Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1899 lines
54 KiB

/*
LIGHT MODULE
Copyright (C) 2016-2019 by Xose Pérez <xose dot perez at gmail dot com>
*/
#include "light.h"
#if LIGHT_PROVIDER != LIGHT_PROVIDER_NONE
#include "api.h"
#include "broker.h"
#include "mqtt.h"
#include "relay.h"
#include "rpc.h"
#include "rtcmem.h"
#include "ws.h"
#include "light_config.h"
#include <Ticker.h>
#include <Schedule.h>
#include <ArduinoJson.h>
#include <vector>
extern "C" {
#include "libs/fs_math.h"
}
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
// default is 8, we only need up to 5
#define PWM_CHANNEL_NUM_MAX Light::ChannelsMax
extern "C" {
#include "libs/pwm.h"
}
#endif
// -----------------------------------------------------------------------------
#if RELAY_SUPPORT
// Setup virtual relays contolling the light's state
// TODO: only do per-channel setup optionally
class LightChannelProvider : public RelayProviderBase {
public:
LightChannelProvider() = delete;
explicit LightChannelProvider(unsigned char id) :
_id(id)
{}
const char* id() const {
return "light_channel";
}
void change(bool status) override {
lightState(_id, status);
lightState(true);
lightUpdate();
}
private:
unsigned char _id { RELAY_NONE };
};
class LightGlobalProvider : public RelayProviderBase {
public:
const char* id() const {
return "light_global";
}
void change(bool status) override {
lightState(status);
lightUpdate();
}
};
#endif
struct channel_t {
channel_t() = default;
explicit channel_t(unsigned char pin_, bool inverse_) :
pin(pin_),
inverse(inverse_)
{
pinMode(pin, OUTPUT);
}
unsigned char pin { GPIO_NONE }; // real GPIO pin
bool inverse { false }; // whether we should invert the value before using it
bool state { true }; // is the channel ON
unsigned char inputValue { 0 }; // raw value, without the brightness
unsigned char value { 0 }; // normalized value, including brightness
unsigned char target { 0 }; // target value
float current { 0.0f }; // transition value
};
std::vector<channel_t> _light_channels;
bool _light_save = LIGHT_SAVE_ENABLED;
unsigned long _light_save_delay = LIGHT_SAVE_DELAY;
Ticker _light_save_ticker;
unsigned long _light_report_delay = LIGHT_REPORT_DELAY;
Ticker _light_report_ticker;
LightReportListener _light_report;
bool _light_has_controls = false;
bool _light_has_color = false;
bool _light_use_white = false;
bool _light_use_cct = false;
bool _light_use_gamma = false;
bool _light_dirty = false;
bool _light_state = false;
unsigned char _light_brightness = Light::BRIGHTNESS_MAX;
// Default to the Philips Hue value that HA also use.
// https://developers.meethue.com/documentation/core-concepts
long _light_cold_mireds = LIGHT_COLDWHITE_MIRED;
long _light_warm_mireds = LIGHT_WARMWHITE_MIRED;
long _light_cold_kelvin = (1000000L / _light_cold_mireds);
long _light_warm_kelvin = (1000000L / _light_warm_mireds);
long _light_mireds = lround((_light_cold_mireds + _light_warm_mireds) / 2L);
using light_brightness_func_t = void(*)();
light_brightness_func_t _light_brightness_func = nullptr;
LightStateListener _light_state_listener = nullptr;
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
#include <my92xx.h>
my92xx * _my92xx;
unsigned char _light_channel_map[] {
MY92XX_MAPPING
};
#endif
#if LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
std::unique_ptr<LightProvider> _light_provider;
#endif
// UI hint about channel distribution
const char _light_channel_desc[5][5] PROGMEM = {
{'W', 0, 0, 0, 0},
{'W', 'C', 0, 0, 0},
{'R', 'G', 'B', 0, 0},
{'R', 'G', 'B', 'W', 0},
{'R', 'G', 'B', 'W', 'C'}
};
static_assert((Light::Channels * Light::Channels) <= (sizeof(_light_channel_desc)), "Out-of-bounds array access");
// Gamma Correction lookup table (8 bit)
const unsigned char _light_gamma_table[] PROGMEM = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11,
12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19,
19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28,
29, 30, 30, 31, 32, 33, 33, 34, 35, 35, 36, 37, 38, 39, 39, 40,
41, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71,
72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 89,
91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105, 106, 108, 109, 110,
112, 113, 115, 116, 118, 119, 121, 122, 123, 125, 126, 128, 130, 131, 133, 134,
136, 137, 139, 140, 142, 144, 145, 147, 149, 150, 152, 154, 155, 157, 159, 160,
162, 164, 166, 167, 169, 171, 173, 175, 176, 178, 180, 182, 184, 186, 187, 189,
191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221,
223, 225, 227, 229, 231, 233, 235, 238, 240, 242, 244, 246, 248, 251, 253, 255
};
static_assert(Light::VALUE_MAX <= sizeof(_light_gamma_table), "Out-of-bounds array access");
// -----------------------------------------------------------------------------
// UTILS
// -----------------------------------------------------------------------------
void _setValue(const unsigned char id, unsigned int value) {
if (_light_channels[id].value != value) {
_light_channels[id].value = value;
_light_dirty = true;
}
}
void _setInputValue(const unsigned char id, unsigned int value) {
_light_channels[id].inputValue = value;
}
void _setRGBInputValue(unsigned char red, unsigned char green, unsigned char blue) {
_setInputValue(0, constrain(red, Light::VALUE_MIN, Light::VALUE_MAX));
_setInputValue(1, constrain(green, Light::VALUE_MIN, Light::VALUE_MAX));
_setInputValue(2, constrain(blue, Light::VALUE_MIN, Light::VALUE_MAX));
}
void _setCCTInputValue(unsigned char warm, unsigned char cold) {
_setInputValue(0, constrain(warm, Light::VALUE_MIN, Light::VALUE_MAX));
_setInputValue(1, constrain(cold, Light::VALUE_MIN, Light::VALUE_MAX));
}
void _lightApplyBrightness(size_t channels = lightChannels()) {
double brightness = static_cast<double>(_light_brightness) / static_cast<double>(Light::BRIGHTNESS_MAX);
channels = std::min(channels, lightChannels());
for (unsigned char i=0; i < lightChannels(); i++) {
if (i >= channels) brightness = 1;
_setValue(i, _light_channels[i].inputValue * brightness);
}
}
void _lightApplyBrightnessColor() {
double brightness = static_cast<double>(_light_brightness) / static_cast<double>(Light::BRIGHTNESS_MAX);
// Substract the common part from RGB channels and add it to white channel. So [250,150,50] -> [200,100,0,50]
unsigned char white = std::min(_light_channels[0].inputValue, std::min(_light_channels[1].inputValue, _light_channels[2].inputValue));
for (unsigned int i=0; i < 3; i++) {
_setValue(i, _light_channels[i].inputValue - white);
}
// Split the White Value across 2 White LED Strips.
if (_light_use_cct) {
// This change the range from 153-500 to 0-347 so we get a value between 0 and 1 in the end.
double miredFactor = ((double) _light_mireds - (double) _light_cold_mireds)/((double) _light_warm_mireds - (double) _light_cold_mireds);
// set cold white
_light_channels[3].inputValue = 0;
_setValue(3, lround(((double) 1.0 - miredFactor) * white));
// set warm white
_light_channels[4].inputValue = 0;
_setValue(4, lround(miredFactor * white));
} else {
_light_channels[3].inputValue = 0;
_setValue(3, white);
}
// Scale up to equal input values. So [250,150,50] -> [200,100,0,50] -> [250, 125, 0, 63]
unsigned char max_in = std::max(_light_channels[0].inputValue, std::max(_light_channels[1].inputValue, _light_channels[2].inputValue));
unsigned char max_out = std::max(std::max(_light_channels[0].value, _light_channels[1].value), std::max(_light_channels[2].value, _light_channels[3].value));
unsigned char channelSize = _light_use_cct ? 5 : 4;
if (_light_use_cct) {
max_out = std::max(max_out, _light_channels[4].value);
}
double factor = (max_out > 0) ? (double) (max_in / max_out) : 0;
for (unsigned char i=0; i < channelSize; i++) {
_setValue(i, lround((double) _light_channels[i].value * factor * brightness));
}
// Scale white channel to match brightness
for (unsigned char i=3; i < channelSize; i++) {
_setValue(i, constrain(static_cast<unsigned int>(_light_channels[i].value * LIGHT_WHITE_FACTOR), Light::BRIGHTNESS_MIN, Light::BRIGHTNESS_MAX));
}
// For the rest of channels, don't apply brightness, it is already in the inputValue
// i should be 4 when RGBW and 5 when RGBWW
for (unsigned char i=channelSize; i < _light_channels.size(); i++) {
_setValue(i, _light_channels[i].inputValue);
}
}
String lightDesc(unsigned char id) {
if (id < _light_channels.size()) {
const char tag = pgm_read_byte(&_light_channel_desc[_light_channels.size() - 1][id]);
switch (tag) {
case 'W':
return F("WARM WHITE");
case 'C':
return F("COLD WHITE");
case 'R':
return F("RED");
case 'G':
return F("GREEN");
case 'B':
return F("BLUE");
default:
break;
}
}
return F("UNKNOWN");
}
// -----------------------------------------------------------------------------
// Input Values
// -----------------------------------------------------------------------------
void _fromLong(unsigned long value, bool brightness) {
if (brightness) {
_setRGBInputValue((value >> 24) & 0xFF, (value >> 16) & 0xFF, (value >> 8) & 0xFF);
lightBrightness((value & 0xFF) * Light::BRIGHTNESS_MAX / 255);
} else {
_setRGBInputValue((value >> 16) & 0xFF, (value >> 8) & 0xFF, (value) & 0xFF);
}
}
void _fromRGB(const char * rgb) {
// 9 char #........ , 11 char ...,...,...
if (!_light_has_color) return;
if (!rgb || (strlen(rgb) == 0)) return;
// HEX value is always prefixed, like CSS
// values are interpreted like RGB + optional brightness
if (rgb[0] == '#') {
_fromLong(strtoul(rgb + 1, nullptr, 16), strlen(rgb + 1) > 7);
// With comma separated string, assume decimal values
} else {
const auto channels = _light_channels.size();
unsigned char count = 0;
char buf[16] = {0};
strncpy(buf, rgb, sizeof(buf) - 1);
char *tok = strtok(buf, ",");
while (tok != NULL) {
_setInputValue(count, atoi(tok));
if (++count == channels) break;
tok = strtok(NULL, ",");
}
// If less than 3 values received, set the rest to 0
if (count < 2) _setInputValue(1, 0);
if (count < 3) _setInputValue(2, 0);
return;
}
}
// HSV string is expected to be "H,S,V", where:
// 0 <= H <= 360
// 0 <= S <= 100
// 0 <= V <= 100
void _fromHSV(const char * hsv) {
if (!_light_has_color) return;
if (strlen(hsv) == 0) return;
char buf[16] = {0};
strncpy(buf, hsv, sizeof(buf) - 1);
unsigned char count = 0;
unsigned int value[3] = {0};
char * tok = strtok(buf, ",");
while (tok != NULL) {
value[count] = atoi(tok);
if (++count == 3) break;
tok = strtok(NULL, ",");
}
if (count != 3) return;
// HSV to RGB transformation -----------------------------------------------
//INPUT: [0,100,57]
//IS: [145,0,0]
//SHOULD: [255,0,0]
const double h = (value[0] == 360) ? 0 : (double) value[0] / 60.0;
const double f = (h - floor(h));
const double s = (double) value[1] / 100.0;
_light_brightness = lround((double) value[2] * (static_cast<double>(Light::BRIGHTNESS_MAX) / 100.0)); // (default 255/100)
const unsigned char p = lround(Light::VALUE_MAX * (1.0 - s));
const unsigned char q = lround(Light::VALUE_MAX * (1.0 - s * f));
const unsigned char t = lround(Light::VALUE_MAX * (1.0 - s * (1.0 - f)));
switch (int(h)) {
case 0:
_setRGBInputValue(Light::VALUE_MAX, t, p);
break;
case 1:
_setRGBInputValue(q, Light::VALUE_MAX, p);
break;
case 2:
_setRGBInputValue(p, Light::VALUE_MAX, t);
break;
case 3:
_setRGBInputValue(p, q, Light::VALUE_MAX);
break;
case 4:
_setRGBInputValue(t, p, Light::VALUE_MAX);
break;
case 5:
_setRGBInputValue(Light::VALUE_MAX, p, q);
break;
default:
_setRGBInputValue(Light::VALUE_MIN, Light::VALUE_MIN, Light::VALUE_MIN);
break;
}
}
// Thanks to Sacha Telgenhof for sharing this code in his AiLight library
// https://github.com/stelgenhof/AiLight
// Color temperature is measured in mireds (kelvin = 1e6/mired)
long _toKelvin(const long mireds) {
return constrain(static_cast<long>(1000000L / mireds), _light_warm_kelvin, _light_cold_kelvin);
}
long _toMireds(const long kelvin) {
return constrain(static_cast<long>(lround(1000000L / kelvin)), _light_cold_mireds, _light_warm_mireds);
}
void _lightMireds(const long kelvin) {
_light_mireds = _toMireds(kelvin);
}
void _lightMiredsCCT(const long kelvin) {
_lightMireds(kelvin);
// This change the range from 153-500 to 0-347 so we get a value between 0 and 1 in the end.
const double factor = ((double) _light_mireds - (double) _light_cold_mireds)/((double) _light_warm_mireds - (double) _light_cold_mireds);
_setCCTInputValue(
lround(factor * Light::VALUE_MAX),
lround(((double) 1.0 - factor) * Light::VALUE_MAX)
);
}
void _fromKelvin(long kelvin) {
if (!_light_has_color) {
if (!_light_use_cct) return;
_lightMiredsCCT(kelvin);
return;
}
_lightMireds(kelvin);
if (_light_use_cct) {
_setRGBInputValue(Light::VALUE_MAX, Light::VALUE_MAX, Light::VALUE_MAX);
return;
}
// Calculate colors
kelvin /= 100;
const unsigned int red = (kelvin <= 66)
? Light::VALUE_MAX
: 329.698727446 * fs_pow((double) (kelvin - 60), -0.1332047592);
const unsigned int green = (kelvin <= 66)
? 99.4708025861 * fs_log(kelvin) - 161.1195681661
: 288.1221695283 * fs_pow((double) kelvin, -0.0755148492);
const unsigned int blue = (kelvin >= 66)
? Light::VALUE_MAX
: ((kelvin <= 19)
? 0
: 138.5177312231 * fs_log(kelvin - 10) - 305.0447927307);
_setRGBInputValue(red, green, blue);
}
void _fromMireds(const long mireds) {
_fromKelvin(_toKelvin(mireds));
}
// -----------------------------------------------------------------------------
// Output Values
// -----------------------------------------------------------------------------
void _toRGB(char * rgb, size_t len, bool target = false) {
unsigned long value = 0;
value += target ? _light_channels[0].target : _light_channels[0].inputValue;
value <<= 8;
value += target ? _light_channels[1].target : _light_channels[1].inputValue;
value <<= 8;
value += target ? _light_channels[2].target : _light_channels[2].inputValue;
snprintf_P(rgb, len, PSTR("#%06X"), value);
}
String _toRGB(bool target) {
char buffer[64] { 0 };
_toRGB(buffer, sizeof(buffer), target);
return buffer;
}
void _toHSV(char * hsv, size_t len) {
double h {0.}, s {0.}, v {0.};
double r {0.}, g {0.}, b {0.};
double min {0.}, max {0.};
r = static_cast<double>(_light_channels[0].target) / Light::VALUE_MAX;
g = static_cast<double>(_light_channels[1].target) / Light::VALUE_MAX;
b = static_cast<double>(_light_channels[2].target) / Light::VALUE_MAX;
min = std::min(r, std::min(g, b));
max = std::max(r, std::max(g, b));
v = 100.0 * max;
if (v == 0) {
h = s = 0;
} else {
s = 100.0 * (max - min) / max;
if (s == 0) {
h = 0;
} else {
if (max == r) {
if (g >= b) {
h = 0.0 + 60.0 * (g - b) / (max - min);
} else {
h = 360.0 + 60.0 * (g - b) / (max - min);
}
} else if (max == g) {
h = 120.0 + 60.0 * (b - r) / (max - min);
} else {
h = 240.0 + 60.0 * (r - g) / (max - min);
}
}
}
// Convert to string. Using lround, since we can't (yet) printf floats
snprintf(hsv, len, "%d,%d,%d",
static_cast<int>(lround(h)),
static_cast<int>(lround(s)),
static_cast<int>(lround(v))
);
}
String _toHSV() {
char buffer[64] { 0 };
_toHSV(buffer, sizeof(buffer));
return buffer;
}
void _toLong(char * color, size_t len, bool target) {
if (!_light_has_color) return;
snprintf_P(color, len, PSTR("%u,%u,%u"),
(target ? _light_channels[0].target : _light_channels[0].inputValue),
(target ? _light_channels[1].target : _light_channels[1].inputValue),
(target ? _light_channels[2].target : _light_channels[2].inputValue)
);
}
void _toLong(char * color, size_t len) {
_toLong(color, len, false);
}
String _toLong(bool target = false) {
char buffer[64] { 0 };
_toLong(buffer, sizeof(buffer), target);
return buffer;
}
String _toCSV(bool target) {
const auto channels = lightChannels();
String result;
result.reserve(4 * channels);
for (auto& channel : _light_channels) {
if (result.length()) result += ',';
result += String(target ? channel.target : channel.inputValue);
}
return result;
}
// See cores/esp8266/WMath.cpp::map
// Redefining as local method here to avoid breaking in unexpected ways in inputs like (0, 0, 0, 0, 1)
template <typename T, typename Tin, typename Tout> T _lightMap(T x, Tin in_min, Tin in_max, Tout out_min, Tout out_max) {
auto divisor = (in_max - in_min);
if (divisor == 0){
return -1; //AVR returns -1, SAM returns 0
}
return (x - in_min) * (out_max - out_min) / divisor + out_min;
}
int _lightAdjustValue(const int& value, const String& operation) {
if (!operation.length()) return value;
// if prefixed with a sign, treat expression as numerical operation
// otherwise, use as the new value
int updated = operation.toInt();
if (operation[0] == '+' || operation[0] == '-') {
updated = value + updated;
}
return updated;
}
void _lightAdjustBrightness(const char* payload) {
lightBrightness(_lightAdjustValue(lightBrightness(), payload));
}
void _lightAdjustBrightness(const String& payload) {
_lightAdjustBrightness(payload.c_str());
}
void _lightAdjustChannel(unsigned char id, const char* payload) {
lightChannel(id, _lightAdjustValue(lightChannel(id), payload));
}
void _lightAdjustChannel(unsigned char id, const String& payload) {
_lightAdjustChannel(id, payload.c_str());
}
void _lightAdjustKelvin(const char* payload) {
_fromKelvin(_lightAdjustValue(_toKelvin(_light_mireds), payload));
}
void _lightAdjustKelvin(const String& payload) {
_lightAdjustKelvin(payload.c_str());
}
void _lightAdjustMireds(const char* payload) {
_fromMireds(_lightAdjustValue(_light_mireds, payload));
}
void _lightAdjustMireds(const String& payload) {
_lightAdjustMireds(payload.c_str());
}
// -----------------------------------------------------------------------------
// PROVIDER
// -----------------------------------------------------------------------------
unsigned int _toPWM(unsigned int value, bool gamma, bool inverse) {
value = constrain(value, Light::VALUE_MIN, Light::VALUE_MAX);
if (gamma) value = pgm_read_byte(_light_gamma_table + value);
if (Light::VALUE_MAX != Light::PWM_LIMIT) value = _lightMap(value, Light::VALUE_MIN, Light::VALUE_MAX, Light::PWM_MIN, Light::PWM_LIMIT);
if (inverse) value = LIGHT_LIMIT_PWM - value;
return value;
}
// Returns a PWM value for the given channel ID
unsigned int _toPWM(unsigned char id) {
bool useGamma = _light_use_gamma && _light_has_color && (id < 3);
return _toPWM(_light_channels[id].current, useGamma, _light_channels[id].inverse);
}
namespace {
class LightTransitionHandler {
public:
using Channels = std::vector<channel_t>;
struct Transition {
float& value;
unsigned char target;
float step;
size_t count;
void debug() const {
DEBUG_MSG_P(PSTR("[LIGHT] Transition from %s to %u (step %s, %u times)\n"),
String(value, 2).c_str(), target, String(step, 2).c_str(), count);
}
};
explicit LightTransitionHandler(Channels& channels, bool state, LightTransition transition) :
_time(transition.time),
_step(transition.step)
{
for (auto& channel : channels) {
prepare(channel, state);
}
// if nothing to do, ignore transition step & time and just schedule as soon as possible
if (!transitions()) {
reset();
return;
}
DEBUG_MSG_P(PSTR("[LIGHT] Scheduled transition every %ums (total %ums)\n"), _step, _time);
}
void prepare(channel_t& channel, bool state) {
channel.target = (state && channel.state) ? channel.value : 0;
float diff = static_cast<float>(channel.target) - channel.current;
if (!_time || (_step >= _time) || (std::abs(diff) <= std::numeric_limits<float>::epsilon())) {
channel.current = channel.target;
return;
}
float step = (diff > 0.0) ? 1.0f : -1.0f;
float every = static_cast<double>(_time) / std::abs(diff);
if (every < _step) {
auto step_ref = static_cast<float>(_step);
step *= (step_ref / every);
every = step_ref;
}
size_t count = _time / every;
auto transition = Transition{channel.current, channel.target, step, count};
transition.debug();
_transitions.push_back(transition);
}
void reset() {
_step = 10;
_time = 10;
}
bool next() {
bool result { false };
for (auto& transition : _transitions) {
if (!transition.count) {
continue;
}
if (--transition.count) {
transition.value += transition.step;
result = true;
} else {
transition.value = transition.target;
}
}
return result;
}
unsigned long step() const {
return _step;
}
unsigned long time() const {
return _time;
}
size_t transitions() const {
return _transitions.size();
}
private:
std::vector<Transition> _transitions;
unsigned long _time;
unsigned long _step;
};
} // namespace
std::unique_ptr<LightTransitionHandler> _light_transition;
Ticker _light_transition_ticker;
bool _light_use_transitions = false;
unsigned long _light_transition_time = LIGHT_TRANSITION_TIME;
unsigned long _light_transition_step = LIGHT_TRANSITION_STEP;
bool _light_provider_update = false;
void _lightProviderSchedule(unsigned long ms);
void _lightProviderUpdate() {
if (_light_provider_update) return;
_light_provider_update = true;
if (!_light_transition) return;
auto next = _light_transition->next();
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
for (unsigned char i=0; i<_light_channels.size(); i++) {
_my92xx->setChannel(_light_channel_map[i], _toPWM(i));
}
_my92xx->setState(true);
_my92xx->update();
#endif
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
for (unsigned char i=0; i < _light_channels.size(); i++) {
pwm_set_duty(_toPWM(i), i);
}
pwm_start();
#endif
#if LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
if (_light_provider) {
for (unsigned char i=0; i < _light_channels.size(); i++) {
_light_provider->channel(i, _light_channels[i].current);
}
_light_provider->update();
}
if (!next) {
_light_provider->state(_light_state);
}
#endif
if (next) {
_lightProviderSchedule(_light_transition->step());
} else {
_light_transition.reset(nullptr);
}
_light_provider_update = false;
}
void _lightProviderSchedule(unsigned long ms) {
_light_transition_ticker.once_ms_scheduled(ms, _lightProviderUpdate);
}
// -----------------------------------------------------------------------------
// PERSISTANCE
// -----------------------------------------------------------------------------
union light_rtcmem_t {
struct {
uint8_t channels[Light::ChannelsMax];
uint8_t brightness;
uint16_t mired;
} __attribute__((packed)) packed;
uint64_t value;
};
bool lightSave() {
return _light_save;
}
void lightSave(bool save) {
_light_save = save;
}
void _lightSaveRtcmem() {
if (lightChannels() > Light::ChannelsMax) return;
light_rtcmem_t light;
for (unsigned int i=0; i < lightChannels(); i++) {
light.packed.channels[i] = _light_channels[i].inputValue;
}
light.packed.brightness = _light_brightness;
light.packed.mired = _light_mireds;
Rtcmem->light = light.value;
}
void _lightRestoreRtcmem() {
if (lightChannels() > Light::ChannelsMax) return;
light_rtcmem_t light;
light.value = Rtcmem->light;
for (unsigned int i=0; i < lightChannels(); i++) {
_light_channels[i].inputValue = light.packed.channels[i];
}
_light_brightness = light.packed.brightness;
_light_mireds = light.packed.mired;
}
void _lightSaveSettings() {
if (!_light_save) {
return;
}
for (unsigned char i=0; i < _light_channels.size(); ++i) {
setSetting({"ch", i}, _light_channels[i].inputValue);
}
setSetting("brightness", _light_brightness);
setSetting("mireds", _light_mireds);
saveSettings();
}
void _lightRestoreSettings() {
for (unsigned char i=0; i < _light_channels.size(); ++i) {
_light_channels[i].inputValue = getSetting({"ch", i}, (i == 0) ? Light::VALUE_MAX : 0);
}
_light_brightness = getSetting("brightness", Light::BRIGHTNESS_MAX);
_light_mireds = getSetting("mireds", _light_mireds);
}
bool _lightParsePayload(const char* payload) {
switch (rpcParsePayload(payload)) {
case PayloadStatus::On:
lightState(true);
break;
case PayloadStatus::Off:
lightState(false);
break;
case PayloadStatus::Toggle:
lightState(!_light_state);
break;
case PayloadStatus::Unknown:
return false;
}
return true;
}
bool _lightParsePayload(const String& payload) {
return _lightParsePayload(payload.c_str());
}
bool _lightTryParseChannel(const char* p, unsigned char& id) {
char* endp { nullptr };
const unsigned long result { strtoul(p, &endp, 10) };
if ((endp == p) || (*endp != '\0') || (result >= lightChannels())) {
DEBUG_MSG_P(PSTR("[LIGHT] Invalid channelID (%s)\n"), p);
return false;
}
id = result;
return true;
}
// -----------------------------------------------------------------------------
// MQTT
// -----------------------------------------------------------------------------
int _lightMqttReportMask() {
return Light::DefaultReport & ~(static_cast<int>(mqttForward() ? Light::Report::None : Light::Report::Mqtt));
}
int _lightMqttReportGroupMask() {
return _lightMqttReportMask() & ~static_cast<int>(Light::Report::MqttGroup);
}
void _lightUpdateFromMqtt(LightTransition transition) {
lightUpdate(_light_save, transition, _lightMqttReportMask());
}
void _lightUpdateFromMqtt() {
_lightUpdateFromMqtt(lightTransition());
}
void _lightUpdateFromMqttGroup() {
lightUpdate(_light_save, lightTransition(), _lightMqttReportGroupMask());
}
#if MQTT_SUPPORT
bool _lightMqttHeartbeat(heartbeat::Mask mask) {
if (mask & heartbeat::Report::Light)
lightMQTT();
return mqttConnected();
}
void _lightMqttCallback(unsigned int type, const char * topic, const char * payload) {
String mqtt_group_color = getSetting("mqttGroupColor");
if (type == MQTT_CONNECT_EVENT) {
mqttSubscribe(MQTT_TOPIC_BRIGHTNESS);
if (_light_has_color) {
mqttSubscribe(MQTT_TOPIC_COLOR_RGB);
mqttSubscribe(MQTT_TOPIC_COLOR_HSV);
}
if (_light_has_color || _light_use_cct) {
mqttSubscribe(MQTT_TOPIC_MIRED);
mqttSubscribe(MQTT_TOPIC_KELVIN);
}
// Transition config (everything sent after this will use this new value)
mqttSubscribe(MQTT_TOPIC_TRANSITION);
// Group color
if (mqtt_group_color.length() > 0) mqttSubscribeRaw(mqtt_group_color.c_str());
// Channels
char buffer[strlen(MQTT_TOPIC_CHANNEL) + 3];
snprintf_P(buffer, sizeof(buffer), PSTR("%s/+"), MQTT_TOPIC_CHANNEL);
mqttSubscribe(buffer);
// Global lights control
if (!_light_has_controls) {
mqttSubscribe(MQTT_TOPIC_LIGHT);
}
}
if (type == MQTT_MESSAGE_EVENT) {
// Group color
if ((mqtt_group_color.length() > 0) && (mqtt_group_color.equals(topic))) {
lightColor(payload, true);
_lightUpdateFromMqttGroup();
return;
}
// Match topic
String t = mqttMagnitude((char *) topic);
// Color temperature in mireds
if (t.equals(MQTT_TOPIC_MIRED)) {
_lightAdjustMireds(payload);
_lightUpdateFromMqtt();
return;
}
// Color temperature in kelvins
if (t.equals(MQTT_TOPIC_KELVIN)) {
_lightAdjustKelvin(payload);
_lightUpdateFromMqtt();
return;
}
// Color
if (t.equals(MQTT_TOPIC_COLOR_RGB)) {
lightColor(payload, true);
_lightUpdateFromMqtt();
return;
}
if (t.equals(MQTT_TOPIC_COLOR_HSV)) {
lightColor(payload, false);
_lightUpdateFromMqtt();
return;
}
// Transition setting
if (t.equals(MQTT_TOPIC_TRANSITION)) {
lightTransition(strtoul(payload, nullptr, 10), _light_transition_step);
return;
}
// Brightness
if (t.equals(MQTT_TOPIC_BRIGHTNESS)) {
_lightAdjustBrightness(payload);
_lightUpdateFromMqtt();
return;
}
// Channel
if (t.startsWith(MQTT_TOPIC_CHANNEL)) {
unsigned char id;
if (!_lightTryParseChannel(t.c_str() + strlen(MQTT_TOPIC_CHANNEL) + 1, id)) {
return;
}
_lightAdjustChannel(id, payload);
_lightUpdateFromMqtt();
return;
}
// Global
if (t.equals(MQTT_TOPIC_LIGHT)) {
_lightParsePayload(payload);
_lightUpdateFromMqtt();
}
}
}
void _lightMqttSetup() {
mqttHeartbeat(_lightMqttHeartbeat);
mqttRegister(_lightMqttCallback);
}
void lightMQTT() {
char buffer[20];
if (_light_has_color) {
// Color
if (getSetting("useCSS", 1 == LIGHT_USE_CSS)) {
_toRGB(buffer, sizeof(buffer), true);
} else {
_toLong(buffer, sizeof(buffer), true);
}
mqttSend(MQTT_TOPIC_COLOR_RGB, buffer);
_toHSV(buffer, sizeof(buffer));
mqttSend(MQTT_TOPIC_COLOR_HSV, buffer);
}
if (_light_has_color || _light_use_cct) {
// Mireds
snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_mireds);
mqttSend(MQTT_TOPIC_MIRED, buffer);
}
// Channels
for (unsigned int i=0; i < _light_channels.size(); i++) {
itoa(_light_channels[i].target, buffer, 10);
mqttSend(MQTT_TOPIC_CHANNEL, i, buffer);
}
// Brightness
snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_brightness);
mqttSend(MQTT_TOPIC_BRIGHTNESS, buffer);
// Global
if (!_light_has_controls) {
snprintf_P(buffer, sizeof(buffer), "%c", _light_state ? '1' : '0');
mqttSend(MQTT_TOPIC_LIGHT, buffer);
}
}
void lightMQTTGroup() {
const String mqtt_group_color = getSetting("mqttGroupColor");
if (mqtt_group_color.length()) {
mqttSendRaw(mqtt_group_color.c_str(), _toCSV(false).c_str());
}
}
#endif
// -----------------------------------------------------------------------------
// Broker
// -----------------------------------------------------------------------------
#if BROKER_SUPPORT
void lightBroker() {
for (unsigned int id = 0; id < _light_channels.size(); ++id) {
StatusBroker::Publish(MQTT_TOPIC_CHANNEL, id, _light_channels[id].value);
}
}
#endif
// -----------------------------------------------------------------------------
// API
// -----------------------------------------------------------------------------
#if API_SUPPORT
template <typename T>
bool _lightApiTryHandle(ApiRequest& request, T&& callback) {
auto id_param = request.wildcard(0);
unsigned char id;
if (!_lightTryParseChannel(id_param.c_str(), id)) {
return false;
}
return callback(id);
}
void _lightApiSetup() {
if (_light_has_color) {
apiRegister(F(MQTT_TOPIC_COLOR_RGB),
[](ApiRequest& request) {
auto result = getSetting("useCSS", 1 == LIGHT_USE_CSS)
? _toRGB(true) : _toLong(true);
request.send(result);
return true;
},
[](ApiRequest& request) {
lightColor(request.param(F("value")), true);
lightUpdate();
return true;
}
);
apiRegister(F(MQTT_TOPIC_COLOR_HSV),
[](ApiRequest& request) {
request.send(_toHSV());
return true;
},
[](ApiRequest& request) {
lightColor(request.param(F("value")), false);
lightUpdate();
return true;
}
);
apiRegister(F(MQTT_TOPIC_MIRED),
[](ApiRequest& request) {
request.send(String(_light_mireds));
return true;
},
[](ApiRequest& request) {
_lightAdjustMireds(request.param(F("value")));
lightUpdate();
return true;
}
);
apiRegister(F(MQTT_TOPIC_KELVIN),
[](ApiRequest& request) {
request.send(String(_toKelvin(_light_mireds)));
return true;
},
[](ApiRequest& request) {
_lightAdjustKelvin(request.param(F("value")));
lightUpdate();
return true;
}
);
}
apiRegister(F(MQTT_TOPIC_TRANSITION),
[](ApiRequest& request) {
request.send(String(lightTransitionTime()));
return true;
},
[](ApiRequest& request) {
auto value = request.param(F("value"));
lightTransition(strtoul(value.c_str(), nullptr, 10), _light_transition_step);
return true;
}
);
apiRegister(F(MQTT_TOPIC_BRIGHTNESS),
[](ApiRequest& request) {
request.send(String(static_cast<int>(_light_brightness)));
return true;
},
[](ApiRequest& request) {
_lightAdjustBrightness(request.param(F("value")));
lightUpdate();
return true;
}
);
apiRegister(F(MQTT_TOPIC_CHANNEL "/+"),
[](ApiRequest& request) {
return _lightApiTryHandle(request, [&](unsigned char id) {
request.send(String(static_cast<int>(_light_channels[id].target)));
return true;
});
},
[](ApiRequest& request) {
return _lightApiTryHandle(request, [&](unsigned char id) {
_lightAdjustChannel(id, request.param(F("value")));
lightUpdate();
return true;
});
}
);
if (!_light_has_controls) {
apiRegister(F(MQTT_TOPIC_LIGHT),
[](ApiRequest& request) {
request.send(lightState() ? "1" : "0");
return true;
},
[](ApiRequest& request) {
_lightParsePayload(request.param(F("value")));
lightUpdate();
return true;
}
);
}
}
#endif // API_SUPPORT
#if WEB_SUPPORT
bool _lightWebSocketOnKeyCheck(const char * key, JsonVariant& value) {
if (strncmp(key, "light", 5) == 0) return true;
if (strncmp(key, "use", 3) == 0) return true;
if (strncmp(key, "lt", 2) == 0) return true;
return false;
}
void _lightWebSocketStatus(JsonObject& root) {
if (_light_has_color) {
if (getSetting("useRGB", 1 == LIGHT_USE_RGB)) {
root["rgb"] = lightColor(true);
} else {
root["hsv"] = lightColor(false);
}
}
if (_light_use_cct) {
JsonObject& mireds = root.createNestedObject("mireds");
mireds["value"] = _light_mireds;
mireds["cold"] = _light_cold_mireds;
mireds["warm"] = _light_warm_mireds;
root["useCCT"] = _light_use_cct;
}
JsonArray& channels = root.createNestedArray("channels");
for (unsigned char id=0; id < _light_channels.size(); id++) {
channels.add(lightChannel(id));
}
root["brightness"] = lightBrightness();
root["lightstate"] = lightState();
}
void _lightWebSocketOnVisible(JsonObject& root) {
root["colorVisible"] = 1;
}
void _lightWebSocketOnConnected(JsonObject& root) {
root["mqttGroupColor"] = getSetting("mqttGroupColor");
root["useColor"] = _light_has_color;
root["useWhite"] = _light_use_white;
root["useGamma"] = _light_use_gamma;
root["useTransitions"] = _light_use_transitions;
root["useCSS"] = getSetting("useCSS", 1 == LIGHT_USE_CSS);
root["useRGB"] = getSetting("useRGB", 1 == LIGHT_USE_RGB);
root["ltSave"] = _light_save;
root["ltTime"] = _light_transition_time;
root["ltStep"] = _light_transition_step;
#if RELAY_SUPPORT
root["ltRelay"] = getSetting("ltRelay", 1 == LIGHT_RELAY_ENABLED);
#endif
}
void _lightWebSocketOnAction(uint32_t client_id, const char * action, JsonObject& data) {
if (_light_has_color) {
if (strcmp(action, "color") == 0) {
if (data.containsKey("rgb")) {
lightColor(data["rgb"].as<const char*>(), true);
lightUpdate();
}
if (data.containsKey("hsv")) {
lightColor(data["hsv"].as<const char*>(), false);
lightUpdate();
}
}
}
if (_light_use_cct) {
if (strcmp(action, "mireds") == 0) {
_fromMireds(data["mireds"]);
lightUpdate();
}
}
if (strcmp(action, "channel") == 0) {
if (data.containsKey("id") && data.containsKey("value")) {
lightChannel(data["id"].as<unsigned char>(), data["value"].as<int>());
lightUpdate();
}
}
if (strcmp(action, "brightness") == 0) {
if (data.containsKey("value")) {
lightBrightness(data["value"].as<int>());
lightUpdate();
}
}
}
#endif
#if TERMINAL_SUPPORT
void _lightInitCommands() {
terminalRegisterCommand(F("LIGHT"), [](const terminal::CommandContext& ctx) {
if (ctx.argc > 1) {
if (!_lightParsePayload(ctx.argv[1].c_str())) {
terminalError(ctx, F("Invalid payload"));
return;
}
lightUpdate();
}
ctx.output.printf("%s\n", _light_state ? "ON" : "OFF");
terminalOK(ctx);
});
terminalRegisterCommand(F("BRIGHTNESS"), [](const terminal::CommandContext& ctx) {
if (ctx.argc > 1) {
_lightAdjustBrightness(ctx.argv[1].c_str());
lightUpdate();
}
ctx.output.printf("%ld\n", lightBrightness());
terminalOK(ctx);
});
terminalRegisterCommand(F("CHANNEL"), [](const terminal::CommandContext& ctx) {
if (!lightChannels()) {
return;
}
auto id = -1;
if (ctx.argc > 1) {
id = ctx.argv[1].toInt();
}
auto description = [&](unsigned char channel) {
ctx.output.printf("#%u (%s): %ld\n", channel, lightDesc(id).c_str(), lightChannel(channel));
};
if (id < 0 || id >= static_cast<decltype(id)>(lightChannels())) {
for (unsigned char index = 0; index < lightChannels(); ++index) {
description(index);
}
return;
}
if (ctx.argc > 2) {
_lightAdjustChannel(id, ctx.argv[2].c_str());
lightUpdate();
}
description(id);
terminalOK(ctx);
});
terminalRegisterCommand(F("COLOR"), [](const terminal::CommandContext& ctx) {
if (ctx.argc > 1) {
lightColor(ctx.argv[1].c_str());
lightUpdate();
}
ctx.output.printf("%s\n", lightColor().c_str());
terminalOK(ctx);
});
terminalRegisterCommand(F("KELVIN"), [](const terminal::CommandContext& ctx) {
if (ctx.argc > 1) {
_lightAdjustKelvin(ctx.argv[1].c_str());
lightUpdate();
}
ctx.output.printf("%s\n", lightColor().c_str());
terminalOK(ctx);
});
terminalRegisterCommand(F("MIRED"), [](const terminal::CommandContext& ctx) {
if (ctx.argc > 1) {
_lightAdjustMireds(ctx.argv[1]);
lightUpdate();
}
ctx.output.printf("%s\n", lightColor().c_str());
terminalOK(ctx);
});
}
#endif // TERMINAL_SUPPORT
size_t lightChannels() {
return _light_channels.size();
}
bool lightHasColor() {
return _light_has_color;
}
bool lightUseCCT() {
return _light_use_cct;
}
// -----------------------------------------------------------------------------
void lightSetReportListener(LightReportListener func) {
_light_report = func;
}
void _lightReport(int report) {
#if MQTT_SUPPORT
if (report & Light::Report::Mqtt) {
lightMQTT();
}
if (report & Light::Report::MqttGroup) {
lightMQTTGroup();
}
#endif
#if WEB_SUPPORT
if (report & Light::Report::Web) {
wsPost(_lightWebSocketStatus);
}
#endif
#if BROKER_SUPPORT
if (report & Light::Report::Broker) {
lightBroker();
}
#endif
if (_light_report) {
_light_report();
}
}
void _lightReport(Light::Report report) {
_lightReport(static_cast<int>(report));
}
void lightUpdate(bool save, LightTransition transition, int report) {
// Calculate values based on inputs and brightness
// Update only if the values had actually changed
_light_brightness_func();
if (!_light_channels.size()) {
return;
}
if (!_light_dirty) {
return;
}
_light_dirty = false;
// Channel output values will be set by the handler class and the specified provider
// We either set the values immediately or schedule an ongoing transition
_light_transition = std::make_unique<LightTransitionHandler>(_light_channels, _light_state, transition);
_lightProviderSchedule(_light_transition->step());
// Send current state to all available 'report' targets
// (make sure to delay the report, in case lightUpdate is called repeatedly)
_light_report_ticker.once_ms(_light_report_delay, [report]() {
_lightReport(report);
});
// Always save to RTCMEM, optionally preserve the state in the settings storage
_lightSaveRtcmem();
if (save) {
_light_save_ticker.once_ms(_light_save_delay, _lightSaveSettings);
}
};
void lightUpdate(bool save, LightTransition transition, Light::Report report) {
lightUpdate(save, transition, static_cast<int>(report));
}
void lightUpdate(LightTransition transition) {
lightUpdate(_light_save, transition, Light::DefaultReport);
}
void lightUpdate(bool save) {
lightUpdate(save, lightTransition(), Light::DefaultReport);
}
void lightUpdate() {
lightUpdate(lightTransition());
}
void lightState(unsigned char id, bool state) {
if (id >= _light_channels.size()) return;
if (_light_channels[id].state != state) {
_light_channels[id].state = state;
_light_dirty = true;
}
}
bool lightState(unsigned char id) {
if (id >= _light_channels.size()) return false;
return _light_channels[id].state;
}
void lightState(bool state) {
if (_light_state != state) {
if (_light_state_listener)
_light_state_listener(state);
_light_state = state;
_light_dirty = true;
}
}
bool lightState() {
return _light_state;
}
void lightColor(const char * color, bool rgb) {
DEBUG_MSG_P(PSTR("[LIGHT] %s: %s\n"), rgb ? "RGB" : "HSV", color);
if (rgb) {
_fromRGB(color);
} else {
_fromHSV(color);
}
}
void lightColor(const String& color, bool rgb) {
lightColor(color.c_str(), rgb);
}
void lightColor(const char* color) {
lightColor(color, true);
}
void lightColor(const String& color) {
lightColor(color.c_str());
}
void lightColor(unsigned long color) {
_fromLong(color, false);
}
String lightColor(bool rgb) {
char str[12];
if (rgb) {
_toRGB(str, sizeof(str));
} else {
_toHSV(str, sizeof(str));
}
return String(str);
}
String lightColor() {
return lightColor(true);
}
long lightChannel(unsigned char id) {
if (id >= _light_channels.size()) return 0;
return _light_channels[id].inputValue;
}
void lightChannel(unsigned char id, long value) {
if (id >= _light_channels.size()) return;
_setInputValue(id, constrain(value, Light::VALUE_MIN, Light::VALUE_MAX));
}
void lightChannelStep(unsigned char id, long steps, long multiplier) {
lightChannel(id, static_cast<int>(lightChannel(id)) + (steps * multiplier));
}
long lightBrightness() {
return _light_brightness;
}
void lightBrightness(long brightness) {
_light_brightness = constrain(brightness, Light::BRIGHTNESS_MIN, Light::BRIGHTNESS_MAX);
}
void lightBrightnessStep(long steps, long multiplier) {
lightBrightness(static_cast<int>(_light_brightness) + (steps * multiplier));
}
unsigned long lightTransitionTime() {
return _light_use_transitions ? _light_transition_time : 0;
}
unsigned long lightTransitionStep() {
return _light_use_transitions ? _light_transition_step : 0;
}
LightTransition lightTransition() {
return {lightTransitionTime(), lightTransitionStep()};
}
void lightTransition(unsigned long time, unsigned long step) {
bool save { false };
_light_use_transitions = (time && step);
if (_light_use_transitions) {
save = true;
_light_transition_time = time;
_light_transition_step = step;
}
setSetting("useTransitions", _light_use_transitions);
if (save) {
setSetting("ltTime", _light_transition_time);
setSetting("ltStep", _light_transition_step);
}
saveSettings();
}
void lightTransition(LightTransition transition) {
lightTransition(transition.time, transition.step);
}
// -----------------------------------------------------------------------------
// SETUP
// -----------------------------------------------------------------------------
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
const unsigned long _light_iomux[16] PROGMEM = {
PERIPHS_IO_MUX_GPIO0_U, PERIPHS_IO_MUX_U0TXD_U, PERIPHS_IO_MUX_GPIO2_U, PERIPHS_IO_MUX_U0RXD_U,
PERIPHS_IO_MUX_GPIO4_U, PERIPHS_IO_MUX_GPIO5_U, PERIPHS_IO_MUX_SD_CLK_U, PERIPHS_IO_MUX_SD_DATA0_U,
PERIPHS_IO_MUX_SD_DATA1_U, PERIPHS_IO_MUX_SD_DATA2_U, PERIPHS_IO_MUX_SD_DATA3_U, PERIPHS_IO_MUX_SD_CMD_U,
PERIPHS_IO_MUX_MTDI_U, PERIPHS_IO_MUX_MTCK_U, PERIPHS_IO_MUX_MTMS_U, PERIPHS_IO_MUX_MTDO_U
};
const unsigned long _light_iofunc[16] PROGMEM = {
FUNC_GPIO0, FUNC_GPIO1, FUNC_GPIO2, FUNC_GPIO3,
FUNC_GPIO4, FUNC_GPIO5, FUNC_GPIO6, FUNC_GPIO7,
FUNC_GPIO8, FUNC_GPIO9, FUNC_GPIO10, FUNC_GPIO11,
FUNC_GPIO12, FUNC_GPIO13, FUNC_GPIO14, FUNC_GPIO15
};
#endif
void _lightConfigure() {
_light_has_color = getSetting("useColor", 1 == LIGHT_USE_COLOR);
if (_light_has_color && (_light_channels.size() < 3)) {
_light_has_color = false;
setSetting("useColor", _light_has_color);
}
_light_use_white = getSetting("useWhite", 1 == LIGHT_USE_WHITE);
if (_light_use_white && (_light_channels.size() < 4) && (_light_channels.size() != 2)) {
_light_use_white = false;
setSetting("useWhite", _light_use_white);
}
if (_light_has_color) {
if (_light_use_white) {
_light_brightness_func = _lightApplyBrightnessColor;
} else {
_light_brightness_func = []() { _lightApplyBrightness(3); };
}
} else {
_light_brightness_func = []() { _lightApplyBrightness(); };
}
_light_use_cct = getSetting("useCCT", 1 == LIGHT_USE_CCT);
if (_light_use_cct && (((_light_channels.size() < 5) && (_light_channels.size() != 2)) || !_light_use_white)) {
_light_use_cct = false;
setSetting("useCCT", _light_use_cct);
}
_light_cold_mireds = getSetting("lightColdMired", LIGHT_COLDWHITE_MIRED);
_light_warm_mireds = getSetting("lightWarmMired", LIGHT_WARMWHITE_MIRED);
_light_cold_kelvin = (1000000L / _light_cold_mireds);
_light_warm_kelvin = (1000000L / _light_warm_mireds);
_light_use_gamma = getSetting("useGamma", 1 == LIGHT_USE_GAMMA);
_light_use_transitions = getSetting("useTransitions", 1 == LIGHT_USE_TRANSITIONS);
_light_save = getSetting("ltSave", 1 == LIGHT_SAVE_ENABLED);
_light_save_delay = getSetting("ltSaveDelay", LIGHT_SAVE_DELAY);
_light_transition_time = getSetting("ltTime", LIGHT_TRANSITION_TIME);
_light_transition_step = getSetting("ltStep", LIGHT_TRANSITION_STEP);
}
#if RELAY_SUPPORT
void _lightRelaySupport() {
if (!getSetting("ltRelay", 1 == LIGHT_RELAY_ENABLED)) {
return;
}
if (_light_has_controls) {
return;
}
auto next_id = relayCount();
if (relayAdd(std::make_unique<LightGlobalProvider>())) {
_light_state_listener = [next_id](bool state) {
relayStatus(next_id, state);
};
_light_has_controls = true;
}
}
#endif
void _lightBoot() {
if (_light_channels.size()) {
DEBUG_MSG_P(PSTR("[LIGHT] Number of channels: %u\n"), _light_channels.size());
}
_lightConfigure();
if (rtcmemStatus()) {
_lightRestoreRtcmem();
} else {
_lightRestoreSettings();
}
lightUpdate(false);
}
#if LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
void lightSetProvider(std::unique_ptr<LightProvider>&& ptr) {
_light_provider = std::move(ptr);
}
bool lightAdd() {
if (_light_channels.size() <= Light::ChannelsMax) {
static bool scheduled { false };
_light_channels.push_back(channel_t());
if (!scheduled) {
schedule_function([]() {
_lightBoot();
scheduled = false;
});
}
return true;
}
return false;
}
#else
bool lightAdd() {
return false;
}
#endif // LIGHT_PROVIDER_CUSTOM
void _lightProviderDebug() {
DEBUG_MSG_P(PSTR("[LIGHT] Provider: "
#if LIGHT_PROVIDER == LIGHT_PROVIDER_NONE
"NONE"
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
"DIMMER"
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
"MY92XX"
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
"CUSTOM"
#endif
"\n"));
}
void lightSetup() {
moveSetting("lightTime", "ltTime");
const auto enable_pin = getSetting("ltEnableGPIO", _lightEnablePin());
if (enable_pin != GPIO_NONE) {
pinMode(enable_pin, OUTPUT);
digitalWrite(enable_pin, HIGH);
}
_light_channels.reserve(Light::ChannelsMax);
_lightProviderDebug();
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
_my92xx = new my92xx(MY92XX_MODEL, MY92XX_CHIPS, MY92XX_DI_PIN, MY92XX_DCKI_PIN, MY92XX_COMMAND);
_light_channels.resize(std::min(Light::Channels, Light::ChannelsMax));
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
// Initial duty value (will be passed to pwm_set_duty(...), OFF in this case)
uint32_t pwm_duty_init[Light::ChannelsMax] = {0};
// 3-tuples of MUX_REGISTER, MUX_VALUE and GPIO number
uint32_t io_info[Light::ChannelsMax][3];
for (unsigned char index = 0; index < Light::ChannelsMax; ++index) {
// Load up until first GPIO_NONE. Allow settings to override, but not remove values
const auto pin = getSetting({"ltDimmerGPIO", index}, _lightChannelPin(index));
if (!gpioValid(pin)) {
break;
}
_light_channels.emplace_back(pin, getSetting({"ltDimmerInv", index}, _lightInverse(index)));
io_info[index][0] = pgm_read_dword(&_light_iomux[pin]);
io_info[index][1] = pgm_read_dword(&_light_iofunc[pin]);
io_info[index][2] = pin;
pinMode(pin, OUTPUT);
}
// with 0 channels this should not do anything at all and provider will never call pwm_set_duty(...)
pwm_init(Light::PWM_MAX, pwm_duty_init, _light_channels.size(), io_info);
pwm_start();
#endif
_lightBoot();
#if RELAY_SUPPORT
_lightRelaySupport();
#endif
#if WEB_SUPPORT
wsRegister()
.onVisible(_lightWebSocketOnVisible)
.onConnected(_lightWebSocketOnConnected)
.onData(_lightWebSocketStatus)
.onAction(_lightWebSocketOnAction)
.onKeyCheck(_lightWebSocketOnKeyCheck);
#endif
#if API_SUPPORT
_lightApiSetup();
#endif
#if MQTT_SUPPORT
_lightMqttSetup();
#endif
#if TERMINAL_SUPPORT
_lightInitCommands();
#endif
espurnaRegisterReload(_lightConfigure);
}
#endif // LIGHT_PROVIDER != LIGHT_PROVIDER_NONE