Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

873 lines
23 KiB

/*
BUTTON MODULE
Copyright (C) 2016-2019 by Xose Pérez <xose dot perez at gmail dot com>
Copyright (C) 2019-2021 by Maxim Prokhorov <prokhorov dot max at outlook dot com>
*/
#include "button.h"
#if BUTTON_SUPPORT
#include <bitset>
#include <memory>
#include <vector>
#include "compat.h"
#include "fan.h"
#include "gpio.h"
#include "light.h"
#include "mqtt.h"
#include "relay.h"
#include "system.h"
#include "ws.h"
#include "libs/BasePin.h"
#include "libs/DebounceEvent.h"
#include "gpio_pin.h"
#include "mcp23s08_pin.h"
#include "button_config.h"
// -----------------------------------------------------------------------------
namespace settings {
namespace internal {
template<>
debounce_event::types::Mode convert(const String& value) {
switch (value.toInt()) {
case 1:
return debounce_event::types::Mode::Switch;
case 0:
default:
return debounce_event::types::Mode::Pushbutton;
}
}
String serialize(debounce_event::types::Mode value) {
String result;
switch (value) {
case debounce_event::types::Mode::Switch:
result = "1";
break;
case debounce_event::types::Mode::Pushbutton:
default:
result = "0";
break;
}
return result;
}
template<>
debounce_event::types::PinValue convert(const String& value) {
switch (value.toInt()) {
case 1:
return debounce_event::types::PinValue::High;
case 2:
return debounce_event::types::PinValue::Initial;
default:
case 0:
return debounce_event::types::PinValue::Low;
}
}
String serialize(debounce_event::types::PinValue value) {
String result;
switch (value) {
case debounce_event::types::PinValue::Low:
result = "0";
break;
case debounce_event::types::PinValue::High:
result = "1";
break;
case debounce_event::types::PinValue::Initial:
result = "2";
break;
}
return result;
}
template<>
debounce_event::types::PinMode convert(const String& value) {
switch (value.toInt()) {
case 1:
return debounce_event::types::PinMode::InputPullup;
case 2:
return debounce_event::types::PinMode::InputPulldown;
case 0:
default:
return debounce_event::types::PinMode::Input;
}
}
String serialize(debounce_event::types::PinMode mode) {
String result;
switch (mode) {
case debounce_event::types::PinMode::InputPullup:
result = "1";
break;
case debounce_event::types::PinMode::InputPulldown:
result = "2";
break;
case debounce_event::types::PinMode::Input:
default:
result = "0";
break;
}
return result;
}
template <>
ButtonProvider convert(const String& value) {
auto type = static_cast<ButtonProvider>(value.toInt());
switch (type) {
case ButtonProvider::None:
case ButtonProvider::Gpio:
case ButtonProvider::Analog:
return type;
}
return ButtonProvider::None;
}
template<>
ButtonAction convert(const String& value) {
auto num = strtoul(value.c_str(), nullptr, 10);
if (num < ButtonsActionMax) {
auto action = static_cast<ButtonAction>(num);
switch (action) {
case ButtonAction::None:
case ButtonAction::Toggle:
case ButtonAction::On:
case ButtonAction::Off:
case ButtonAction::AccessPoint:
case ButtonAction::Reset:
case ButtonAction::Pulse:
case ButtonAction::FactoryReset:
case ButtonAction::Wps:
case ButtonAction::SmartConfig:
case ButtonAction::BrightnessIncrease:
case ButtonAction::BrightnessDecrease:
case ButtonAction::DisplayOn:
case ButtonAction::Custom:
case ButtonAction::FanLow:
case ButtonAction::FanMedium:
case ButtonAction::FanHigh:
return action;
}
}
return ButtonAction::None;
}
} // namespace internal
} // namespace settings
// -----------------------------------------------------------------------------
constexpr ButtonAction _buttonDecodeEventAction(const ButtonActions& actions, ButtonEvent event) {
return (
(event == ButtonEvent::Pressed) ? actions.pressed :
(event == ButtonEvent::Released) ? actions.released :
(event == ButtonEvent::Click) ? actions.click :
(event == ButtonEvent::DoubleClick) ? actions.dblclick :
(event == ButtonEvent::LongClick) ? actions.lngclick :
(event == ButtonEvent::LongLongClick) ? actions.lnglngclick :
(event == ButtonEvent::TripleClick) ? actions.trplclick : ButtonAction::None
);
}
constexpr ButtonEvent _buttonMapReleased(uint8_t count, unsigned long length, unsigned long lngclick_delay, unsigned long lnglngclick_delay) {
return (
(0 == count) ? ButtonEvent::Released :
(1 == count) ? (
(length > lnglngclick_delay) ? ButtonEvent::LongLongClick :
(length > lngclick_delay) ? ButtonEvent::LongClick : ButtonEvent::Click
) :
(2 == count) ? ButtonEvent::DoubleClick :
(3 == count) ? ButtonEvent::TripleClick :
ButtonEvent::None
);
}
ButtonActions _buttonConstructActions(size_t index) {
return {
button::build::press(index),
button::build::release(index),
button::build::click(index),
button::build::doubleClick(index),
button::build::longClick(index),
button::build::longLongClick(index),
button::build::tripleClick(index)
};
}
debounce_event::types::Config _buttonRuntimeConfig(size_t index) {
return {
getSetting({"btnMode", index}, button::build::mode(index)),
getSetting({"btnDefVal", index}, button::build::defaultValue(index)),
getSetting({"btnPinMode", index}, button::build::pinMode(index))
};
}
int _buttonEventNumber(ButtonEvent event) {
return static_cast<int>(event);
}
// -----------------------------------------------------------------------------
ButtonEventDelays::ButtonEventDelays() :
debounce(button::build::debounceDelay()),
repeat(button::build::repeatDelay()),
lngclick(button::build::longClickDelay()),
lnglngclick(button::build::longLongClickDelay())
{}
ButtonEventDelays::ButtonEventDelays(unsigned long debounce, unsigned long repeat, unsigned long lngclick, unsigned long lnglngclick) :
debounce(debounce),
repeat(repeat),
lngclick(lngclick),
lnglngclick(lnglngclick)
{}
button_t::button_t(ButtonActions&& actions_, ButtonEventDelays&& delays_) :
actions(std::move(actions_)),
event_delays(std::move(delays_))
{}
button_t::button_t(BasePinPtr&& pin, const debounce_event::types::Config& config, ButtonActions&& actions_, ButtonEventDelays&& delays_) :
event_emitter(std::make_unique<debounce_event::EventEmitter>(std::move(pin), config, delays_.debounce, delays_.repeat)),
actions(std::move(actions_)),
event_delays(std::move(delays_))
{}
bool button_t::state() {
return event_emitter->isPressed();
}
ButtonEvent button_t::loop() {
if (event_emitter) {
switch (event_emitter->loop()) {
case debounce_event::types::EventPressed:
return ButtonEvent::Pressed;
case debounce_event::types::EventReleased: {
return _buttonMapReleased(
event_emitter->getEventCount(),
event_emitter->getEventLength(),
event_delays.lngclick,
event_delays.lnglngclick
);
}
case debounce_event::types::EventNone:
break;
}
}
return ButtonEvent::None;
}
std::vector<button_t> _buttons;
// -----------------------------------------------------------------------------
size_t buttonCount() {
return _buttons.size();
}
#if MQTT_SUPPORT
std::bitset<ButtonsMax> _buttons_mqtt_send_all(
button::build::mqttSendAllEvents()
? std::numeric_limits<unsigned long>::max()
: std::numeric_limits<unsigned long>::min()
);
std::bitset<ButtonsMax> _buttons_mqtt_retain(
button::build::mqttRetain()
? std::numeric_limits<unsigned long>::max()
: std::numeric_limits<unsigned long>::min()
);
#endif
// -----------------------------------------------------------------------------
#if RELAY_SUPPORT
std::vector<unsigned char> _button_relays;
size_t _buttonRelay(size_t id) {
return _button_relays[id];
}
void _buttonRelayAction(size_t id, ButtonAction action) {
auto relayId = _buttonRelay(id);
switch (action) {
case ButtonAction::Toggle:
relayToggle(relayId);
break;
case ButtonAction::On:
relayStatus(relayId, true);
break;
case ButtonAction::Off:
relayStatus(relayId, false);
break;
case ButtonAction::Pulse:
// TODO
break;
default:
break;
}
}
#endif // RELAY_SUPPORT
// -----------------------------------------------------------------------------
#if WEB_SUPPORT
namespace {
void _buttonWebSocketOnVisible(JsonObject& root) {
if (buttonCount()) {
root["btnVisible"] = 1;
}
}
void _buttonWebSocketOnConnected(JsonObject& root) {
if (buttonCount()) {
root["btnRepDel"] = getSetting("btnRepDel", button::build::repeatDelay());
}
}
bool _buttonWebSocketOnKeyCheck(const char * key, JsonVariant&) {
return (strncmp(key, "btn", 3) == 0);
}
} // namespace
#endif // WEB_SUPPORT
//------------------------------------------------------------------------------
ButtonEventHandler _button_custom_action { nullptr };
void buttonSetCustomAction(ButtonEventHandler handler) {
_button_custom_action = handler;
}
std::forward_list<ButtonEventHandler> _button_notify_event;
void buttonSetEventNotify(ButtonEventHandler handler) {
_button_notify_event.push_front(handler);
}
//------------------------------------------------------------------------------
bool buttonState(size_t id) {
return (id < _buttons.size())
? _buttons[id].state()
: false;
}
ButtonAction buttonAction(size_t id, ButtonEvent event) {
return (id < _buttons.size())
? _buttonDecodeEventAction(_buttons[id].actions, event)
: ButtonAction::None;
}
// Note that we don't directly return F(...), but use a temporary to assign it conditionally
// (ref. https://github.com/esp8266/Arduino/pull/6950 "PROGMEM footprint cleanup for responseCodeToString")
// In this particular case, saves 76 bytes (120 vs 44)
String _buttonEventString(ButtonEvent event) {
const __FlashStringHelper* ptr = nullptr;
switch (event) {
case ButtonEvent::Pressed:
ptr = F("pressed");
break;
case ButtonEvent::Released:
ptr = F("released");
break;
case ButtonEvent::Click:
ptr = F("click");
break;
case ButtonEvent::DoubleClick:
ptr = F("double-click");
break;
case ButtonEvent::LongClick:
ptr = F("long-click");
break;
case ButtonEvent::LongLongClick:
ptr = F("looong-click");
break;
case ButtonEvent::TripleClick:
ptr = F("triple-click");
break;
case ButtonEvent::None:
ptr = F("none");
break;
}
return String(ptr);
}
void buttonEvent(size_t id, ButtonEvent event) {
DEBUG_MSG_P(PSTR("[BUTTON] Button #%u event %d (%s)\n"),
id, _buttonEventNumber(event), _buttonEventString(event).c_str()
);
if (event == ButtonEvent::None) {
return;
}
auto& button = _buttons[id];
auto action = _buttonDecodeEventAction(button.actions, event);
for (auto& notify : _button_notify_event) {
notify(id, event);
}
#if MQTT_SUPPORT
if ((action != ButtonAction::None) || _buttons_mqtt_send_all[id]) {
mqttSend(MQTT_TOPIC_BUTTON, id, _buttonEventString(event).c_str(), false, _buttons_mqtt_retain[id]);
}
#endif
switch (action) {
#if RELAY_SUPPORT
case ButtonAction::Toggle:
case ButtonAction::On:
case ButtonAction::Off:
case ButtonAction::Pulse:
_buttonRelayAction(id, action);
break;
#endif
case ButtonAction::AccessPoint:
if (wifiState() & WIFI_STATE_AP) {
wifiStartSTA();
} else {
wifiStartAP();
}
break;
case ButtonAction::Reset:
deferredReset(100, CustomResetReason::Button);
break;
case ButtonAction::FactoryReset:
factoryReset();
break;
case ButtonAction::Wps:
#if defined(JUSTWIFI_ENABLE_WPS)
wifiStartWPS();
#endif
break;
case ButtonAction::SmartConfig:
#if defined(JUSTWIFI_ENABLE_SMARTCONFIG)
wifiStartSmartConfig();
#endif
break;
case ButtonAction::BrightnessIncrease:
#if LIGHT_PROVIDER != LIGHT_PROVIDER_NONE
lightBrightnessStep(1);
lightUpdate();
#endif
break;
case ButtonAction::BrightnessDecrease:
#if LIGHT_PROVIDER != LIGHT_PROVIDER_NONE
lightBrightnessStep(-1);
lightUpdate();
#endif
break;
case ButtonAction::DisplayOn:
#if THERMOSTAT_DISPLAY_SUPPORT
displayOn();
#endif
break;
case ButtonAction::Custom:
if (_button_custom_action) {
_button_custom_action(id, event);
}
break;
case ButtonAction::FanLow:
#if FAN_SUPPORT
fanSpeed(FanSpeed::Low);
#endif
break;
case ButtonAction::FanMedium:
#if FAN_SUPPORT
fanSpeed(FanSpeed::Medium);
#endif
break;
case ButtonAction::FanHigh:
#if FAN_SUPPORT
fanSpeed(FanSpeed::High);
#endif
break;
case ButtonAction::None:
break;
}
}
void _buttonConfigure() {
auto buttons = _buttons.size();
#if RELAY_SUPPORT
_button_relays.clear();
#endif
for (decltype(buttons) id = 0; id < buttons; ++id) {
#if RELAY_SUPPORT
_button_relays.push_back(getSetting({"btnRelay", id}, button::build::relay(id)));
#endif
#if MQTT_SUPPORT
_buttons_mqtt_send_all[id] = getSetting({"btnMqttSendAll", id}, button::build::mqttSendAllEvents(id));
_buttons_mqtt_retain[id] = getSetting({"btnMqttRetain", id}, button::build::mqttRetain(id));
#endif
}
}
// TODO: compatibility proxy, fetch global key before indexed
unsigned long _buttonGetDelay(const char* key, size_t index, unsigned long default_value) {
unsigned long result { default_value };
bool found { false };
auto indexed = SettingsKey(key, index);
auto global = String(key);
settings::kv_store.foreach([&](settings::kvs_type::KeyValueResult&& kv) {
if (found) {
return;
}
if ((kv.key.length != indexed.length()) && (kv.key.length != global.length())) {
return;
}
auto other = kv.key.read();
found = indexed == other;
if (found || (global == other)) {
result = settings::internal::convert<unsigned long>(kv.value.read());
}
});
return result;
}
void buttonLoop() {
for (size_t id = 0; id < _buttons.size(); ++id) {
auto event = _buttons[id].loop();
if (event != ButtonEvent::None) {
buttonEvent(id, event);
}
}
}
// Resistor ladder buttons. Inspired by:
// - https://gitter.im/tinkerman-cat/espurna?at=5f5d44c8df4af236f902e25d
// - https://github.com/bxparks/AceButton/tree/develop/docs/resistor_ladder (especially thx @bxparks for the great documentation!)
// - https://github.com/bxparks/AceButton/blob/develop/src/ace_button/LadderButtonConfig.cpp
// - https://github.com/dxinteractive/AnalogMultiButton
#if BUTTON_PROVIDER_ANALOG_SUPPORT
class AnalogPin final : public BasePin {
public:
static constexpr int RangeFrom { 0 };
static constexpr int RangeTo { 1023 };
AnalogPin() = delete;
explicit AnalogPin(unsigned char pin, int expected) :
_pin(pin),
_expected(expected)
{
pins.reserve(ButtonsPresetMax);
pins.push_back(this);
adjustPinRanges();
}
~AnalogPin() {
pins.erase(std::remove(pins.begin(), pins.end(), this), pins.end());
adjustPinRanges();
}
String description() const override {
char buffer[64];
snprintf_P(buffer, sizeof(buffer),
PSTR("%s @ level %d (%d...%d)\n"),
id(), _expected, _from, _to);
return buffer;
}
// Notice that 'static' method vars are shared between instances
// This way we will throttle every invocation (which should be safe to do, since we only read things through the button loop)
int analogRead() {
static unsigned long ts { ESP.getCycleCount() };
static int last { ::analogRead(_pin) };
// Cannot hammer analogRead() all the time:
// https://github.com/esp8266/Arduino/issues/1634
if (ESP.getCycleCount() - ts >= _read_interval) {
ts = ESP.getCycleCount();
last = ::analogRead(_pin);
}
return last;
}
// XXX: make static ctor and call this implicitly?
static bool checkExpectedLevel(int expected) {
if (expected > RangeTo) {
return false;
}
for (auto pin : pins) {
if (expected == pin->_expected) {
return false;
}
}
return true;
}
unsigned char pin() const override {
return _pin;
}
const char* id() const override {
return "AnalogPin";
}
// Simulate LOW level when the range matches and HIGH when it does not
int digitalRead() override {
const auto reading = analogRead();
return !((_from < reading) && (reading < _to));
}
void pinMode(int8_t) override {
}
void digitalWrite(int8_t val) override {
}
private:
// ref. https://github.com/bxparks/AceButton/tree/develop/docs/resistor_ladder#level-matching-tolerance-range
// fuzzy matching instead of directly comparing with the `_expected` level and / or specifying tolerance manually
// for example, for pins with expected values 0, 327, 512 and 844 we match analogRead() when:
// - 0..163 for 0
// - 163..419 for 327
// - 419..678 for 512
// - 678..933 for 844
// - 933..1024 is ignored
static std::vector<AnalogPin*> pins;
unsigned long _read_interval { microsecondsToClockCycles(200u) };
unsigned char _pin { A0 };
int _expected { 0u };
int _from { RangeFrom };
int _to { RangeTo };
static void adjustPinRanges() {
std::sort(pins.begin(), pins.end(), [](const AnalogPin* lhs, const AnalogPin* rhs) -> bool {
return lhs->_expected < rhs->_expected;
});
AnalogPin* last { nullptr };
for (unsigned index = 0; index < pins.size(); ++index) {
int edge = (index + 1 != pins.size())
? pins[index + 1]->_expected
: RangeTo;
pins[index]->_from = last
? last->_to
: RangeFrom;
pins[index]->_to = (pins[index]->_expected + edge) / 2;
last = pins[index];
}
}
};
std::vector<AnalogPin*> AnalogPin::pins;
#endif // BUTTON_PROVIDER_ANALOG_SUPPORT
BasePinPtr _buttonGpioPin(size_t index, ButtonProvider provider) {
BasePinPtr result;
auto pin = getSetting({"btnGpio", index}, button::build::pin(index));
switch (provider) {
case ButtonProvider::Gpio: {
#if BUTTON_PROVIDER_GPIO_SUPPORT
auto* base = gpioBase(getSetting({"btnGpioType", index}, button::build::pinType(index)));
if (!base) {
break;
}
if (!gpioLock(*base, pin)) {
break;
}
result = std::move(base->pin(pin));
#endif
break;
}
case ButtonProvider::Analog: {
#if BUTTON_PROVIDER_ANALOG_SUPPORT
if (A0 != pin) {
break;
}
auto level = getSetting({"btnLevel", index}, button::build::analogLevel(index));
if (!AnalogPin::checkExpectedLevel(level)) {
break;
}
result.reset(new AnalogPin(pin, level));
#endif
break;
}
default:
break;
}
return result;
}
ButtonActions _buttonActions(size_t index) {
return {
getSetting({"btnPress", index}, button::build::press(index)),
getSetting({"btnRlse", index}, button::build::release(index)),
getSetting({"btnClick", index}, button::build::click(index)),
getSetting({"btnDclk", index}, button::build::doubleClick(index)),
getSetting({"btnLclk", index}, button::build::longClick(index)),
getSetting({"btnLLclk", index}, button::build::longLongClick(index)),
getSetting({"btnTclk", index}, button::build::tripleClick(index))
};
}
// Note that we use settings without indexes as default values to preserve backwards compatibility
ButtonEventDelays _buttonDelays(size_t index) {
return {
_buttonGetDelay("btnDebDel", index, button::build::debounceDelay(index)),
_buttonGetDelay("btnRepDel", index, button::build::repeatDelay(index)),
_buttonGetDelay("btnLclkDel", index, button::build::longClickDelay(index)),
_buttonGetDelay("btnLLclkDel", index, button::build::longLongClickDelay(index)),
};
}
bool _buttonSetupProvider(size_t index, ButtonProvider provider) {
bool result { false };
switch (provider) {
case ButtonProvider::Analog:
case ButtonProvider::Gpio: {
#if BUTTON_PROVIDER_GPIO_SUPPORT || BUTTON_PROVIDER_ANALOG_SUPPORT
auto pin = _buttonGpioPin(index, provider);
if (!pin) {
break;
}
_buttons.emplace_back(
std::move(pin),
_buttonRuntimeConfig(index),
_buttonActions(index),
_buttonDelays(index));
result = true;
#endif
break;
}
case ButtonProvider::None:
break;
}
return result;
}
void _buttonSettingsMigrate(int version) {
if (!version || (version >= 5)) {
return;
}
delSettingPrefix("btnGPIO");
moveSetting("btnDelay", "btnRepDel");
}
void buttonSetup() {
_buttonSettingsMigrate(migrateVersion());
for (size_t index = 0; index < ButtonsMax; ++index) {
auto provider = getSetting({"btnProv", index}, button::build::provider(index));
if (!_buttonSetupProvider(index, provider)) {
break;
}
}
auto count = _buttons.size();
DEBUG_MSG_P(PSTR("[BUTTON] Number of buttons: %u\n"), count);
#if TERMINAL_SUPPORT
terminalRegisterCommand(F("BUTTON"), [](const terminal::CommandContext& ctx) {
unsigned index { 0u };
for (auto& button : _buttons) {
ctx.output.printf("%u - ", index++);
if (button.event_emitter) {
auto& pin = button.event_emitter->pin();
ctx.output.println(pin->description());
} else {
ctx.output.println(F("Virtual"));
}
}
terminalOK(ctx);
});
#endif
if (count) {
#if WEB_SUPPORT
wsRegister()
.onVisible(_buttonWebSocketOnVisible)
.onConnected(_buttonWebSocketOnConnected)
.onKeyCheck(_buttonWebSocketOnKeyCheck);
#endif
_buttonConfigure();
espurnaRegisterReload(_buttonConfigure);
espurnaRegisterLoop(buttonLoop);
}
}
#endif // BUTTON_SUPPORT