Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

430 lines
15 KiB

// -----------------------------------------------------------------------------
// BME280/BMP280 Sensor over I2C
// Copyright (C) 2017-2018 by Xose Pérez <xose dot perez at gmail dot com>
// -----------------------------------------------------------------------------
#if SENSOR_SUPPORT && BMX280_SUPPORT
#pragma once
#include "Arduino.h"
#include "I2CSensor.h"
#define BMX280_CHIP_BMP280 0x58
#define BMX280_CHIP_BME280 0x60
#define BMX280_REGISTER_DIG_T1 0x88
#define BMX280_REGISTER_DIG_T2 0x8A
#define BMX280_REGISTER_DIG_T3 0x8C
#define BMX280_REGISTER_DIG_P1 0x8E
#define BMX280_REGISTER_DIG_P2 0x90
#define BMX280_REGISTER_DIG_P3 0x92
#define BMX280_REGISTER_DIG_P4 0x94
#define BMX280_REGISTER_DIG_P5 0x96
#define BMX280_REGISTER_DIG_P6 0x98
#define BMX280_REGISTER_DIG_P7 0x9A
#define BMX280_REGISTER_DIG_P8 0x9C
#define BMX280_REGISTER_DIG_P9 0x9E
#define BMX280_REGISTER_DIG_H1 0xA1
#define BMX280_REGISTER_DIG_H2 0xE1
#define BMX280_REGISTER_DIG_H3 0xE3
#define BMX280_REGISTER_DIG_H4 0xE4
#define BMX280_REGISTER_DIG_H5 0xE5
#define BMX280_REGISTER_DIG_H6 0xE7
#define BMX280_REGISTER_CHIPID 0xD0
#define BMX280_REGISTER_VERSION 0xD1
#define BMX280_REGISTER_SOFTRESET 0xE0
#define BMX280_REGISTER_CAL26 0xE1
#define BMX280_REGISTER_CONTROLHUMID 0xF2
#define BMX280_REGISTER_CONTROL 0xF4
#define BMX280_REGISTER_CONFIG 0xF5
#define BMX280_REGISTER_PRESSUREDATA 0xF7
#define BMX280_REGISTER_TEMPDATA 0xFA
#define BMX280_REGISTER_HUMIDDATA 0xFD
class BMX280Sensor : public I2CSensor {
public:
static unsigned char addresses[2];
// ---------------------------------------------------------------------
// Public
// ---------------------------------------------------------------------
BMX280Sensor(): I2CSensor() {
_sensor_id = SENSOR_BMX280_ID;
}
// ---------------------------------------------------------------------
// Sensor API
// ---------------------------------------------------------------------
// Initialization method, must be idempotent
void begin() {
if (!_dirty) return;
_dirty = false;
_chip = 0;
// I2C auto-discover
_address = _begin_i2c(_address, sizeof(BMX280Sensor::addresses), BMX280Sensor::addresses);
if (_address == 0) return;
// Init
_init();
}
// Descriptive name of the sensor
String description() {
char buffer[20];
snprintf(buffer, sizeof(buffer), "%s @ I2C (0x%02X)", _chip == BMX280_CHIP_BME280 ? "BME280" : "BMP280", _address);
return String(buffer);
}
// Type for slot # index
unsigned char type(unsigned char index) {
unsigned char i = 0;
#if BMX280_TEMPERATURE > 0
if (index == i++) return MAGNITUDE_TEMPERATURE;
#endif
#if BMX280_PRESSURE > 0
if (index == i++) return MAGNITUDE_PRESSURE;
#endif
#if BMX280_HUMIDITY > 0
if (_chip == BMX280_CHIP_BME280) {
if (index == i) return MAGNITUDE_HUMIDITY;
}
#endif
return MAGNITUDE_NONE;
}
// Pre-read hook (usually to populate registers with up-to-date data)
virtual void pre() {
if (_run_init) {
i2cClearBus();
_init();
}
if (_chip == 0) {
_error = SENSOR_ERROR_UNKNOWN_ID;
return;
}
_error = SENSOR_ERROR_OK;
#if BMX280_MODE == 1
_forceRead();
#endif
_error = _read();
if (_error != SENSOR_ERROR_OK) {
_run_init = true;
}
}
// Current value for slot # index
double value(unsigned char index) {
unsigned char i = 0;
#if BMX280_TEMPERATURE > 0
if (index == i++) return _temperature;
#endif
#if BMX280_PRESSURE > 0
if (index == i++) return _pressure / 100;
#endif
#if BMX280_HUMIDITY > 0
if (_chip == BMX280_CHIP_BME280) {
if (index == i) return _humidity;
}
#endif
return 0;
}
// Load the configuration manifest
static void manifest(JsonArray& sensors) {
char buffer[10];
JsonObject& sensor = sensors.createNestedObject();
sensor["sensor_id"] = SENSOR_BMX280_ID;
JsonArray& fields = sensor.createNestedArray("fields");
{
JsonObject& field = fields.createNestedObject();
field["tag"] = UI_TAG_SELECT;
field["name"] = "address";
field["label"] = "Address";
JsonArray& options = field.createNestedArray("options");
{
JsonObject& option = options.createNestedObject();
option["name"] = "auto";
option["value"] = 0;
}
for (unsigned char i=0; i< sizeof(BMX280Sensor::addresses); i++) {
JsonObject& option = options.createNestedObject();
snprintf(buffer, sizeof(buffer), "0x%02X", BMX280Sensor::addresses[i]);
option["name"] = String(buffer);
option["value"] = BMX280Sensor::addresses[i];
}
}
};
void getConfig(JsonObject& root) {
root["sensor_id"] = _sensor_id;
root["address"] = _address;
};
void setConfig(JsonObject& root) {
if (root.containsKey("address")) setAddress(root["address"]);
};
protected:
void _init() {
// Make sure sensor had enough time to turn on. BMX280 requires 2ms to start up
delay(10);
// Check sensor correctly initialized
_chip = i2c_read_uint8(_address, BMX280_REGISTER_CHIPID);
if ((_chip != BMX280_CHIP_BME280) && (_chip != BMX280_CHIP_BMP280)) {
_chip = 0;
i2cReleaseLock(_address);
_error = SENSOR_ERROR_UNKNOWN_ID;
return;
}
_count = 0;
#if BMX280_TEMPERATURE > 0
++_count;
#endif
#if BMX280_PRESSURE > 0
++_count;
#endif
#if BMX280_HUMIDITY > 0
if (_chip == BMX280_CHIP_BME280) ++_count;
#endif
_readCoefficients();
unsigned char data = 0;
i2c_write_uint8(_address, BMX280_REGISTER_CONTROL, data);
data = (BMX280_STANDBY << 0x5) & 0xE0;
data |= (BMX280_FILTER << 0x02) & 0x1C;
i2c_write_uint8(_address, BMX280_REGISTER_CONFIG, data);
data = (BMX280_HUMIDITY) & 0x07;
i2c_write_uint8(_address, BMX280_REGISTER_CONTROLHUMID, data);
data = (BMX280_TEMPERATURE << 5) & 0xE0;
data |= (BMX280_PRESSURE << 2) & 0x1C;
data |= (BMX280_MODE) & 0x03;
i2c_write_uint8(_address, BMX280_REGISTER_CONTROL, data);
_measurement_delay = _measurementTime();
_run_init = false;
}
void _readCoefficients() {
_bmx280_calib.dig_T1 = i2c_read_uint16_le(_address, BMX280_REGISTER_DIG_T1);
_bmx280_calib.dig_T2 = i2c_read_int16_le(_address, BMX280_REGISTER_DIG_T2);
_bmx280_calib.dig_T3 = i2c_read_int16_le(_address, BMX280_REGISTER_DIG_T3);
_bmx280_calib.dig_P1 = i2c_read_uint16_le(_address, BMX280_REGISTER_DIG_P1);
_bmx280_calib.dig_P2 = i2c_read_int16_le(_address, BMX280_REGISTER_DIG_P2);
_bmx280_calib.dig_P3 = i2c_read_int16_le(_address, BMX280_REGISTER_DIG_P3);
_bmx280_calib.dig_P4 = i2c_read_int16_le(_address, BMX280_REGISTER_DIG_P4);
_bmx280_calib.dig_P5 = i2c_read_int16_le(_address, BMX280_REGISTER_DIG_P5);
_bmx280_calib.dig_P6 = i2c_read_int16_le(_address, BMX280_REGISTER_DIG_P6);
_bmx280_calib.dig_P7 = i2c_read_int16_le(_address, BMX280_REGISTER_DIG_P7);
_bmx280_calib.dig_P8 = i2c_read_int16_le(_address, BMX280_REGISTER_DIG_P8);
_bmx280_calib.dig_P9 = i2c_read_int16_le(_address, BMX280_REGISTER_DIG_P9);
_bmx280_calib.dig_H1 = i2c_read_uint8(_address, BMX280_REGISTER_DIG_H1);
_bmx280_calib.dig_H2 = i2c_read_int16_le(_address, BMX280_REGISTER_DIG_H2);
_bmx280_calib.dig_H3 = i2c_read_uint8(_address, BMX280_REGISTER_DIG_H3);
_bmx280_calib.dig_H4 = (i2c_read_uint8(_address, BMX280_REGISTER_DIG_H4) << 4) | (i2c_read_uint8(_address, BMX280_REGISTER_DIG_H4+1) & 0xF);
_bmx280_calib.dig_H5 = (i2c_read_uint8(_address, BMX280_REGISTER_DIG_H5+1) << 4) | (i2c_read_uint8(_address, BMX280_REGISTER_DIG_H5) >> 4);
_bmx280_calib.dig_H6 = (int8_t) i2c_read_uint8(_address, BMX280_REGISTER_DIG_H6);
}
unsigned long _measurementTime() {
// Measurement Time (as per BMX280 datasheet section 9.1)
// T_max(ms) = 1.25
// + (2.3 * T_oversampling)
// + (2.3 * P_oversampling + 0.575)
// + (2.4 * H_oversampling + 0.575)
// ~ 9.3ms for current settings
double t = 1.25;
#if BMX280_TEMPERATURE > 0
t += (2.3 * BMX280_TEMPERATURE);
#endif
#if BMX280_PRESSURE > 0
t += (2.3 * BMX280_PRESSURE + 0.575);
#endif
#if BMX280_HUMIDITY > 0
if (_chip == BMX280_CHIP_BME280) {
t += (2.4 * BMX280_HUMIDITY + 0.575);
}
#endif
return round(t + 1); // round up
}
void _forceRead() {
// We set the sensor in "forced mode" to force a reading.
// After the reading the sensor will go back to sleep mode.
uint8_t value = i2c_read_uint8(_address, BMX280_REGISTER_CONTROL);
value = (value & 0xFC) + 0x01;
i2c_write_uint8(_address, BMX280_REGISTER_CONTROL, value);
delay(_measurement_delay);
}
unsigned char _read() {
#if BMX280_TEMPERATURE > 0
int32_t adc_T = i2c_read_uint16(_address, BMX280_REGISTER_TEMPDATA);
if (0xFFFF == adc_T) return SENSOR_ERROR_I2C;
adc_T <<= 8;
adc_T |= i2c_read_uint8(_address, BMX280_REGISTER_TEMPDATA+2);
adc_T >>= 4;
int32_t var1t = ((((adc_T>>3) -
((int32_t)_bmx280_calib.dig_T1 <<1))) *
((int32_t)_bmx280_calib.dig_T2)) >> 11;
int32_t var2t = (((((adc_T>>4) -
((int32_t)_bmx280_calib.dig_T1)) *
((adc_T>>4) - ((int32_t)_bmx280_calib.dig_T1))) >> 12) *
((int32_t)_bmx280_calib.dig_T3)) >> 14;
int32_t t_fine = var1t + var2t;
double T = (t_fine * 5 + 128) >> 8;
_temperature = T / 100;
#else
int32_t t_fine = 102374; // ~20ºC
#endif
// -----------------------------------------------------------------
#if BMX280_PRESSURE > 0
int64_t var1, var2, p;
int32_t adc_P = i2c_read_uint16(_address, BMX280_REGISTER_PRESSUREDATA);
if (0xFFFF == adc_P) return SENSOR_ERROR_I2C;
adc_P <<= 8;
adc_P |= i2c_read_uint8(_address, BMX280_REGISTER_PRESSUREDATA+2);
adc_P >>= 4;
var1 = ((int64_t)t_fine) - 128000;
var2 = var1 * var1 * (int64_t)_bmx280_calib.dig_P6;
var2 = var2 + ((var1*(int64_t)_bmx280_calib.dig_P5)<<17);
var2 = var2 + (((int64_t)_bmx280_calib.dig_P4)<<35);
var1 = ((var1 * var1 * (int64_t)_bmx280_calib.dig_P3)>>8) +
((var1 * (int64_t)_bmx280_calib.dig_P2)<<12);
var1 = (((((int64_t)1)<<47)+var1))*((int64_t)_bmx280_calib.dig_P1)>>33;
if (var1 == 0) return; // avoid exception caused by division by zero
p = 1048576 - adc_P;
p = (((p<<31) - var2)*3125) / var1;
var1 = (((int64_t)_bmx280_calib.dig_P9) * (p>>13) * (p>>13)) >> 25;
var2 = (((int64_t)_bmx280_calib.dig_P8) * p) >> 19;
p = ((p + var1 + var2) >> 8) + (((int64_t)_bmx280_calib.dig_P7)<<4);
_pressure = (double) p / 256;
#endif
// -----------------------------------------------------------------
#if BMX280_HUMIDITY > 0
if (_chip == BMX280_CHIP_BME280) {
int32_t adc_H = i2c_read_uint16(_address, BMX280_REGISTER_HUMIDDATA);
if (0xFFFF == adc_H) return SENSOR_ERROR_I2C;
int32_t v_x1_u32r;
v_x1_u32r = (t_fine - ((int32_t)76800));
v_x1_u32r = (((((adc_H << 14) - (((int32_t)_bmx280_calib.dig_H4) << 20) -
(((int32_t)_bmx280_calib.dig_H5) * v_x1_u32r)) + ((int32_t)16384)) >> 15) *
(((((((v_x1_u32r * ((int32_t)_bmx280_calib.dig_H6)) >> 10) *
(((v_x1_u32r * ((int32_t)_bmx280_calib.dig_H3)) >> 11) + ((int32_t)32768))) >> 10) +
((int32_t)2097152)) * ((int32_t)_bmx280_calib.dig_H2) + 8192) >> 14));
v_x1_u32r = (v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) *
((int32_t)_bmx280_calib.dig_H1)) >> 4));
v_x1_u32r = (v_x1_u32r < 0) ? 0 : v_x1_u32r;
v_x1_u32r = (v_x1_u32r > 419430400) ? 419430400 : v_x1_u32r;
double h = (v_x1_u32r >> 12);
_humidity = h / 1024.0;
}
#endif
return SENSOR_ERROR_OK;
}
// ---------------------------------------------------------------------
unsigned char _chip;
unsigned long _measurement_delay;
bool _run_init = false;
double _temperature = 0;
double _pressure = 0;
double _humidity = 0;
typedef struct {
uint16_t dig_T1;
int16_t dig_T2;
int16_t dig_T3;
uint16_t dig_P1;
int16_t dig_P2;
int16_t dig_P3;
int16_t dig_P4;
int16_t dig_P5;
int16_t dig_P6;
int16_t dig_P7;
int16_t dig_P8;
int16_t dig_P9;
uint8_t dig_H1;
int16_t dig_H2;
uint8_t dig_H3;
int16_t dig_H4;
int16_t dig_H5;
int8_t dig_H6;
} bmx280_calib_t;
bmx280_calib_t _bmx280_calib;
};
// Static inizializations
unsigned char BMX280Sensor::addresses[2] = {0x76, 0x77};
#endif // SENSOR_SUPPORT && BMX280_SUPPORT