KILOWATTS) return 3;
}
if (type < MAGNITUDE_MAX) return pgm_read_byte(magnitude_decimals + type);
return 0;
}
double _magnitudeProcess(unsigned char type, double value) {
// Hardcoded conversions (these should be linked to the unit, instead of the magnitude)
if (type == MAGNITUDE_TEMPERATURE) {
if (_sensor_temperature_units == TMP_FAHRENHEIT) value = value * 1.8 + 32;
value = value + _sensor_temperature_correction;
}
if (type == MAGNITUDE_HUMIDITY) {
value = constrain(value + _sensor_humidity_correction, 0, 100);
}
if (type == MAGNITUDE_ENERGY ||
type == MAGNITUDE_ENERGY_DELTA) {
if (_sensor_energy_units == ENERGY_KWH) value = value / 3600000;
}
if (type == MAGNITUDE_POWER_ACTIVE ||
type == MAGNITUDE_POWER_APPARENT ||
type == MAGNITUDE_POWER_REACTIVE) {
if (_sensor_power_units == POWER_KILOWATTS) value = value / 1000;
}
return roundTo(value, _magnitudeDecimals(type));
}
// -----------------------------------------------------------------------------
#if WEB_SUPPORT
void _sensorWebSocketSendData(JsonObject& root) {
char buffer[10];
bool hasTemperature = false;
bool hasHumidity = false;
JsonArray& list = root.createNestedArray("magnitudes");
for (unsigned char i=0; i<_magnitudes.size(); i++) {
sensor_magnitude_t magnitude = _magnitudes[i];
if (magnitude.type == MAGNITUDE_EVENT) continue;
unsigned char decimals = _magnitudeDecimals(magnitude.type);
dtostrf(magnitude.current, 1-sizeof(buffer), decimals, buffer);
JsonObject& element = list.createNestedObject();
element["index"] = int(magnitude.global);
element["type"] = int(magnitude.type);
element["value"] = String(buffer);
element["units"] = magnitudeUnits(magnitude.type);
element["error"] = magnitude.sensor->error();
if (magnitude.type == MAGNITUDE_ENERGY) {
if (_sensor_energy_reset_ts.length() == 0) _sensorResetTS();
element["description"] = magnitude.sensor->slot(magnitude.local) + String(" (since ") + _sensor_energy_reset_ts + String(")");
} else {
element["description"] = magnitude.sensor->slot(magnitude.local);
}
if (magnitude.type == MAGNITUDE_TEMPERATURE) hasTemperature = true;
if (magnitude.type == MAGNITUDE_HUMIDITY) hasHumidity = true;
}
if (hasTemperature) root["tmpVisible"] = 1;
if (hasHumidity) root["humVisible"] = 1;
}
void _sensorWebSocketStart(JsonObject& root) {
for (unsigned char i=0; i<_sensors.size(); i++) {
BaseSensor * sensor = _sensors[i];
#if EMON_ANALOG_SUPPORT
if (sensor->getID() == SENSOR_EMON_ANALOG_ID) {
root["emonVisible"] = 1;
root["pwrVisible"] = 1;
root["volNominal"] = ((EmonAnalogSensor *) sensor)->getVoltage();
}
#endif
#if HLW8012_SUPPORT
if (sensor->getID() == SENSOR_HLW8012_ID) {
root["hlwVisible"] = 1;
root["pwrVisible"] = 1;
}
#endif
#if CSE7766_SUPPORT
if (sensor->getID() == SENSOR_CSE7766_ID) {
root["cseVisible"] = 1;
root["pwrVisible"] = 1;
}
#endif
#if V9261F_SUPPORT
if (sensor->getID() == SENSOR_V9261F_ID) {
root["pwrVisible"] = 1;
}
#endif
#if ECH1560_SUPPORT
if (sensor->getID() == SENSOR_ECH1560_ID) {
root["pwrVisible"] = 1;
}
#endif
#if PZEM004T_SUPPORT
if (sensor->getID() == SENSOR_PZEM004T_ID) {
root["pzemVisible"] = 1;
root["pwrVisible"] = 1;
}
#endif
}
if (_magnitudes.size() > 0) {
root["snsVisible"] = 1;
root["pwrUnits"] = _sensor_power_units;
root["eneUnits"] = _sensor_energy_units;
root["tmpUnits"] = _sensor_temperature_units;
root["tmpOffset"] = _sensor_temperature_correction;
root["humOffset"] = _sensor_humidity_correction;
root["snsRead"] = _sensor_read_interval / 1000;
root["snsReport"] = _sensor_report_every;
root["snsSave"] = _sensor_save_every;
}
/*
// Sensors manifest
JsonArray& manifest = root.createNestedArray("manifest");
#if BMX280_SUPPORT
BMX280Sensor::manifest(manifest);
#endif
// Sensors configuration
JsonArray& sensors = root.createNestedArray("sensors");
for (unsigned char i; i<_sensors.size(); i++) {
JsonObject& sensor = sensors.createNestedObject();
sensor["index"] = i;
sensor["id"] = _sensors[i]->getID();
_sensors[i]->getConfig(sensor);
}
*/
}
#endif // WEB_SUPPORT
#if API_SUPPORT
void _sensorAPISetup() {
for (unsigned char magnitude_id=0; magnitude_id<_magnitudes.size(); magnitude_id++) {
sensor_magnitude_t magnitude = _magnitudes[magnitude_id];
String topic = magnitudeTopic(magnitude.type);
if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) topic = topic + "/" + String(magnitude.global);
apiRegister(topic.c_str(), [magnitude_id](char * buffer, size_t len) {
sensor_magnitude_t magnitude = _magnitudes[magnitude_id];
unsigned char decimals = _magnitudeDecimals(magnitude.type);
double value = _sensor_realtime ? magnitude.current : magnitude.reported;
dtostrf(value, 1-len, decimals, buffer);
});
}
}
#endif // API_SUPPORT
#if TERMINAL_SUPPORT
void _sensorInitCommands() {
settingsRegisterCommand(F("MAGNITUDES"), [](Embedis* e) {
for (unsigned char i=0; i<_magnitudes.size(); i++) {
sensor_magnitude_t magnitude = _magnitudes[i];
DEBUG_MSG_P(PSTR("[SENSOR] * %2d: %s @ %s (%s/%d)\n"),
i,
magnitudeTopic(magnitude.type).c_str(),
magnitude.sensor->slot(magnitude.local).c_str(),
magnitudeTopic(magnitude.type).c_str(),
magnitude.global
);
}
DEBUG_MSG_P(PSTR("+OK\n"));
});
}
#endif
void _sensorTick() {
for (unsigned char i=0; i<_sensors.size(); i++) {
_sensors[i]->tick();
}
}
void _sensorPre() {
for (unsigned char i=0; i<_sensors.size(); i++) {
_sensors[i]->pre();
if (!_sensors[i]->status()) {
DEBUG_MSG_P(PSTR("[SENSOR] Error reading data from %s (error: %d)\n"),
_sensors[i]->description().c_str(),
_sensors[i]->error()
);
}
}
}
void _sensorPost() {
for (unsigned char i=0; i<_sensors.size(); i++) {
_sensors[i]->post();
}
}
void _sensorResetTS() {
#if NTP_SUPPORT
if (ntpSynced()) {
if (_sensor_energy_reset_ts.length() == 0) {
_sensor_energy_reset_ts = ntpDateTime(now() - millis() / 1000);
} else {
_sensor_energy_reset_ts = ntpDateTime(now());
}
} else {
_sensor_energy_reset_ts = String();
}
setSetting("snsResetTS", _sensor_energy_reset_ts);
#endif
}
// -----------------------------------------------------------------------------
// Sensor initialization
// -----------------------------------------------------------------------------
void _sensorLoad() {
/*
Only loaded (those with *_SUPPORT to 1) and enabled (*Enabled setting to 1)
sensors are being initialized here.
*/
unsigned char index = 0;
unsigned char gpio = GPIO_NONE;
_sensor_save_every = getSetting("snsSave", 0).toInt();
#if AM2320_SUPPORT
if (getSetting("amEnabled", 0).toInt() == 1) {
AM2320Sensor * sensor = new AM2320Sensor();
sensor->setAddress(getSetting("amAddress", AM2320_ADDRESS).toInt());
_sensors.push_back(sensor);
}
#endif
#if ANALOG_SUPPORT
if (getSetting("anaEnabled", 0).toInt() == 1) {
AnalogSensor * sensor = new AnalogSensor();
sensor->setSamples(getSetting("anaSamples", ANALOG_SAMPLES).toInt());
sensor->setDelay(getSetting("anaDelay", ANALOG_DELAY).toInt());
_sensors.push_back(sensor);
}
#endif
#if BH1750_SUPPORT
if (getSetting("bhEnabled", 0).toInt() == 1) {
BH1750Sensor * sensor = new BH1750Sensor();
sensor->setAddress(getSetting("bhAddress", BH1750_ADDRESS).toInt());
sensor->setMode(getSetting("bhMode", BH1750_MODE).toInt());
_sensors.push_back(sensor);
}
#endif
#if BMX280_SUPPORT
if (getSetting("bmx280Enabled", 0).toInt() == 1) {
BMX280Sensor * sensor = new BMX280Sensor();
sensor->setAddress(getSetting("bmx280Address", BMX280_ADDRESS).toInt());
_sensors.push_back(sensor);
}
#endif
#if CSE7766_SUPPORT
if (getSetting("cseEnabled", 0).toInt() == 1) {
if ((gpio = getSetting("cseGPIO", GPIO_NONE).toInt()) != GPIO_NONE) {
CSE7766Sensor * sensor = new CSE7766Sensor();
sensor->setRX(gpio);
double value;
value = getSetting("curRatio", 0).toFloat();
if (value > 0) sensor->setCurrentRatio(value);
value = getSetting("volRatio", 0).toFloat();
if (value > 0) sensor->setVoltageRatio(value);
value = getSetting("pwrRatio", 0).toFloat();
if (value > 0) sensor->setPowerRatio(value);
value = (_sensor_save_every > 0) ? getSetting("eneTotal", 0).toFloat() : 0;
if (value > 0) sensor->resetEnergy(value);
_sensors.push_back(sensor);
}
}
#endif
#if DALLAS_SUPPORT
if (getSetting("dsEnabled", 0).toInt() == 1) {
index = 0;
while ((gpio = getSetting("dsGPIO", index, GPIO_NONE).toInt()) != GPIO_NONE) {
DallasSensor * sensor = new DallasSensor();
sensor->setGPIO(gpio);
_sensors.push_back(sensor);
index++;
}
}
#endif
#if DHT_SUPPORT
if (getSetting("dhtEnabled", 0).toInt() == 1) {
index = 0;
while ((gpio = getSetting("dhtGPIO", index, GPIO_NONE).toInt()) != GPIO_NONE) {
DHTSensor * sensor = new DHTSensor();
sensor->setGPIO(gpio);
sensor->setType(getSetting("dhtType", index, DHT_CHIP_DHT22).toInt());
_sensors.push_back(sensor);
index++;
}
}
#endif
#if DIGITAL_SUPPORT
if (getSetting("digEnabled", 0).toInt() == 1) {
index = 0;
while ((gpio = getSetting("digGPIO", index, GPIO_NONE).toInt()) != GPIO_NONE) {
DigitalSensor * sensor = new DigitalSensor();
sensor->setGPIO(gpio);
sensor->setMode(getSetting("digMode", index, DIGITAL_PIN_MODE).toInt());
sensor->setDefault(getSetting("digDefault", index, DIGITAL_DEFAULT_STATE).toInt());
_sensors.push_back(sensor);
index++;
}
}
#endif
#if ECH1560_SUPPORT
if (getSetting("echEnabled", 0).toInt() == 1) {
ECH1560Sensor * sensor = new ECH1560Sensor();
sensor->setCLK(getSetting("echCLKGPIO", ECH1560_CLK_PIN).toInt());
sensor->setMISO(getSetting("echMISOGPIO", ECH1560_MISO_PIN).toInt());
sensor->setInverted(getSetting("echLogic", ECH1560_INVERTED).toInt());
double value = (_sensor_save_every > 0) ? getSetting("eneTotal", 0).toFloat() : 0;
if (value > 0) sensor->resetEnergy(value);
_sensors.push_back(sensor);
}
#endif
#if EMON_ADC121_SUPPORT || EMON_ADS1X15_SUPPORT || EMON_ANALOG_SUPPORT
if (getSetting("emonEnabled", 0).toInt() == 1) {
#if EMON_ADC121_SUPPORT
if (getSetting("emonProvider", 0).toInt() == EMON_PROVIDER_ADC121) {
EmonADC121Sensor * sensor = new EmonADC121Sensor();
sensor->setAddress(getSetting("emonAddress", EMON_ADC121_I2C_ADDRESS).toInt());
sensor->setReference(getSetting("emonReference", EMON_REFERENCE_VOLTAGE).toInt());
sensor->setCurrentRatio(0, getSetting("curRatio", EMON_CURRENT_RATIO).toFloat());
sensor->setVoltage(getSetting("volNominal", EMON_MAINS_VOLTAGE).toInt());
double value = (_sensor_save_every > 0) ? getSetting("eneTotal", 0).toFloat() : 0;
if (value > 0) sensor->resetEnergy(0, value);
_sensors.push_back(sensor);
}
#endif
#if EMON_ADS1X15_SUPPORT
if (getSetting("emonProvider", 0).toInt() == EMON_PROVIDER_ADS1X15) {
EmonADS1X15Sensor * sensor = new EmonADS1X15Sensor();
sensor->setAddress(getSetting("emonAddress", EMON_ADS1X15_I2C_ADDRESS).toInt());
sensor->setType(getSetting("emonType", EMON_ADS1X15_TYPE).toInt());
sensor->setMask(getSetting("emonMask", EMON_ADS1X15_MASK).toInt());
sensor->setGain(getSetting("emonGain", EMON_ADS1X15_GAIN).toInt());
sensor->setReference(getSetting("emonReference", EMON_REFERENCE_VOLTAGE).toInt());
double value = getSetting("curRatio", EMON_CURRENT_RATIO).toFloat();
sensor->setCurrentRatio(0, getSetting("curRatio", 0, value).toFloat());
sensor->setCurrentRatio(1, getSetting("curRatio", 1, value).toFloat());
sensor->setCurrentRatio(2, getSetting("curRatio", 2, value).toFloat());
sensor->setCurrentRatio(3, getSetting("curRatio", 3, value).toFloat());
sensor->setVoltage(getSetting("volNominal", EMON_MAINS_VOLTAGE).toInt());
value = (_sensor_save_every > 0) ? getSetting("eneTotal", 0).toFloat() : 0;
if (value > 0) sensor->resetEnergy(0, value);
_sensors.push_back(sensor);
}
#endif
#if EMON_ANALOG_SUPPORT
if (getSetting("emonProvider", 0).toInt() == EMON_PROVIDER_ANALOG) {
EmonAnalogSensor * sensor = new EmonAnalogSensor();
sensor->setReference(getSetting("emonReference", EMON_REFERENCE_VOLTAGE).toInt());
sensor->setCurrentRatio(0, getSetting("curRatio", EMON_CURRENT_RATIO).toFloat());
sensor->setVoltage(getSetting("volNominal", EMON_MAINS_VOLTAGE).toInt());
double value = (_sensor_save_every > 0) ? getSetting("eneTotal", 0).toFloat() : 0;
if (value > 0) sensor->resetEnergy(0, value);
_sensors.push_back(sensor);
}
#endif
}
#endif
#if EVENTS_SUPPORT
if (getSetting("evtEnabled", 0).toInt() == 1) {
index = 0;
while ((gpio = getSetting("evtGPIO", index, GPIO_NONE).toInt()) != GPIO_NONE) {
EventSensor * sensor = new EventSensor();
sensor->setGPIO(gpio);
sensor->setTrigger(getSetting("evtTrigger", index, EVENTS_TRIGGER).toInt());
sensor->setPinMode(getSetting("evtMode", index, EVENTS_PIN_MODE).toInt());
sensor->setDebounceTime(getSetting("evtDebounce", index, EVENTS_DEBOUNCE).toInt());
sensor->setInterruptMode(getSetting("evtIntMode", index, EVENTS_INTERRUPT_MODE).toInt());
_sensors.push_back(sensor);
index++;
}
}
#endif
#if GEIGER_SUPPORT
if (getSetting("geiEnabled", 0).toInt() == 1) {
if ((gpio = getSetting("geiGPIO", GPIO_NONE).toInt()) != GPIO_NONE) {
GeigerSensor * sensor = new GeigerSensor(); // Create instance of the Geiger module.
sensor->setGPIO(gpio); // Interrupt pin of the attached geiger counter board.
sensor->setMode(getSetting("geiMode", GEIGER_PIN_MODE).toInt()); // This pin is an input.
sensor->setDebounceTime(getSetting("geiDebounce", GEIGER_DEBOUNCE).toInt()); // Debounce time 25ms, because https://github.com/Trickx/espurna/wiki/Geiger-counter
sensor->setInterruptMode(getSetting("geiIntMode", GEIGER_INTERRUPT_MODE).toInt()); // Interrupt triggering: edge detection rising.
sensor->setCPM2SievertFactor(getSetting("geiRatio", GEIGER_CPM2SIEVERT).toInt()); // Conversion factor from counts per minute to µSv/h
_sensors.push_back(sensor);
}
}
#endif
#if GUVAS12SD_SUPPORT
if (getSetting("guvEnabled", 0).toInt() == 1) {
if ((gpio = getSetting("guvGPIO", GPIO_NONE).toInt()) != GPIO_NONE) {
GUVAS12SDSensor * sensor = new GUVAS12SDSensor();
sensor->setGPIO(gpio);
_sensors.push_back(sensor);
}
}
#endif
#if SONAR_SUPPORT
if (getSetting("sonEnabled", 0).toInt() == 1) {
SonarSensor * sensor = new SonarSensor();
sensor->setEcho(getSetting("sonEcho", SONAR_ECHO).toInt());
sensor->setTrigger(getSetting("sonTrigger", SONAR_TRIGGER).toInt());
sensor->setIterations(getSetting("sonIterations", SONAR_ITERATIONS).toInt());
sensor->setMaxDistance(getSetting("sonMaxDist", SONAR_MAX_DISTANCE).toInt());
_sensors.push_back(sensor);
}
#endif
#if HLW8012_SUPPORT
if (getSetting("hlwEnabled", 0).toInt() == 1) {
HLW8012Sensor * sensor = new HLW8012Sensor();
sensor->setSEL(getSetting("hlwSELGPIO", HLW8012_SEL_PIN).toInt());
sensor->setCF(getSetting("hlwCFGPIO", HLW8012_CF_PIN).toInt());
sensor->setCF1(getSetting("hlwCF1GPIO", HLW8012_CF1_PIN).toInt());
sensor->setCurrentSEL(getSetting("hlwCurSel", HLW8012_SEL_CURRENT).toInt());
sensor->setInterruptMode(getSetting("hlwIntMode", HLW8012_INTERRUPT_ON).toInt());
sensor->setCurrentResistor(getSetting("hlwCurRes", HLW8012_CURRENT_R ).toFloat());
sensor->setUpstreamResistor(getSetting("hlwVolResUp", HLW8012_VOLTAGE_R_UP).toFloat());
sensor->setDownstreamResistor(getSetting("hlwVolResDw", HLW8012_VOLTAGE_R_DOWN).toFloat());
double value;
value = getSetting("curRatio", HLW8012_CURRENT_RATIO).toFloat();
if (value > 0) sensor->setCurrentRatio(value);
value = getSetting("volRatio", HLW8012_VOLTAGE_RATIO).toFloat();
if (value > 0) sensor->setVoltageRatio(value);
value = getSetting("pwrRatio", HLW8012_POWER_RATIO).toFloat();
if (value > 0) sensor->setPowerRatio(value);
value = (_sensor_save_every > 0) ? getSetting("eneTotal", 0).toFloat() : 0;
if (value > 0) sensor->resetEnergy(value);
_sensors.push_back(sensor);
}
#endif
#if MHZ19_SUPPORT
if (getSetting("mhzEnabled", 0).toInt() == 1) {
MHZ19Sensor * sensor = new MHZ19Sensor();
sensor->setRX(getSetting("mhzRX", MHZ19_RX_PIN).toInt());
sensor->setTX(getSetting("mhzTX", MHZ19_TX_PIN).toInt());
_sensors.push_back(sensor);
}
#endif
#if SDS011_SUPPORT
{
SDS011Sensor * sensor = new SDS011Sensor();
sensor->setRX(SDS011_RX_PIN);
sensor->setTX(SDS011_TX_PIN);
_sensors.push_back(sensor);
}
#endif
#if NTC_SUPPORT
if (getSetting("ntcEnabled", 0).toInt() == 1) {
NTCSensor * sensor = new NTCSensor();
sensor->setSamples(getSetting("ntcSamples", NTC_SAMPLES).toInt());
sensor->setDelay(getSetting("ntcDelay", NTC_DELAY).toInt());
sensor->setUpstreamResistor(getSetting("ntcResUp", NTC_R_UP).toInt());
sensor->setDownstreamResistor(getSetting("ntcResDown", NTC_R_DOWN).toInt());
sensor->setBeta(getSetting("ntcBeta", NTC_BETA).toInt());
sensor->setR0(getSetting("ntcR0", NTC_R0).toInt());
sensor->setT0(getSetting("ntcT0", NTC_T0).toFloat());
_sensors.push_back(sensor);
}
#endif
#if SENSEAIR_SUPPORT
if (getSetting("airEnabled", 0).toInt() == 1) {
SenseAirSensor * sensor = new SenseAirSensor();
sensor->setRX(getSetting("airRX", SENSEAIR_RX_PIN).toInt());
sensor->setTX(getSetting("airTX", SENSEAIR_TX_PIN).toInt());
_sensors.push_back(sensor);
}
#endif
#if PMSX003_SUPPORT
if (getSetting("pmsEnabled", 0).toInt() == 1) {
PMSX003Sensor * sensor = new PMSX003Sensor();
if (getSetting("pmsSoft", PMS_USE_SOFT).toInt() == 1) {
sensor->setRX(getSetting("pmsRX", PMS_RX_PIN).toInt());
sensor->setTX(getSetting("pmsTX", PMS_TX_PIN).toInt());
} else {
sensor->setSerial(& PMS_HW_PORT);
}
sensor->setType(getSetting("pmsType", PMS_TYPE).toInt());
_sensors.push_back(sensor);
}
#endif
#if PZEM004T_SUPPORT
if (getSetting("pzemEnabled", 0).toInt() == 1) {
PZEM004TSensor * sensor = new PZEM004TSensor();
if (getSetting("pzemSoft", PZEM004T_USE_SOFT).toInt() == 1) {
sensor->setRX(getSetting("pzemRX", PZEM004T_RX_PIN).toInt());
sensor->setTX(getSetting("pzemTX", PZEM004T_TX_PIN).toInt());
} else {
sensor->setSerial(& PZEM004T_HW_PORT);
}
double value = (_sensor_save_every > 0) ? getSetting("eneTotal", 0).toFloat() : 0;
if (value > 0) sensor->resetEnergy(value);
_sensors.push_back(sensor);
}
#endif
#if SHT3X_I2C_SUPPORT
if (getSetting("shtEnabled", 0).toInt() == 1) {
SHT3XI2CSensor * sensor = new SHT3XI2CSensor();
sensor->setAddress(getSetting("shtAddress", SHT3X_I2C_ADDRESS).toInt());
_sensors.push_back(sensor);
}
#endif
#if SI7021_SUPPORT
if (getSetting("si7021Enabled", 0).toInt() == 1) {
SI7021Sensor * sensor = new SI7021Sensor();
sensor->setAddress(getSetting("si7021Address", SI7021_ADDRESS).toInt());
_sensors.push_back(sensor);
}
#endif
#if TMP3X_SUPPORT
if (getSetting("tmp3xEnabled", 0).toInt() == 1) {
TMP3XSensor * sensor = new TMP3XSensor();
sensor->setType(getSetting("tmp3xType", TMP3X_TYPE).toInt());
_sensors.push_back(sensor);
}
#endif
#if V9261F_SUPPORT
if (getSetting("v92Enabled", 0).toInt() == 1) {
if ((gpio = getSetting("v92GPIO", GPIO_NONE).toInt()) != GPIO_NONE) {
V9261FSensor * sensor = new V9261FSensor();
sensor->setRX(gpio);
sensor->setInverted(getSetting("v92Inverse", V9261F_PIN_INVERSE).toInt());
double value = (_sensor_save_every > 0) ? getSetting("eneTotal", 0).toFloat() : 0;
if (value > 0) sensor->resetEnergy(value);
_sensors.push_back(sensor);
}
}
#endif
}
void _sensorCallback(unsigned char i, unsigned char type, double value) {
DEBUG_MSG_P(PSTR("[SENSOR] Sensor #%u callback, type %u, payload: '%s'\n"), i, type, String(value).c_str());
for (unsigned char k=0; k<_magnitudes.size(); k++) {
if ((_sensors[i] == _magnitudes[k].sensor) && (type == _magnitudes[k].type)) {
_sensorReport(k, value);
return;
}
}
}
void _sensorInit() {
_sensors_ready = true;
for (unsigned char i=0; i<_sensors.size(); i++) {
// Do not process an already initialized sensor
if (_sensors[i]->ready()) continue;
DEBUG_MSG_P(PSTR("[SENSOR] Initializing %s\n"), _sensors[i]->description().c_str());
// Force sensor to reload config
_sensors[i]->begin();
if (!_sensors[i]->ready()) {
if (_sensors[i]->error() != 0) DEBUG_MSG_P(PSTR("[SENSOR] -> ERROR %d\n"), _sensors[i]->error());
_sensors_ready = false;
continue;
}
// Initialize magnitudes
for (unsigned char k=0; k<_sensors[i]->count(); k++) {
unsigned char type = _sensors[i]->type(k);
sensor_magnitude_t new_magnitude;
new_magnitude.sensor = _sensors[i];
new_magnitude.local = k;
new_magnitude.type = type;
new_magnitude.global = _counts[type];
new_magnitude.current = 0;
new_magnitude.reported = 0;
new_magnitude.min_change = 0;
new_magnitude.max_change = 0;
// TODO: find a proper way to extend this to min/max of any magnitude
if (MAGNITUDE_ENERGY == type) {
new_magnitude.max_change = getSetting("eneMaxDelta", ENERGY_MAX_CHANGE).toFloat();
} else if (MAGNITUDE_TEMPERATURE == type) {
new_magnitude.min_change = getSetting("tmpMinDelta", TEMPERATURE_MIN_CHANGE).toFloat();
} else if (MAGNITUDE_HUMIDITY == type) {
new_magnitude.min_change = getSetting("humMinDelta", HUMIDITY_MIN_CHANGE).toFloat();
}
if (MAGNITUDE_ENERGY == type) {
new_magnitude.filter = new LastFilter();
} else if (MAGNITUDE_DIGITAL == type) {
new_magnitude.filter = new MaxFilter();
} else if (MAGNITUDE_COUNT == type || MAGNITUDE_GEIGER_CPM == type || MAGNITUDE_GEIGER_SIEVERT == type) { // For geiger counting moving average filter is the most appropriate if needed at all.
new_magnitude.filter = new MovingAverageFilter();
} else {
new_magnitude.filter = new MedianFilter();
}
new_magnitude.filter->resize(_sensor_report_every);
_magnitudes.push_back(new_magnitude);
DEBUG_MSG_P(PSTR("[SENSOR] -> %s:%d\n"), magnitudeTopic(type).c_str(), _counts[type]);
_counts[type] = _counts[type] + 1;
}
// Hook callback
_sensors[i]->onEvent([i](unsigned char type, double value) {
_sensorCallback(i, type, value);
});
}
}
void _sensorConfigure() {
// General sensor settings
_sensor_read_interval = 1000 * constrain(getSetting("snsRead", SENSOR_READ_INTERVAL).toInt(), SENSOR_READ_MIN_INTERVAL, SENSOR_READ_MAX_INTERVAL);
_sensor_report_every = constrain(getSetting("snsReport", SENSOR_REPORT_EVERY).toInt(), SENSOR_REPORT_MIN_EVERY, SENSOR_REPORT_MAX_EVERY);
_sensor_save_every = getSetting("snsSave", SENSOR_SAVE_EVERY).toInt();
_sensor_realtime = apiRealTime();
_sensor_power_units = getSetting("pwrUnits", SENSOR_POWER_UNITS).toInt();
_sensor_energy_units = getSetting("eneUnits", SENSOR_ENERGY_UNITS).toInt();
_sensor_temperature_units = getSetting("tmpUnits", SENSOR_TEMPERATURE_UNITS).toInt();
_sensor_temperature_correction = getSetting("tmpOffset", SENSOR_TEMPERATURE_CORRECTION).toFloat();
_sensor_humidity_correction = getSetting("humOffset", SENSOR_HUMIDITY_CORRECTION).toFloat();
_sensor_energy_reset_ts = getSetting("snsResetTS", "");
// Specific sensor settings
for (unsigned char i=0; i<_sensors.size(); i++) {
#if EMON_ANALOG_SUPPORT
if (_sensors[i]->getID() == SENSOR_EMON_ANALOG_ID) {
double value;
EmonAnalogSensor * sensor = (EmonAnalogSensor *) _sensors[i];
if ((value = getSetting("pwrExpected", 0).toInt())) {
sensor->expectedPower(0, value);
setSetting("curRatio", sensor->getCurrentRatio(0));
}
if (getSetting("snsResetCalibrarion", 0).toInt() == 1) {
sensor->setCurrentRatio(0, EMON_CURRENT_RATIO);
delSetting("curRatio");
}
if (getSetting("eneReset", 0).toInt() == 1) {
sensor->resetEnergy();
delSetting("eneTotal");
_sensorResetTS();
}
sensor->setVoltage(getSetting("volNominal", EMON_MAINS_VOLTAGE).toInt());
}
#endif // EMON_ANALOG_SUPPORT
#if EMON_ADC121_SUPPORT
if (_sensors[i]->getID() == SENSOR_EMON_ADC121_ID) {
EmonADC121Sensor * sensor = (EmonADC121Sensor *) _sensors[i];
if (getSetting("eneReset", 0).toInt() == 1) {
sensor->resetEnergy();
delSetting("eneTotal");
_sensorResetTS();
}
}
#endif
#if EMON_ADS1X15_SUPPORT
if (_sensors[i]->getID() == SENSOR_EMON_ADS1X15_ID) {
EmonADS1X15Sensor * sensor = (EmonADS1X15Sensor *) _sensors[i];
if (getSetting("eneReset", 0).toInt() == 1) {
sensor->resetEnergy();
delSetting("eneTotal");
_sensorResetTS();
}
}
#endif
#if HLW8012_SUPPORT
if (_sensors[i]->getID() == SENSOR_HLW8012_ID) {
double value;
HLW8012Sensor * sensor = (HLW8012Sensor *) _sensors[i];
if (value = getSetting("curExpected", 0).toFloat()) {
sensor->expectedCurrent(value);
setSetting("curRatio", sensor->getCurrentRatio());
}
if (value = getSetting("volExpected", 0).toInt()) {
sensor->expectedVoltage(value);
setSetting("volRatio", sensor->getVoltageRatio());
}
if (value = getSetting("pwrExpected", 0).toInt()) {
sensor->expectedPower(value);
setSetting("pwrRatio", sensor->getPowerRatio());
}
if (getSetting("eneReset", 0).toInt() == 1) {
sensor->resetEnergy();
delSetting("eneTotal");
_sensorResetTS();
}
if (getSetting("snsResetCalibrarion", 0).toInt() == 1) {
sensor->resetRatios();
delSetting("curRatio");
delSetting("volRatio");
delSetting("pwrRatio");
}
}
#endif // HLW8012_SUPPORT
#if CSE7766_SUPPORT
if (_sensors[i]->getID() == SENSOR_CSE7766_ID) {
double value;
CSE7766Sensor * sensor = (CSE7766Sensor *) _sensors[i];
if ((value = getSetting("curExpected", 0).toFloat())) {
sensor->expectedCurrent(value);
setSetting("curRatio", sensor->getCurrentRatio());
}
if ((value = getSetting("volExpected", 0).toInt())) {
sensor->expectedVoltage(value);
setSetting("volRatio", sensor->getVoltageRatio());
}
if ((value = getSetting("pwrExpected", 0).toInt())) {
sensor->expectedPower(value);
setSetting("pwrRatio", sensor->getPowerRatio());
}
if (getSetting("eneReset", 0).toInt() == 1) {
sensor->resetEnergy();
delSetting("eneTotal");
_sensorResetTS();
}
if (getSetting("snsResetCalibrarion", 0).toInt() == 1) {
sensor->resetRatios();
delSetting("curRatio");
delSetting("volRatio");
delSetting("pwrRatio");
}
}
#endif // CSE7766_SUPPORT
}
// Update filter sizes
for (unsigned char i=0; i<_magnitudes.size(); i++) {
sensor_magnitude_t magnitude = _magnitudes[i];
magnitude.filter->resize(_sensor_report_every);
magnitude.min_change = getSetting("tmpDelta", magnitude.type, 0).toFloat();
}
// General processing
if (0 == _sensor_save_every) {
delSetting("eneTotal");
}
// Save settings
delSetting("pwrExpected");
delSetting("curExpected");
delSetting("volExpected");
delSetting("snsResetCalibrarion");
delSetting("eneReset");
saveSettings();
}
bool _sensorKeyCheck(const char * key) {
if (strncmp(key, "sns", 3) == 0) return true;
if (strncmp(key, "pwr", 3) == 0) return true;
if (strncmp(key, "ene", 3) == 0) return true;
if (strncmp(key, "cur", 3) == 0) return true;
if (strncmp(key, "vol", 3) == 0) return true;
if (strncmp(key, "tmp", 3) == 0) return true;
if (strncmp(key, "hum", 3) == 0) return true;
if (strncmp(key, "air", 3) == 0) return true;
if (strncmp(key, "am", 2) == 0) return true;
if (strncmp(key, "ana", 3) == 0) return true;
if (strncmp(key, "bh", 2) == 0) return true;
if (strncmp(key, "bmx", 3) == 0) return true;
if (strncmp(key, "cse", 3) == 0) return true;
if (strncmp(key, "dht", 3) == 0) return true;
if (strncmp(key, "dig", 3) == 0) return true;
if (strncmp(key, "ds" , 2) == 0) return true;
if (strncmp(key, "ech", 3) == 0) return true;
if (strncmp(key, "emon", 4) == 0) return true;
if (strncmp(key, "evt", 3) == 0) return true;
if (strncmp(key, "gei", 3) == 0) return true;
if (strncmp(key, "guv", 3) == 0) return true;
if (strncmp(key, "hlw", 3) == 0) return true;
if (strncmp(key, "mhz", 3) == 0) return true;
if (strncmp(key, "ntc", 3) == 0) return true;
if (strncmp(key, "pms", 3) == 0) return true;
if (strncmp(key, "pzem", 4) == 0) return true;
if (strncmp(key, "sht", 3) == 0) return true;
if (strncmp(key, "son", 3) == 0) return true;
if (strncmp(key, "tmp3x", 4) == 0) return true;
if (strncmp(key, "v92", 3) == 0) return true;
return false;
}
void _sensorBackwards() {
moveSetting("powerUnits", "pwrUnits"); // 1.12.5 - 2018-04-03
moveSetting("tmpCorrection", "tmpOffset"); // 1.14.0 - 2018-06-26
moveSetting("humCorrection", "humOffset"); // 1.14.0 - 2018-06-26
moveSetting("energyUnits", "eneUnits"); // 1.14.0 - 2018-06-26
moveSetting("pwrRatioC", "curRatio"); // 1.14.0 - 2018-06-26
moveSetting("pwrRatioP", "pwrRatio"); // 1.14.0 - 2018-06-26
moveSetting("pwrRatioV", "volRatio"); // 1.14.0 - 2018-06-26
moveSetting("pwrVoltage", "volNominal"); // 1.14.0 - 2018-06-26
moveSetting("pwrExpectedP", "pwrExpected"); // 1.14.0 - 2018-06-26
moveSetting("pwrExpectedC", "curExpected"); // 1.14.0 - 2018-06-26
moveSetting("pwrExpectedV", "volExpected"); // 1.14.0 - 2018-06-26
moveSetting("pwrResetCalibration", "snsResetCalibration"); // 1.14.0 - 2018-06-26
moveSetting("pwrResetE", "eneReset"); // 1.14.0 - 2018-06-26
}
void _sensorReport(unsigned char index, double value) {
sensor_magnitude_t magnitude = _magnitudes[index];
unsigned char decimals = _magnitudeDecimals(magnitude.type);
char buffer[10];
dtostrf(value, 1-sizeof(buffer), decimals, buffer);
#if BROKER_SUPPORT
brokerPublish(magnitudeTopic(magnitude.type).c_str(), magnitude.local, buffer);
#endif
#if MQTT_SUPPORT
mqttSend(magnitudeTopicIndex(index).c_str(), buffer);
#if SENSOR_PUBLISH_ADDRESSES
char topic[32];
snprintf(topic, sizeof(topic), "%s/%s", SENSOR_ADDRESS_TOPIC, magnitudeTopic(magnitude.type).c_str());
if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) {
mqttSend(topic, magnitude.global, magnitude.sensor->address(magnitude.local).c_str());
} else {
mqttSend(topic, magnitude.sensor->address(magnitude.local).c_str());
}
#endif // SENSOR_PUBLISH_ADDRESSES
#endif // MQTT_SUPPORT
#if INFLUXDB_SUPPORT
if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) {
idbSend(magnitudeTopic(magnitude.type).c_str(), magnitude.global, buffer);
} else {
idbSend(magnitudeTopic(magnitude.type).c_str(), buffer);
}
#endif // INFLUXDB_SUPPORT
#if THINGSPEAK_SUPPORT
tspkEnqueueMeasurement(index, buffer);
#endif
#if DOMOTICZ_SUPPORT
{
char key[15];
snprintf_P(key, sizeof(key), PSTR("dczMagnitude%d"), index);
if (magnitude.type == MAGNITUDE_HUMIDITY) {
int status;
if (value > 70) {
status = HUMIDITY_WET;
} else if (value > 45) {
status = HUMIDITY_COMFORTABLE;
} else if (value > 30) {
status = HUMIDITY_NORMAL;
} else {
status = HUMIDITY_DRY;
}
char status_buf[5];
itoa(status, status_buf, 10);
domoticzSend(key, buffer, status_buf);
} else {
domoticzSend(key, 0, buffer);
}
}
#endif // DOMOTICZ_SUPPORT
}
// -----------------------------------------------------------------------------
// Public
// -----------------------------------------------------------------------------
unsigned char sensorCount() {
return _sensors.size();
}
unsigned char magnitudeCount() {
return _magnitudes.size();
}
String magnitudeName(unsigned char index) {
if (index < _magnitudes.size()) {
sensor_magnitude_t magnitude = _magnitudes[index];
return magnitude.sensor->slot(magnitude.local);
}
return String();
}
unsigned char magnitudeType(unsigned char index) {
if (index < _magnitudes.size()) {
return int(_magnitudes[index].type);
}
return MAGNITUDE_NONE;
}
unsigned char magnitudeIndex(unsigned char index) {
if (index < _magnitudes.size()) {
return int(_magnitudes[index].global);
}
return 0;
}
String magnitudeTopic(unsigned char type) {
char buffer[16] = {0};
if (type < MAGNITUDE_MAX) strncpy_P(buffer, magnitude_topics[type], sizeof(buffer));
return String(buffer);
}
String magnitudeTopicIndex(unsigned char index) {
char topic[32] = {0};
if (index < _magnitudes.size()) {
sensor_magnitude_t magnitude = _magnitudes[index];
if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) {
snprintf(topic, sizeof(topic), "%s/%u", magnitudeTopic(magnitude.type).c_str(), magnitude.global);
} else {
snprintf(topic, sizeof(topic), "%s", magnitudeTopic(magnitude.type).c_str());
}
}
return String(topic);
}
String magnitudeUnits(unsigned char type) {
char buffer[8] = {0};
if (type < MAGNITUDE_MAX) {
if ((type == MAGNITUDE_TEMPERATURE) && (_sensor_temperature_units == TMP_FAHRENHEIT)) {
strncpy_P(buffer, magnitude_fahrenheit, sizeof(buffer));
} else if (
(type == MAGNITUDE_ENERGY || type == MAGNITUDE_ENERGY_DELTA) &&
(_sensor_energy_units == ENERGY_KWH)) {
strncpy_P(buffer, magnitude_kwh, sizeof(buffer));
} else if (
(type == MAGNITUDE_POWER_ACTIVE || type == MAGNITUDE_POWER_APPARENT || type == MAGNITUDE_POWER_REACTIVE) &&
(_sensor_power_units == POWER_KILOWATTS)) {
strncpy_P(buffer, magnitude_kw, sizeof(buffer));
} else {
strncpy_P(buffer, magnitude_units[type], sizeof(buffer));
}
}
return String(buffer);
}
// -----------------------------------------------------------------------------
void sensorSetup() {
// Backwards compatibility
_sensorBackwards();
// Load sensors
_sensorLoad();
_sensorInit();
// Configure stored values
_sensorConfigure();
// Websockets
#if WEB_SUPPORT
wsOnSendRegister(_sensorWebSocketStart);
wsOnSendRegister(_sensorWebSocketSendData);
#endif
// API
#if API_SUPPORT
_sensorAPISetup();
#endif
// Terminal
#if TERMINAL_SUPPORT
_sensorInitCommands();
#endif
settingsRegisterKeyCheck(_sensorKeyCheck);
// Main callbacks
espurnaRegisterLoop(sensorLoop);
espurnaRegisterReload(_sensorConfigure);
}
void sensorLoop() {
// Check if we still have uninitialized sensors
static unsigned long last_init = 0;
if (!_sensors_ready) {
if (millis() - last_init > SENSOR_INIT_INTERVAL) {
last_init = millis();
_sensorInit();
}
}
if (_magnitudes.size() == 0) return;
// Tick hook
_sensorTick();
// Check if we should read new data
static unsigned long last_update = 0;
static unsigned long report_count = 0;
static unsigned long save_count = 0;
if (millis() - last_update > _sensor_read_interval) {
last_update = millis();
report_count = (report_count + 1) % _sensor_report_every;
double current;
double filtered;
// Pre-read hook
_sensorPre();
// Get the first relay state
#if SENSOR_POWER_CHECK_STATUS
bool relay_off = (relayCount() > 0) && (relayStatus(0) == 0);
#endif
// Get readings
for (unsigned char i=0; i<_magnitudes.size(); i++) {
sensor_magnitude_t magnitude = _magnitudes[i];
if (magnitude.sensor->status()) {
// -------------------------------------------------------------
// Instant value
// -------------------------------------------------------------
current = magnitude.sensor->value(magnitude.local);
// Completely remove spurious values if relay is OFF
#if SENSOR_POWER_CHECK_STATUS
if (relay_off) {
if (magnitude.type == MAGNITUDE_POWER_ACTIVE ||
magnitude.type == MAGNITUDE_POWER_REACTIVE ||
magnitude.type == MAGNITUDE_POWER_APPARENT ||
magnitude.type == MAGNITUDE_CURRENT ||
magnitude.type == MAGNITUDE_ENERGY_DELTA
) {
current = 0;
}
}
#endif
// -------------------------------------------------------------
// Processing (filters)
// -------------------------------------------------------------
magnitude.filter->add(current);
// Special case for MovingAvergaeFilter
if (MAGNITUDE_COUNT == magnitude.type ||
MAGNITUDE_GEIGER_CPM ==magnitude. type ||
MAGNITUDE_GEIGER_SIEVERT == magnitude.type) {
current = magnitude.filter->result();
}
current = _magnitudeProcess(magnitude.type, current);
_magnitudes[i].current = current;
// -------------------------------------------------------------
// Debug
// -------------------------------------------------------------
#if SENSOR_DEBUG
{
char buffer[64];
dtostrf(current, 1-sizeof(buffer), _magnitudeDecimals(magnitude.type), buffer);
DEBUG_MSG_P(PSTR("[SENSOR] %s - %s: %s%s\n"),
magnitude.sensor->slot(magnitude.local).c_str(),
magnitudeTopic(magnitude.type).c_str(),
buffer,
magnitudeUnits(magnitude.type).c_str()
);
}
#endif // SENSOR_DEBUG
// -------------------------------------------------------------
// Report
// (we do it every _sensor_report_every readings)
// -------------------------------------------------------------
bool report = (0 == report_count);
if ((MAGNITUDE_ENERGY == magnitude.type) && (magnitude.max_change > 0)) {
// for MAGNITUDE_ENERGY, filtered value is last value
double value = _magnitudeProcess(magnitude.type, current);
report = (fabs(value - magnitude.reported) >= magnitude.max_change);
} // if ((MAGNITUDE_ENERGY == magnitude.type) && (magnitude.max_change > 0))
if (report) {
filtered = magnitude.filter->result();
filtered = _magnitudeProcess(magnitude.type, filtered);
magnitude.filter->reset();
// Check if there is a minimum change threshold to report
if (fabs(filtered - magnitude.reported) >= magnitude.min_change) {
_magnitudes[i].reported = filtered;
_sensorReport(i, filtered);
} // if (fabs(filtered - magnitude.reported) >= magnitude.min_change)
// -------------------------------------------------------------
// Saving to EEPROM
// (we do it every _sensor_save_every readings)
// -------------------------------------------------------------
if (_sensor_save_every > 0) {
save_count = (save_count + 1) % _sensor_save_every;
if (0 == save_count) {
if (MAGNITUDE_ENERGY == magnitude.type) {
setSetting("eneTotal", current);
saveSettings();
}
} // if (0 == save_count)
} // if (_sensor_save_every > 0)
} // if (report_count == 0)
} // if (magnitude.sensor->status())
} // for (unsigned char i=0; i<_magnitudes.size(); i++)
// Post-read hook
_sensorPost();
#if WEB_SUPPORT
wsSend(_sensorWebSocketSendData);
#endif
#if THINGSPEAK_SUPPORT
if (report_count == 0) tspkFlush();
#endif
}
}
#endif // SENSOR_SUPPORT