Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1105 lines
33 KiB

/*
RELAY MODULE
Copyright (C) 2016-2019 by Xose Pérez <xose dot perez at gmail dot com>
*/
#include <EEPROM_Rotate.h>
#include <Ticker.h>
#include <ArduinoJson.h>
#include <vector>
#include <functional>
typedef struct {
// Configuration variables
unsigned char pin; // GPIO pin for the relay
unsigned char type; // RELAY_TYPE_NORMAL, RELAY_TYPE_INVERSE, RELAY_TYPE_LATCHED or RELAY_TYPE_LATCHED_INVERSE
unsigned char reset_pin; // GPIO to reset the relay if RELAY_TYPE_LATCHED
unsigned long delay_on; // Delay to turn relay ON
unsigned long delay_off; // Delay to turn relay OFF
unsigned char pulse; // RELAY_PULSE_NONE, RELAY_PULSE_OFF or RELAY_PULSE_ON
unsigned long pulse_ms; // Pulse length in millis
// Status variables
bool current_status; // Holds the current (physical) status of the relay
bool target_status; // Holds the target status
unsigned long fw_start; // Flood window start time
unsigned char fw_count; // Number of changes within the current flood window
unsigned long change_time; // Scheduled time to change
bool report; // Whether to report to own topic
bool group_report; // Whether to report to group topic
// Helping objects
Ticker pulseTicker; // Holds the pulse back timer
} relay_t;
std::vector<relay_t> _relays;
bool _relayRecursive = false;
Ticker _relaySaveTicker;
// -----------------------------------------------------------------------------
// RELAY PROVIDERS
// -----------------------------------------------------------------------------
void _relayProviderStatus(unsigned char id, bool status) {
// Check relay ID
if (id >= _relays.size()) return;
// Store new current status
_relays[id].current_status = status;
#if RELAY_PROVIDER == RELAY_PROVIDER_RFBRIDGE
rfbStatus(id, status);
#endif
#if RELAY_PROVIDER == RELAY_PROVIDER_DUAL
// Calculate mask
unsigned char mask=0;
for (unsigned char i=0; i<_relays.size(); i++) {
if (_relays[i].current_status) mask = mask + (1 << i);
}
// Send it to F330
Serial.flush();
Serial.write(0xA0);
Serial.write(0x04);
Serial.write(mask);
Serial.write(0xA1);
Serial.flush();
#endif
#if RELAY_PROVIDER == RELAY_PROVIDER_STM
Serial.flush();
Serial.write(0xA0);
Serial.write(id + 1);
Serial.write(status);
Serial.write(0xA1 + status + id);
// The serial init are not full recognized by relais board.
// References: https://github.com/xoseperez/espurna/issues/1519 , https://github.com/xoseperez/espurna/issues/1130
delay(100);
Serial.flush();
#endif
#if RELAY_PROVIDER == RELAY_PROVIDER_LIGHT
// Real relays
uint8_t physical = _relays.size() - DUMMY_RELAY_COUNT;
// Support for a mixed of dummy and real relays
// Reference: https://github.com/xoseperez/espurna/issues/1305
if (id >= physical) {
// If the number of dummy relays matches the number of light channels
// assume each relay controls one channel.
// If the number of dummy relays is the number of channels plus 1
// assume the first one controls all the channels and
// the rest one channel each.
// Otherwise every dummy relay controls all channels.
if (DUMMY_RELAY_COUNT == lightChannels()) {
lightState(id-physical, status);
lightState(true);
} else if (DUMMY_RELAY_COUNT == (lightChannels() + 1u)) {
if (id == physical) {
lightState(status);
} else {
lightState(id-1-physical, status);
}
} else {
lightState(status);
}
lightUpdate(true, true);
return;
}
#endif
#if (RELAY_PROVIDER == RELAY_PROVIDER_RELAY) || (RELAY_PROVIDER == RELAY_PROVIDER_LIGHT)
// If this is a light, all dummy relays have already been processed above
// we reach here if the user has toggled a physical relay
if (_relays[id].type == RELAY_TYPE_NORMAL) {
digitalWrite(_relays[id].pin, status);
} else if (_relays[id].type == RELAY_TYPE_INVERSE) {
digitalWrite(_relays[id].pin, !status);
} else if (_relays[id].type == RELAY_TYPE_LATCHED || _relays[id].type == RELAY_TYPE_LATCHED_INVERSE) {
bool pulse = RELAY_TYPE_LATCHED ? HIGH : LOW;
digitalWrite(_relays[id].pin, !pulse);
if (GPIO_NONE != _relays[id].reset_pin) digitalWrite(_relays[id].reset_pin, !pulse);
if (status || (GPIO_NONE == _relays[id].reset_pin)) {
digitalWrite(_relays[id].pin, pulse);
} else {
digitalWrite(_relays[id].reset_pin, pulse);
}
nice_delay(RELAY_LATCHING_PULSE);
digitalWrite(_relays[id].pin, !pulse);
if (GPIO_NONE != _relays[id].reset_pin) digitalWrite(_relays[id].reset_pin, !pulse);
}
#endif
}
/**
* Walks the relay vector processing only those relays
* that have to change to the requested mode
* @bool mode Requested mode
*/
void _relayProcess(bool mode) {
unsigned long current_time = millis();
for (unsigned char id = 0; id < _relays.size(); id++) {
bool target = _relays[id].target_status;
// Only process the relays we have to change
if (target == _relays[id].current_status) continue;
// Only process the relays we have to change to the requested mode
if (target != mode) continue;
// Only process if the change_time has arrived
if (current_time < _relays[id].change_time) continue;
DEBUG_MSG_P(PSTR("[RELAY] #%d set to %s\n"), id, target ? "ON" : "OFF");
// Call the provider to perform the action
_relayProviderStatus(id, target);
// Send to Broker
#if BROKER_SUPPORT
brokerPublish(BROKER_MSG_TYPE_STATUS, MQTT_TOPIC_RELAY, id, target ? "1" : "0");
#endif
// Send MQTT
#if MQTT_SUPPORT
relayMQTT(id);
#endif
if (!_relayRecursive) {
relayPulse(id);
// We will trigger a commit only if
// we care about current relay status on boot
unsigned char boot_mode = getSetting("relayBoot", id, RELAY_BOOT_MODE).toInt();
bool do_commit = ((RELAY_BOOT_SAME == boot_mode) || (RELAY_BOOT_TOGGLE == boot_mode));
_relaySaveTicker.once_ms(RELAY_SAVE_DELAY, relaySave, do_commit);
#if WEB_SUPPORT
wsSend(_relayWebSocketUpdate);
#endif
}
_relays[id].report = false;
_relays[id].group_report = false;
}
}
#if defined(ITEAD_SONOFF_IFAN02)
unsigned char _relay_ifan02_speeds[] = {0, 1, 3, 5};
unsigned char getSpeed() {
unsigned char speed =
(_relays[1].target_status ? 1 : 0) +
(_relays[2].target_status ? 2 : 0) +
(_relays[3].target_status ? 4 : 0);
for (unsigned char i=0; i<4; i++) {
if (_relay_ifan02_speeds[i] == speed) return i;
}
return 0;
}
void setSpeed(unsigned char speed) {
if ((0 <= speed) & (speed <= 3)) {
if (getSpeed() == speed) return;
unsigned char states = _relay_ifan02_speeds[speed];
for (unsigned char i=0; i<3; i++) {
relayStatus(i+1, states & 1 == 1);
states >>= 1;
}
}
}
#endif
// -----------------------------------------------------------------------------
// RELAY
// -----------------------------------------------------------------------------
void relayPulse(unsigned char id) {
_relays[id].pulseTicker.detach();
byte mode = _relays[id].pulse;
if (mode == RELAY_PULSE_NONE) return;
unsigned long ms = _relays[id].pulse_ms;
if (ms == 0) return;
bool status = relayStatus(id);
bool pulseStatus = (mode == RELAY_PULSE_ON);
if (pulseStatus != status) {
DEBUG_MSG_P(PSTR("[RELAY] Scheduling relay #%d back in %lums (pulse)\n"), id, ms);
_relays[id].pulseTicker.once_ms(ms, relayToggle, id);
// Reconfigure after dynamic pulse
_relays[id].pulse = getSetting("relayPulse", id, RELAY_PULSE_MODE).toInt();
_relays[id].pulse_ms = 1000 * getSetting("relayTime", id, RELAY_PULSE_MODE).toFloat();
}
}
bool relayStatus(unsigned char id, bool status, bool report, bool group_report) {
if (id >= _relays.size()) return false;
bool changed = false;
if (_relays[id].current_status == status) {
if (_relays[id].target_status != status) {
DEBUG_MSG_P(PSTR("[RELAY] #%d scheduled change cancelled\n"), id);
_relays[id].target_status = status;
_relays[id].report = false;
_relays[id].group_report = false;
changed = true;
}
// For RFBridge, keep sending the message even if the status is already the required
#if RELAY_PROVIDER == RELAY_PROVIDER_RFBRIDGE
rfbStatus(id, status);
#endif
// Update the pulse counter if the relay is already in the non-normal state (#454)
relayPulse(id);
} else {
unsigned long current_time = millis();
unsigned long fw_end = _relays[id].fw_start + 1000 * RELAY_FLOOD_WINDOW;
unsigned long delay = status ? _relays[id].delay_on : _relays[id].delay_off;
_relays[id].fw_count++;
_relays[id].change_time = current_time + delay;
// If current_time is off-limits the floodWindow...
if (current_time < _relays[id].fw_start || fw_end <= current_time) {
// We reset the floodWindow
_relays[id].fw_start = current_time;
_relays[id].fw_count = 1;
// If current_time is in the floodWindow and there have been too many requests...
} else if (_relays[id].fw_count >= RELAY_FLOOD_CHANGES) {
// We schedule the changes to the end of the floodWindow
// unless it's already delayed beyond that point
if (fw_end - delay > current_time) {
_relays[id].change_time = fw_end;
}
}
_relays[id].target_status = status;
if (report) _relays[id].report = true;
if (group_report) _relays[id].group_report = true;
relaySync(id);
DEBUG_MSG_P(PSTR("[RELAY] #%d scheduled %s in %u ms\n"),
id, status ? "ON" : "OFF",
(_relays[id].change_time - current_time));
changed = true;
}
return changed;
}
bool relayStatus(unsigned char id, bool status) {
return relayStatus(id, status, true, true);
}
bool relayStatus(unsigned char id) {
// Check relay ID
if (id >= _relays.size()) return false;
// Get status from storage
return _relays[id].current_status;
}
void relaySync(unsigned char id) {
// No sync if none or only one relay
if (_relays.size() < 2) return;
// Do not go on if we are comming from a previous sync
if (_relayRecursive) return;
// Flag sync mode
_relayRecursive = true;
byte relaySync = getSetting("relaySync", RELAY_SYNC).toInt();
bool status = _relays[id].target_status;
// If RELAY_SYNC_SAME all relays should have the same state
if (relaySync == RELAY_SYNC_SAME) {
for (unsigned short i=0; i<_relays.size(); i++) {
if (i != id) relayStatus(i, status);
}
// If NONE_OR_ONE or ONE and setting ON we should set OFF all the others
} else if (status) {
if (relaySync != RELAY_SYNC_ANY) {
for (unsigned short i=0; i<_relays.size(); i++) {
if (i != id) relayStatus(i, false);
}
}
// If ONLY_ONE and setting OFF we should set ON the other one
} else {
if (relaySync == RELAY_SYNC_ONE) {
unsigned char i = (id + 1) % _relays.size();
relayStatus(i, true);
}
}
// Unflag sync mode
_relayRecursive = false;
}
void relaySave(bool do_commit) {
// Relay status is stored in a single byte
// This means that, atm,
// we are only storing the status of the first 8 relays.
unsigned char bit = 1;
unsigned char mask = 0;
unsigned char count = _relays.size();
if (count > 8) count = 8;
for (unsigned int i=0; i < count; i++) {
if (relayStatus(i)) mask += bit;
bit += bit;
}
EEPROMr.write(EEPROM_RELAY_STATUS, mask);
DEBUG_MSG_P(PSTR("[RELAY] Setting relay mask: %d\n"), mask);
// The 'do_commit' flag controls wether we are commiting this change or not.
// It is useful to set it to 'false' if the relay change triggering the
// save involves a relay whose boot mode is independent from current mode,
// thus storing the last relay value is not absolutely necessary.
// Nevertheless, we store the value in the EEPROM buffer so it will be written
// on the next commit.
if (do_commit) {
// We are actually enqueuing the commit so it will be
// executed on the main loop, in case this is called from a callback
eepromCommit();
}
}
void relaySave() {
relaySave(true);
}
void relayToggle(unsigned char id, bool report, bool group_report) {
if (id >= _relays.size()) return;
relayStatus(id, !relayStatus(id), report, group_report);
}
void relayToggle(unsigned char id) {
relayToggle(id, true, true);
}
unsigned char relayCount() {
return _relays.size();
}
unsigned char relayParsePayload(const char * payload) {
// Payload could be "OFF", "ON", "TOGGLE"
// or its number equivalents: 0, 1 or 2
if (payload[0] == '0') return 0;
if (payload[0] == '1') return 1;
if (payload[0] == '2') return 2;
// trim payload
char * p = ltrim((char *)payload);
// to lower
unsigned int l = strlen(p);
if (l>6) l=6;
for (unsigned char i=0; i<l; i++) {
p[i] = tolower(p[i]);
}
unsigned int value = 0xFF;
if (strcmp(p, "off") == 0) {
value = 0;
} else if (strcmp(p, "on") == 0) {
value = 1;
} else if (strcmp(p, "toggle") == 0) {
value = 2;
} else if (strcmp(p, "query") == 0) {
value = 3;
}
return value;
}
// BACKWARDS COMPATIBILITY
void _relayBackwards() {
byte relayMode = getSetting("relayMode", RELAY_BOOT_MODE).toInt();
byte relayPulseMode = getSetting("relayPulseMode", RELAY_PULSE_MODE).toInt();
float relayPulseTime = getSetting("relayPulseTime", RELAY_PULSE_TIME).toFloat();
if (relayPulseMode == RELAY_PULSE_NONE) relayPulseTime = 0;
for (unsigned int i=0; i<_relays.size(); i++) {
if (!hasSetting("relayBoot", i)) setSetting("relayBoot", i, relayMode);
if (!hasSetting("relayPulse", i)) setSetting("relayPulse", i, relayPulseMode);
if (!hasSetting("relayTime", i)) setSetting("relayTime", i, relayPulseTime);
}
delSetting("relayMode");
delSetting("relayPulseMode");
delSetting("relayPulseTime");
}
void _relayBoot() {
_relayRecursive = true;
unsigned char bit = 1;
bool trigger_save = false;
// Get last statuses from EEPROM
unsigned char mask = EEPROMr.read(EEPROM_RELAY_STATUS);
DEBUG_MSG_P(PSTR("[RELAY] Retrieving mask: %d\n"), mask);
// Walk the relays
bool status;
for (unsigned int i=0; i<_relays.size(); i++) {
unsigned char boot_mode = getSetting("relayBoot", i, RELAY_BOOT_MODE).toInt();
DEBUG_MSG_P(PSTR("[RELAY] Relay #%d boot mode %d\n"), i, boot_mode);
status = false;
switch (boot_mode) {
case RELAY_BOOT_SAME:
if (i < 8) {
status = ((mask & bit) == bit);
}
break;
case RELAY_BOOT_TOGGLE:
if (i < 8) {
status = ((mask & bit) != bit);
mask ^= bit;
trigger_save = true;
}
break;
case RELAY_BOOT_ON:
status = true;
break;
case RELAY_BOOT_OFF:
default:
break;
}
_relays[i].current_status = !status;
_relays[i].target_status = status;
#if RELAY_PROVIDER == RELAY_PROVIDER_STM
_relays[i].change_time = millis() + 3000 + 1000 * i;
#else
_relays[i].change_time = millis();
#endif
bit <<= 1;
}
// Save if there is any relay in the RELAY_BOOT_TOGGLE mode
if (trigger_save) {
EEPROMr.write(EEPROM_RELAY_STATUS, mask);
eepromCommit();
}
_relayRecursive = false;
}
void _relayConfigure() {
for (unsigned int i=0; i<_relays.size(); i++) {
_relays[i].pulse = getSetting("relayPulse", i, RELAY_PULSE_MODE).toInt();
_relays[i].pulse_ms = 1000 * getSetting("relayTime", i, RELAY_PULSE_MODE).toFloat();
if (GPIO_NONE == _relays[i].pin) continue;
pinMode(_relays[i].pin, OUTPUT);
if (GPIO_NONE != _relays[i].reset_pin) {
pinMode(_relays[i].reset_pin, OUTPUT);
}
if (_relays[i].type == RELAY_TYPE_INVERSE) {
//set to high to block short opening of relay
digitalWrite(_relays[i].pin, HIGH);
}
}
}
//------------------------------------------------------------------------------
// WEBSOCKETS
//------------------------------------------------------------------------------
#if WEB_SUPPORT
bool _relayWebSocketOnReceive(const char * key, JsonVariant& value) {
return (strncmp(key, "relay", 5) == 0);
}
void _relayWebSocketUpdate(JsonObject& root) {
JsonArray& relay = root.createNestedArray("relayStatus");
for (unsigned char i=0; i<relayCount(); i++) {
relay.add<uint8_t>(_relays[i].target_status);
}
}
String _relayFriendlyName(unsigned char i) {
String res = String("GPIO") + String(_relays[i].pin);
if (GPIO_NONE == _relays[i].pin) {
#if (RELAY_PROVIDER == RELAY_PROVIDER_LIGHT)
uint8_t physical = _relays.size() - DUMMY_RELAY_COUNT;
if (i >= physical) {
if (DUMMY_RELAY_COUNT == lightChannels()) {
res = String("CH") + String(i-physical);
} else if (DUMMY_RELAY_COUNT == (lightChannels() + 1u)) {
if (physical == i) {
res = String("Light");
} else {
res = String("CH") + String(i-1-physical);
}
} else {
res = String("Light");
}
} else {
res = String("?");
}
#else
res = String("SW") + String(i);
#endif
}
return res;
}
void _relayWebSocketSendRelays() {
DynamicJsonBuffer jsonBuffer;
JsonObject& root = jsonBuffer.createObject();
JsonObject& relays = root.createNestedObject("relayConfig");
relays["size"] = relayCount();
relays["start"] = 0;
JsonArray& gpio = relays.createNestedArray("gpio");
JsonArray& type = relays.createNestedArray("type");
JsonArray& reset = relays.createNestedArray("reset");
JsonArray& boot = relays.createNestedArray("boot");
JsonArray& pulse = relays.createNestedArray("pulse");
JsonArray& pulse_time = relays.createNestedArray("pulse_time");
#if MQTT_SUPPORT
JsonArray& group = relays.createNestedArray("group");
JsonArray& group_inverse = relays.createNestedArray("group_inv");
JsonArray& on_disconnect = relays.createNestedArray("on_disc");
#endif
for (unsigned char i=0; i<relayCount(); i++) {
gpio.add(_relayFriendlyName(i));
type.add(_relays[i].type);
reset.add(_relays[i].reset_pin);
boot.add(getSetting("relayBoot", i, RELAY_BOOT_MODE).toInt());
pulse.add(_relays[i].pulse);
pulse_time.add(_relays[i].pulse_ms / 1000.0);
#if MQTT_SUPPORT
group.add(getSetting("mqttGroup", i, ""));
group_inverse.add(getSetting("mqttGroupInv", i, 0).toInt() == 1);
on_disconnect.add(getSetting("relayOnDisc", i, 0).toInt());
#endif
}
wsSend(root);
}
void _relayWebSocketOnStart(JsonObject& root) {
if (relayCount() == 0) return;
// Per-relay configuration
_relayWebSocketSendRelays();
// Statuses
_relayWebSocketUpdate(root);
// Options
if (relayCount() > 1) {
root["multirelayVisible"] = 1;
root["relaySync"] = getSetting("relaySync", RELAY_SYNC);
}
root["relayVisible"] = 1;
}
void _relayWebSocketOnAction(uint32_t client_id, const char * action, JsonObject& data) {
if (strcmp(action, "relay") != 0) return;
if (data.containsKey("status")) {
unsigned char value = relayParsePayload(data["status"]);
if (value == 3) {
wsSend(_relayWebSocketUpdate);
} else if (value < 3) {
unsigned int relayID = 0;
if (data.containsKey("id")) {
String value = data["id"];
relayID = value.toInt();
}
// Action to perform
if (value == 0) {
relayStatus(relayID, false);
} else if (value == 1) {
relayStatus(relayID, true);
} else if (value == 2) {
relayToggle(relayID);
}
}
}
}
void relaySetupWS() {
wsOnSendRegister(_relayWebSocketOnStart);
wsOnActionRegister(_relayWebSocketOnAction);
wsOnReceiveRegister(_relayWebSocketOnReceive);
}
#endif // WEB_SUPPORT
//------------------------------------------------------------------------------
// REST API
//------------------------------------------------------------------------------
#if API_SUPPORT
void relaySetupAPI() {
char key[20];
// API entry points (protected with apikey)
for (unsigned int relayID=0; relayID<relayCount(); relayID++) {
snprintf_P(key, sizeof(key), PSTR("%s/%d"), MQTT_TOPIC_RELAY, relayID);
apiRegister(key,
[relayID](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), _relays[relayID].target_status ? 1 : 0);
},
[relayID](const char * payload) {
unsigned char value = relayParsePayload(payload);
if (value == 0xFF) {
DEBUG_MSG_P(PSTR("[RELAY] Wrong payload (%s)\n"), payload);
return;
}
if (value == 0) {
relayStatus(relayID, false);
} else if (value == 1) {
relayStatus(relayID, true);
} else if (value == 2) {
relayToggle(relayID);
}
}
);
snprintf_P(key, sizeof(key), PSTR("%s/%d"), MQTT_TOPIC_PULSE, relayID);
apiRegister(key,
[relayID](char * buffer, size_t len) {
dtostrf((double) _relays[relayID].pulse_ms / 1000, 1-len, 3, buffer);
},
[relayID](const char * payload) {
unsigned long pulse = 1000 * String(payload).toFloat();
if (0 == pulse) return;
if (RELAY_PULSE_NONE != _relays[relayID].pulse) {
DEBUG_MSG_P(PSTR("[RELAY] Overriding relay #%d pulse settings\n"), relayID);
}
_relays[relayID].pulse_ms = pulse;
_relays[relayID].pulse = relayStatus(relayID) ? RELAY_PULSE_ON : RELAY_PULSE_OFF;
relayToggle(relayID, true, false);
}
);
#if defined(ITEAD_SONOFF_IFAN02)
apiRegister(MQTT_TOPIC_SPEED,
[relayID](char * buffer, size_t len) {
snprintf(buffer, len, "%u", getSpeed());
},
[relayID](const char * payload) {
setSpeed(atoi(payload));
}
);
#endif
}
}
#endif // API_SUPPORT
//------------------------------------------------------------------------------
// MQTT
//------------------------------------------------------------------------------
#if MQTT_SUPPORT
void relayMQTT(unsigned char id) {
if (id >= _relays.size()) return;
// Send state topic
if (_relays[id].report) {
_relays[id].report = false;
mqttSend(MQTT_TOPIC_RELAY, id, _relays[id].current_status ? RELAY_MQTT_ON : RELAY_MQTT_OFF);
}
// Check group topic
if (_relays[id].group_report) {
_relays[id].group_report = false;
String t = getSetting("mqttGroup", id, "");
if (t.length() > 0) {
bool status = relayStatus(id);
if (getSetting("mqttGroupInv", id, 0).toInt() == 1) status = !status;
mqttSendRaw(t.c_str(), status ? RELAY_MQTT_ON : RELAY_MQTT_OFF);
}
}
// Send speed for IFAN02
#if defined (ITEAD_SONOFF_IFAN02)
char buffer[5];
snprintf(buffer, sizeof(buffer), "%u", getSpeed());
mqttSend(MQTT_TOPIC_SPEED, buffer);
#endif
}
void relayMQTT() {
for (unsigned int id=0; id < _relays.size(); id++) {
mqttSend(MQTT_TOPIC_RELAY, id, _relays[id].current_status ? RELAY_MQTT_ON : RELAY_MQTT_OFF);
}
}
void relayStatusWrap(unsigned char id, unsigned char value, bool is_group_topic) {
switch (value) {
case 0:
relayStatus(id, false, mqttForward(), !is_group_topic);
break;
case 1:
relayStatus(id, true, mqttForward(), !is_group_topic);
break;
case 2:
relayToggle(id, true, true);
break;
default:
_relays[id].report = true;
relayMQTT(id);
break;
}
}
void relayMQTTCallback(unsigned int type, const char * topic, const char * payload) {
if (type == MQTT_CONNECT_EVENT) {
// Send status on connect
#if (HEARTBEAT_MODE == HEARTBEAT_NONE) or (not HEARTBEAT_REPORT_RELAY)
relayMQTT();
#endif
// Subscribe to own /set topic
char relay_topic[strlen(MQTT_TOPIC_RELAY) + 3];
snprintf_P(relay_topic, sizeof(relay_topic), PSTR("%s/+"), MQTT_TOPIC_RELAY);
mqttSubscribe(relay_topic);
// Subscribe to pulse topic
char pulse_topic[strlen(MQTT_TOPIC_PULSE) + 3];
snprintf_P(pulse_topic, sizeof(pulse_topic), PSTR("%s/+"), MQTT_TOPIC_PULSE);
mqttSubscribe(pulse_topic);
#if defined(ITEAD_SONOFF_IFAN02)
mqttSubscribe(MQTT_TOPIC_SPEED);
#endif
// Subscribe to group topics
for (unsigned int i=0; i < _relays.size(); i++) {
String t = getSetting("mqttGroup", i, "");
if (t.length() > 0) mqttSubscribeRaw(t.c_str());
}
}
if (type == MQTT_MESSAGE_EVENT) {
String t = mqttMagnitude((char *) topic);
// magnitude is relay/#/pulse
if (t.startsWith(MQTT_TOPIC_PULSE)) {
unsigned int id = t.substring(strlen(MQTT_TOPIC_PULSE)+1).toInt();
if (id >= relayCount()) {
DEBUG_MSG_P(PSTR("[RELAY] Wrong relayID (%d)\n"), id);
return;
}
unsigned long pulse = 1000 * String(payload).toFloat();
if (0 == pulse) return;
if (RELAY_PULSE_NONE != _relays[id].pulse) {
DEBUG_MSG_P(PSTR("[RELAY] Overriding relay #%d pulse settings\n"), id);
}
_relays[id].pulse_ms = pulse;
_relays[id].pulse = relayStatus(id) ? RELAY_PULSE_ON : RELAY_PULSE_OFF;
relayToggle(id, true, false);
return;
}
// magnitude is relay/#
if (t.startsWith(MQTT_TOPIC_RELAY)) {
// Get relay ID
unsigned int id = t.substring(strlen(MQTT_TOPIC_RELAY)+1).toInt();
if (id >= relayCount()) {
DEBUG_MSG_P(PSTR("[RELAY] Wrong relayID (%d)\n"), id);
return;
}
// Get value
unsigned char value = relayParsePayload(payload);
if (value == 0xFF) return;
relayStatusWrap(id, value, false);
return;
}
// Check group topics
for (unsigned int i=0; i < _relays.size(); i++) {
String t = getSetting("mqttGroup", i, "");
if ((t.length() > 0) && t.equals(topic)) {
unsigned char value = relayParsePayload(payload);
if (value == 0xFF) return;
if (value < 2) {
if (getSetting("mqttGroupInv", i, 0).toInt() == 1) {
value = 1 - value;
}
}
DEBUG_MSG_P(PSTR("[RELAY] Matched group topic for relayID %d\n"), i);
relayStatusWrap(i, value, true);
}
}
// Itead Sonoff IFAN02
#if defined (ITEAD_SONOFF_IFAN02)
if (t.startsWith(MQTT_TOPIC_SPEED)) {
setSpeed(atoi(payload));
}
#endif
}
if (type == MQTT_DISCONNECT_EVENT) {
for (unsigned int i=0; i < _relays.size(); i++){
int reaction = getSetting("relayOnDisc", i, 0).toInt();
if (1 == reaction) { // switch relay OFF
DEBUG_MSG_P(PSTR("[RELAY] Reset relay (%d) due to MQTT disconnection\n"), i);
relayStatusWrap(i, false, false);
} else if(2 == reaction) { // switch relay ON
DEBUG_MSG_P(PSTR("[RELAY] Set relay (%d) due to MQTT disconnection\n"), i);
relayStatusWrap(i, true, false);
}
}
}
}
void relaySetupMQTT() {
mqttRegister(relayMQTTCallback);
}
#endif
//------------------------------------------------------------------------------
// Settings
//------------------------------------------------------------------------------
#if TERMINAL_SUPPORT
void _relayInitCommands() {
terminalRegisterCommand(F("RELAY"), [](Embedis* e) {
if (e->argc < 2) {
terminalError(F("Wrong arguments"));
return;
}
int id = String(e->argv[1]).toInt();
if (id >= relayCount()) {
DEBUG_MSG_P(PSTR("-ERROR: Wrong relayID (%d)\n"), id);
return;
}
if (e->argc > 2) {
int value = String(e->argv[2]).toInt();
if (value == 2) {
relayToggle(id);
} else {
relayStatus(id, value == 1);
}
}
DEBUG_MSG_P(PSTR("Status: %s\n"), _relays[id].target_status ? "true" : "false");
if (_relays[id].pulse != RELAY_PULSE_NONE) {
DEBUG_MSG_P(PSTR("Pulse: %s\n"), (_relays[id].pulse == RELAY_PULSE_ON) ? "ON" : "OFF");
DEBUG_MSG_P(PSTR("Pulse time: %d\n"), _relays[id].pulse_ms);
}
terminalOK();
});
}
#endif // TERMINAL_SUPPORT
//------------------------------------------------------------------------------
// Setup
//------------------------------------------------------------------------------
void _relayLoop() {
_relayProcess(false);
_relayProcess(true);
}
void relaySetup() {
// Ad-hoc relays
#if RELAY1_PIN != GPIO_NONE
_relays.push_back((relay_t) { RELAY1_PIN, RELAY1_TYPE, RELAY1_RESET_PIN, RELAY1_DELAY_ON, RELAY1_DELAY_OFF });
#endif
#if RELAY2_PIN != GPIO_NONE
_relays.push_back((relay_t) { RELAY2_PIN, RELAY2_TYPE, RELAY2_RESET_PIN, RELAY2_DELAY_ON, RELAY2_DELAY_OFF });
#endif
#if RELAY3_PIN != GPIO_NONE
_relays.push_back((relay_t) { RELAY3_PIN, RELAY3_TYPE, RELAY3_RESET_PIN, RELAY3_DELAY_ON, RELAY3_DELAY_OFF });
#endif
#if RELAY4_PIN != GPIO_NONE
_relays.push_back((relay_t) { RELAY4_PIN, RELAY4_TYPE, RELAY4_RESET_PIN, RELAY4_DELAY_ON, RELAY4_DELAY_OFF });
#endif
#if RELAY5_PIN != GPIO_NONE
_relays.push_back((relay_t) { RELAY5_PIN, RELAY5_TYPE, RELAY5_RESET_PIN, RELAY5_DELAY_ON, RELAY5_DELAY_OFF });
#endif
#if RELAY6_PIN != GPIO_NONE
_relays.push_back((relay_t) { RELAY6_PIN, RELAY6_TYPE, RELAY6_RESET_PIN, RELAY6_DELAY_ON, RELAY6_DELAY_OFF });
#endif
#if RELAY7_PIN != GPIO_NONE
_relays.push_back((relay_t) { RELAY7_PIN, RELAY7_TYPE, RELAY7_RESET_PIN, RELAY7_DELAY_ON, RELAY7_DELAY_OFF });
#endif
#if RELAY8_PIN != GPIO_NONE
_relays.push_back((relay_t) { RELAY8_PIN, RELAY8_TYPE, RELAY8_RESET_PIN, RELAY8_DELAY_ON, RELAY8_DELAY_OFF });
#endif
// Dummy relays for AI Light, Magic Home LED Controller, H801, Sonoff Dual and Sonoff RF Bridge
// No delay_on or off for these devices to easily allow having more than
// 8 channels. This behaviour will be recovered with v2.
for (unsigned char i=0; i < DUMMY_RELAY_COUNT; i++) {
_relays.push_back((relay_t) {GPIO_NONE, RELAY_TYPE_NORMAL, 0, 0, 0});
}
_relayBackwards();
_relayConfigure();
_relayBoot();
_relayLoop();
#if WEB_SUPPORT
relaySetupWS();
#endif
#if API_SUPPORT
relaySetupAPI();
#endif
#if MQTT_SUPPORT
relaySetupMQTT();
#endif
#if TERMINAL_SUPPORT
_relayInitCommands();
#endif
// Main callbacks
espurnaRegisterLoop(_relayLoop);
espurnaRegisterReload(_relayConfigure);
DEBUG_MSG_P(PSTR("[RELAY] Number of relays: %d\n"), _relays.size());
}