Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

304 lines
12 KiB

// -----------------------------------------------------------------------------
// Energy monitor sensor
// -----------------------------------------------------------------------------
#pragma once
#include "Arduino.h"
#include "BaseSensor.h"
#include "EmonSensor.h"
#if I2C_USE_BRZO
#include <brzo_i2c.h>
#else
#include <Wire.h>
#endif
#define ADS1015_CONVERSIONDELAY (1)
#define ADS1115_CONVERSIONDELAY (8)
#define ADS1015_BIT_SHIFT (4)
#define ADS1115_BIT_SHIFT (0)
#define ADS1X15_REG_POINTER_MASK (0x03)
#define ADS1X15_REG_POINTER_CONVERT (0x00)
#define ADS1X15_REG_POINTER_CONFIG (0x01)
#define ADS1X15_REG_POINTER_LOWTHRESH (0x02)
#define ADS1X15_REG_POINTER_HITHRESH (0x03)
#define ADS1X15_REG_CONFIG_OS_MASK (0x8000)
#define ADS1X15_REG_CONFIG_OS_SINGLE (0x8000) // Write: Set to start a single-conversion
#define ADS1X15_REG_CONFIG_OS_BUSY (0x0000) // Read: Bit = 0 when conversion is in progress
#define ADS1X15_REG_CONFIG_OS_NOTBUSY (0x8000) // Read: Bit = 1 when device is not performing a conversion
#define ADS1X15_REG_CONFIG_MUX_MASK (0x7000)
#define ADS1X15_REG_CONFIG_MUX_DIFF_0_1 (0x0000) // Differential P = AIN0, N = AIN1 (default)
#define ADS1X15_REG_CONFIG_MUX_DIFF_0_3 (0x1000) // Differential P = AIN0, N = AIN3
#define ADS1X15_REG_CONFIG_MUX_DIFF_1_3 (0x2000) // Differential P = AIN1, N = AIN3
#define ADS1X15_REG_CONFIG_MUX_DIFF_2_3 (0x3000) // Differential P = AIN2, N = AIN3
#define ADS1X15_REG_CONFIG_MUX_SINGLE_0 (0x4000) // Single-ended AIN0
#define ADS1X15_REG_CONFIG_MUX_SINGLE_1 (0x5000) // Single-ended AIN1
#define ADS1X15_REG_CONFIG_MUX_SINGLE_2 (0x6000) // Single-ended AIN2
#define ADS1X15_REG_CONFIG_MUX_SINGLE_3 (0x7000) // Single-ended AIN3
#define ADS1X15_REG_CONFIG_PGA_MASK (0x0E00)
#define ADS1X15_REG_CONFIG_PGA_6_144V (0x0000) // +/-6.144V range = Gain 2/3
#define ADS1X15_REG_CONFIG_PGA_4_096V (0x0200) // +/-4.096V range = Gain 1
#define ADS1X15_REG_CONFIG_PGA_2_048V (0x0400) // +/-2.048V range = Gain 2 (default)
#define ADS1X15_REG_CONFIG_PGA_1_024V (0x0600) // +/-1.024V range = Gain 4
#define ADS1X15_REG_CONFIG_PGA_0_512V (0x0800) // +/-0.512V range = Gain 8
#define ADS1X15_REG_CONFIG_PGA_0_256V (0x0A00) // +/-0.256V range = Gain 16
#define ADS1X15_REG_CONFIG_MODE_MASK (0x0100)
#define ADS1X15_REG_CONFIG_MODE_CONTIN (0x0000) // Continuous conversion mode
#define ADS1X15_REG_CONFIG_MODE_SINGLE (0x0100) // Power-down single-shot mode (default)
#define ADS1X15_REG_CONFIG_DR_MASK (0x00E0)
#define ADS1015_REG_CONFIG_DR_128SPS (0x0000) // 128 samples per second
#define ADS1015_REG_CONFIG_DR_250SPS (0x0020) // 250 samples per second
#define ADS1015_REG_CONFIG_DR_490SPS (0x0040) // 490 samples per second
#define ADS1015_REG_CONFIG_DR_920SPS (0x0060) // 920 samples per second
#define ADS1015_REG_CONFIG_DR_1600SPS (0x0080) // 1600 samples per second (default)
#define ADS1015_REG_CONFIG_DR_2400SPS (0x00A0) // 2400 samples per second
#define ADS1015_REG_CONFIG_DR_3300SPS (0x00C0) // 3300 samples per second
#define ADS1115_REG_CONFIG_DR_8SPS (0x0000) // 8 samples per second
#define ADS1115_REG_CONFIG_DR_16SPS (0x0020) // 16 samples per second
#define ADS1115_REG_CONFIG_DR_32SPS (0x0040) // 32 samples per second
#define ADS1115_REG_CONFIG_DR_64SPS (0x0060) // 64 samples per second
#define ADS1115_REG_CONFIG_DR_128SPS (0x0080) // 128 samples per second (default)
#define ADS1115_REG_CONFIG_DR_250SPS (0x00A0) // 250 samples per second
#define ADS1115_REG_CONFIG_DR_475SPS (0x00C0) // 475 samples per second
#define ADS1115_REG_CONFIG_DR_860SPS (0x00E0) // 860 samples per second
#define ADS1X15_REG_CONFIG_CMODE_MASK (0x0010)
#define ADS1X15_REG_CONFIG_CMODE_TRAD (0x0000) // Traditional comparator with hysteresis (default)
#define ADS1X15_REG_CONFIG_CMODE_WINDOW (0x0010) // Window comparator
#define ADS1X15_REG_CONFIG_CPOL_MASK (0x0008)
#define ADS1X15_REG_CONFIG_CPOL_ACTVLOW (0x0000) // ALERT/RDY pin is low when active (default)
#define ADS1X15_REG_CONFIG_CPOL_ACTVHI (0x0008) // ALERT/RDY pin is high when active
#define ADS1X15_REG_CONFIG_CLAT_MASK (0x0004) // Determines if ALERT/RDY pin latches once asserted
#define ADS1X15_REG_CONFIG_CLAT_NONLAT (0x0000) // Non-latching comparator (default)
#define ADS1X15_REG_CONFIG_CLAT_LATCH (0x0004) // Latching comparator
#define ADS1X15_REG_CONFIG_CQUE_MASK (0x0003)
#define ADS1X15_REG_CONFIG_CQUE_1CONV (0x0000) // Assert ALERT/RDY after one conversions
#define ADS1X15_REG_CONFIG_CQUE_2CONV (0x0001) // Assert ALERT/RDY after two conversions
#define ADS1X15_REG_CONFIG_CQUE_4CONV (0x0002) // Assert ALERT/RDY after four conversions
#define ADS1X15_REG_CONFIG_CQUE_NONE (0x0003) // Disable the comparator and put ALERT/RDY in high state (default)
#define ADS1X15_CHANNELS 4
#define EMON_ADS1X15_MAGNITUDES_PER_PORT 2
class EmonADS1X15Sensor : public EmonSensor {
public:
EmonADS1X15Sensor(unsigned char address, bool is_ads1115, unsigned char mask, double voltage, unsigned char bits, double ref, double ratio): EmonSensor(voltage, bits, ref, ratio) {
// Cache
_is_ads1115 = is_ads1115;
_address = address;
_mask = mask;
_ports = 0;
while (mask) {
if (mask & 0x01) ++_ports;
mask = mask >> 1;
}
_count = _ports * EMON_ADS1X15_MAGNITUDES_PER_PORT;
// warmup
warmup();
}
// Descriptive name of the sensor
String name() {
char buffer[30];
snprintf(buffer, sizeof(buffer), "EMON @ ADS1%d15 @ I2C (0x%02X)", _is_ads1115 ? 1 : 0, _address);
return String(buffer);
}
// Descriptive name of the slot # index
String slot(unsigned char index) {
char buffer[35];
unsigned char channel = getChannel(index % _ports);
snprintf(buffer, sizeof(buffer), "EMON @ ADS1%d15 (A%d) @ I2C (0x%02X)", _is_ads1115 ? 1 : 0, channel, _address);
return String(buffer);
}
// Type for slot # index
magnitude_t type(unsigned char index) {
if (index < _count) {
_error = SENSOR_ERROR_OK;
unsigned char magnitude = index / _ports;
if (magnitude == 0) return MAGNITUDE_CURRENT;
if (magnitude == 1) return MAGNITUDE_POWER_APPARENT;
//if (magnitude == 2) return MAGNITUDE_ENERGY;
//if (magnitude == 3) return MAGNITUDE_ENERGY_DELTA;
}
_error = SENSOR_ERROR_OUT_OF_RANGE;
return MAGNITUDE_NONE;
}
void pre() {
//static unsigned long last = 0;
for (unsigned char port=0; port<_ports; port++) {
unsigned char channel = getChannel(port);
_current[port] = getCurrent(channel);
//if (last > 0) {
// _delta[port] = _current[port] * _voltage * (millis() - last) / 1000;
//}
//_energy[port] += _delta[port];
}
//last = millis();
}
// Current value for slot # index
double value(unsigned char index) {
if (index < _count) {
_error = SENSOR_ERROR_OK;
unsigned char port = index % _ports;
unsigned char magnitude = index / _ports;
if (magnitude == 0) return _current[port];
if (magnitude == 1) return _current[port] * _voltage;
//if (magnitude == 2) return _energy[port];
//if (magnitude == 3) return _delta[port];
}
_error = SENSOR_ERROR_OUT_OF_RANGE;
return 0;
}
protected:
unsigned char getChannel(unsigned char port) {
unsigned char count = 0;
unsigned char bit = 1;
for (unsigned char channel=0; channel<ADS1X15_CHANNELS; channel++) {
if ((_mask & bit) == bit) {
if (count == port) return channel;
++count;
}
bit <<= 1;
}
return 0;
}
void warmup() {
for (unsigned char port=0; port<_ports; port++) {
unsigned char channel = getChannel(port);
getCurrent(channel);
}
}
//----------------------------------------------------------------------
// I2C
//----------------------------------------------------------------------
void setConfigRegistry(unsigned char channel, bool continuous, bool start) {
// Start with default values
uint16_t config = 0;
config |= ADS1X15_REG_CONFIG_PGA_4_096V; // Set PGA/voltage range (0x0200)
config |= ADS1X15_REG_CONFIG_DR_MASK; // Always at max speed (0x00E0)
//config |= ADS1X15_REG_CONFIG_CMODE_TRAD; // Traditional comparator (default val) (0x0000)
//config |= ADS1X15_REG_CONFIG_CPOL_ACTVLOW; // Alert/Rdy active low (default val) (0x0000)
//config |= ADS1X15_REG_CONFIG_CLAT_NONLAT; // Non-latching (default val) (0x0000)
config |= ADS1X15_REG_CONFIG_CQUE_NONE; // Disable the comparator (default val) (0x0003)
if (start) {
config |= ADS1X15_REG_CONFIG_OS_SINGLE; // Start a single-conversion (0x8000)
}
if (continuous) {
//config |= ADS1X15_REG_CONFIG_MODE_CONTIN; // Continuous mode (default) (0x0000)
} else {
config |= ADS1X15_REG_CONFIG_MODE_SINGLE; // Single-shot mode (0x0100)
}
config |= ((channel + 4) << 12); // Set single-ended input channel (0x4000 - 0x7000)
#if EMON_DEBUG
Serial.printf("[EMON] ADS1X115 Config Registry: %04X\n", config);
#endif
// Write config register to the ADC
#if I2C_USE_BRZO
uint8_t buffer[3];
buffer[0] = ADS1X15_REG_POINTER_CONFIG;
buffer[1] = config >> 8;
buffer[2] = config & 0xFF;
brzo_i2c_start_transaction(_address, I2C_SCL_FREQUENCY);
brzo_i2c_write(buffer, 3, false);
brzo_i2c_end_transaction();
#else
Wire.beginTransmission(_address);
Wire.write((uint8_t) ADS1X15_REG_POINTER_CONFIG);
Wire.write((uint8_t) (config >> 8));
Wire.write((uint8_t) (config & 0xFF));
Wire.endTransmission();
#endif
}
double getCurrent(unsigned char channel) {
// Force stop by setting single mode and back to continuous
static unsigned char previous = 9;
if (previous != channel) {
setConfigRegistry(channel, true, false);
setConfigRegistry(channel, false, false);
setConfigRegistry(channel, false, true);
delay(10);
readADC(channel);
previous = channel;
}
setConfigRegistry(channel, true, true);
return read(channel, _pivot[channel]);
}
unsigned int readADC(unsigned char channel) {
unsigned int value = 0;
#if I2C_USE_BRZO
uint8_t buffer[3];
buffer[0] = ADS1X15_REG_POINTER_CONVERT;
brzo_i2c_start_transaction(_address, I2C_SCL_FREQUENCY);
brzo_i2c_write(buffer, 1, false);
brzo_i2c_read(buffer, 2, false);
brzo_i2c_end_transaction();
value |= buffer[0] << 8;
value |= buffer[1];
#else
Wire.beginTransmission(_address);
Wire.write(ADS1X15_REG_POINTER_CONVERT);
Wire.endTransmission();
Wire.requestFrom(_address, (unsigned char) 2);
value |= Wire.read() << 8;
value |= Wire.read();
#endif
if (!_is_ads1115) value >>= ADS1015_BIT_SHIFT;
delayMicroseconds(500);
return value;
}
bool _is_ads1115 = true;
unsigned char _address;
unsigned char _mask;
unsigned char _ports;
double _pivot[ADS1X15_CHANNELS] = {0};
double _current[ADS1X15_CHANNELS] = {0};
//unsigned long _energy[ADS1X15_CHANNELS] = {0};
//unsigned long _delta[ADS1X15_CHANNELS] = {0};
};