Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

340 lines
9.1 KiB

/*
LED MODULE
Copyright (C) 2016-2019 by Xose Pérez <xose dot perez at gmail dot com>
*/
// -----------------------------------------------------------------------------
// LED
// -----------------------------------------------------------------------------
#if LED_SUPPORT
#include "relay.h"
#include "broker.h"
typedef struct {
unsigned char pin;
bool reverse;
unsigned char mode;
unsigned char relay;
} led_t;
std::vector<led_t> _leds;
bool _led_update = false; // For relay-based modes
// -----------------------------------------------------------------------------
bool _ledStatus(unsigned char id) {
if (id >= _ledCount()) return false;
bool status = digitalRead(_leds[id].pin);
return _leds[id].reverse ? !status : status;
}
bool _ledStatus(unsigned char id, bool status) {
if (id >=_ledCount()) return false;
digitalWrite(_leds[id].pin, _leds[id].reverse ? !status : status);
return status;
}
bool _ledToggle(unsigned char id) {
if (id >= _ledCount()) return false;
return _ledStatus(id, !_ledStatus(id));
}
unsigned char _ledMode(unsigned char id) {
if (id >= _ledCount()) return false;
return _leds[id].mode;
}
void _ledMode(unsigned char id, unsigned char mode) {
if (id >= _ledCount()) return;
_leds[id].mode = mode;
}
unsigned char _ledRelay(unsigned char id) {
if (id >= _ledCount()) return false;
return _leds[id].relay;
}
void _ledRelay(unsigned char id, unsigned char relay) {
if (id >= _ledCount()) return;
_leds[id].relay = relay;
}
void _ledBlink(unsigned char id, unsigned long delayOff, unsigned long delayOn) {
if (id >= _ledCount()) return;
static unsigned long next = millis();
if (next < millis()) {
next += (_ledToggle(id) ? delayOn : delayOff);
}
}
#if WEB_SUPPORT
bool _ledWebSocketOnKeyCheck(const char * key, JsonVariant& value) {
return (strncmp(key, "led", 3) == 0);
}
void _ledWebSocketOnVisible(JsonObject& root) {
if (_ledCount() > 0) {
root["ledVisible"] = 1;
}
}
void _ledWebSocketOnConnected(JsonObject& root) {
if (_ledCount() == 0) return;
JsonArray& leds = root.createNestedArray("ledConfig");
for (byte i=0; i<_ledCount(); i++) {
JsonObject& led = leds.createNestedObject();
led["mode"] = getSetting("ledMode", i, "").toInt();
led["relay"] = getSetting("ledRelay", i, "").toInt();
}
}
#endif
#if BROKER_SUPPORT
void _ledBrokerCallback(const String& topic, unsigned char, unsigned int) {
// Only process status messages for switches
if (topic.equals(MQTT_TOPIC_RELAY)) {
ledUpdate(true);
}
}
#endif // BROKER_SUPPORT
#if MQTT_SUPPORT
void _ledMQTTCallback(unsigned int type, const char * topic, const char * payload) {
if (type == MQTT_CONNECT_EVENT) {
char buffer[strlen(MQTT_TOPIC_LED) + 3];
snprintf_P(buffer, sizeof(buffer), PSTR("%s/+"), MQTT_TOPIC_LED);
mqttSubscribe(buffer);
}
if (type == MQTT_MESSAGE_EVENT) {
// Match topic
String t = mqttMagnitude((char *) topic);
if (!t.startsWith(MQTT_TOPIC_LED)) return;
// Get led ID
unsigned int ledID = t.substring(strlen(MQTT_TOPIC_LED)+1).toInt();
if (ledID >= _ledCount()) {
DEBUG_MSG_P(PSTR("[LED] Wrong ledID (%d)\n"), ledID);
return;
}
// Check if LED is managed
if (_ledMode(ledID) != LED_MODE_MQTT) return;
// get value
const auto value = relayParsePayload(payload);
// Action to perform
if (value == RelayStatus::TOGGLE) {
_ledToggle(ledID);
} else {
_ledStatus(ledID, (value == RelayStatus::ON));
}
}
}
#endif
unsigned char _ledCount() {
return _leds.size();
}
void _ledConfigure() {
for (unsigned int i=0; i < _leds.size(); i++) {
_ledMode(i, getSetting("ledMode", i, _ledMode(i)).toInt());
_ledRelay(i, getSetting("ledRelay", i, _ledRelay(i)).toInt());
}
_led_update = true;
}
// -----------------------------------------------------------------------------
void ledUpdate(bool value) {
_led_update = value;
}
void ledSetup() {
#if LED1_PIN != GPIO_NONE
_leds.push_back((led_t) { LED1_PIN, LED1_PIN_INVERSE, LED1_MODE, LED1_RELAY - 1 });
#endif
#if LED2_PIN != GPIO_NONE
_leds.push_back((led_t) { LED2_PIN, LED2_PIN_INVERSE, LED2_MODE, LED2_RELAY - 1 });
#endif
#if LED3_PIN != GPIO_NONE
_leds.push_back((led_t) { LED3_PIN, LED3_PIN_INVERSE, LED3_MODE, LED3_RELAY - 1 });
#endif
#if LED4_PIN != GPIO_NONE
_leds.push_back((led_t) { LED4_PIN, LED4_PIN_INVERSE, LED4_MODE, LED4_RELAY - 1 });
#endif
#if LED5_PIN != GPIO_NONE
_leds.push_back((led_t) { LED5_PIN, LED5_PIN_INVERSE, LED5_MODE, LED5_RELAY - 1 });
#endif
#if LED6_PIN != GPIO_NONE
_leds.push_back((led_t) { LED6_PIN, LED6_PIN_INVERSE, LED6_MODE, LED6_RELAY - 1 });
#endif
#if LED7_PIN != GPIO_NONE
_leds.push_back((led_t) { LED7_PIN, LED7_PIN_INVERSE, LED7_MODE, LED7_RELAY - 1 });
#endif
#if LED8_PIN != GPIO_NONE
_leds.push_back((led_t) { LED8_PIN, LED8_PIN_INVERSE, LED8_MODE, LED8_RELAY - 1 });
#endif
for (unsigned int i=0; i < _leds.size(); i++) {
if (!hasSetting("ledMode", i)) setSetting("ledMode", i, _leds[i].mode);
if (!hasSetting("ledRelay", i)) setSetting("ledRelay", i, _leds[i].relay);
pinMode(_leds[i].pin, OUTPUT);
_ledStatus(i, false);
}
_ledConfigure();
#if MQTT_SUPPORT
mqttRegister(_ledMQTTCallback);
#endif
#if WEB_SUPPORT
wsRegister()
.onVisible(_ledWebSocketOnVisible)
.onConnected(_ledWebSocketOnConnected)
.onKeyCheck(_ledWebSocketOnKeyCheck);
#endif
#if BROKER_SUPPORT
StatusBroker::Register(_ledBrokerCallback);
#endif
DEBUG_MSG_P(PSTR("[LED] Number of leds: %d\n"), _leds.size());
// Main callbacks
espurnaRegisterLoop(ledLoop);
espurnaRegisterReload(_ledConfigure);
}
void ledLoop() {
uint8_t wifi_state = wifiState();
for (unsigned char i=0; i<_leds.size(); i++) {
if (_ledMode(i) == LED_MODE_WIFI) {
if (wifi_state & WIFI_STATE_WPS || wifi_state & WIFI_STATE_SMARTCONFIG) {
_ledBlink(i, 100, 100);
} else if (wifi_state & WIFI_STATE_STA) {
_ledBlink(i, 4900, 100);
} else if (wifi_state & WIFI_STATE_AP) {
_ledBlink(i, 900, 100);
} else {
_ledBlink(i, 500, 500);
}
}
if (_ledMode(i) == LED_MODE_FINDME_WIFI) {
if (wifi_state & WIFI_STATE_WPS || wifi_state & WIFI_STATE_SMARTCONFIG) {
_ledBlink(i, 100, 100);
} else if (wifi_state & WIFI_STATE_STA) {
if (relayStatus(_leds[i].relay)) {
_ledBlink(i, 4900, 100);
} else {
_ledBlink(i, 100, 4900);
}
} else if (wifi_state & WIFI_STATE_AP) {
if (relayStatus(_leds[i].relay)) {
_ledBlink(i, 900, 100);
} else {
_ledBlink(i, 100, 900);
}
} else {
_ledBlink(i, 500, 500);
}
}
if (_ledMode(i) == LED_MODE_RELAY_WIFI) {
if (wifi_state & WIFI_STATE_WPS || wifi_state & WIFI_STATE_SMARTCONFIG) {
_ledBlink(i, 100, 100);
} else if (wifi_state & WIFI_STATE_STA) {
if (relayStatus(_leds[i].relay)) {
_ledBlink(i, 100, 4900);
} else {
_ledBlink(i, 4900, 100);
}
} else if (wifi_state & WIFI_STATE_AP) {
if (relayStatus(_leds[i].relay)) {
_ledBlink(i, 100, 900);
} else {
_ledBlink(i, 900, 100);
}
} else {
_ledBlink(i, 500, 500);
}
}
// Relay-based modes, update only if relays have been updated
if (!_led_update) continue;
if (_ledMode(i) == LED_MODE_FOLLOW) {
_ledStatus(i, relayStatus(_leds[i].relay));
}
if (_ledMode(i) == LED_MODE_FOLLOW_INVERSE) {
_ledStatus(i, !relayStatus(_leds[i].relay));
}
if (_ledMode(i) == LED_MODE_FINDME) {
bool status = true;
for (unsigned char k=0; k<relayCount(); k++) {
if (relayStatus(k)) {
status = false;
break;
}
}
_ledStatus(i, status);
}
if (_ledMode(i) == LED_MODE_RELAY) {
bool status = false;
for (unsigned char k=0; k<relayCount(); k++) {
if (relayStatus(k)) {
status = true;
break;
}
}
_ledStatus(i, status);
}
if (_ledMode(i) == LED_MODE_ON) {
_ledStatus(i, true);
}
if (_ledMode(i) == LED_MODE_OFF) {
_ledStatus(i, false);
}
}
_led_update = false;
}
#endif // LED_SUPPORT