Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1180 lines
36 KiB

/*
LIGHT MODULE
Copyright (C) 2016-2018 by Xose Pérez <xose dot perez at gmail dot com>
*/
#if LIGHT_PROVIDER != LIGHT_PROVIDER_NONE
#include <Ticker.h>
#include <ArduinoJson.h>
#include <vector>
extern "C" {
#include "libs/fs_math.h"
}
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
#define PWM_CHANNEL_NUM_MAX LIGHT_CHANNELS
extern "C" {
#include "libs/pwm.h"
}
#endif
// -----------------------------------------------------------------------------
Ticker _light_comms_ticker;
Ticker _light_save_ticker;
Ticker _light_transition_ticker;
typedef struct {
unsigned char pin;
bool reverse;
bool state;
unsigned char inputValue; // value that has been inputted
unsigned char value; // normalized value including brightness
unsigned char target; // target value
double current; // transition value
} channel_t;
std::vector<channel_t> _light_channel;
bool _light_state = false;
bool _light_use_transitions = false;
unsigned int _light_transition_time = LIGHT_TRANSITION_TIME;
bool _light_has_color = false;
bool _light_use_white = false;
bool _light_use_cct = false;
bool _light_use_gamma = false;
unsigned long _light_steps_left = 1;
unsigned char _light_brightness = LIGHT_MAX_BRIGHTNESS;
unsigned int _light_mireds = round((LIGHT_COLDWHITE_MIRED+LIGHT_WARMWHITE_MIRED)/2);
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
#include <my92xx.h>
my92xx * _my92xx;
ARRAYINIT(unsigned char, _light_channel_map, MY92XX_MAPPING);
#endif
// Gamma Correction lookup table (8 bit)
// TODO: move to PROGMEM
const unsigned char _light_gamma_table[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11,
12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19,
19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28,
29, 30, 30, 31, 32, 33, 33, 34, 35, 35, 36, 37, 38, 39, 39, 40,
41, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71,
72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 89,
91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105, 106, 108, 109, 110,
112, 113, 115, 116, 118, 119, 121, 122, 123, 125, 126, 128, 130, 131, 133, 134,
136, 137, 139, 140, 142, 144, 145, 147, 149, 150, 152, 154, 155, 157, 159, 160,
162, 164, 166, 167, 169, 171, 173, 175, 176, 178, 180, 182, 184, 186, 187, 189,
191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221,
223, 225, 227, 229, 231, 233, 235, 238, 240, 242, 244, 246, 248, 251, 253, 255
};
// -----------------------------------------------------------------------------
// UTILS
// -----------------------------------------------------------------------------
void _setRGBInputValue(unsigned char red, unsigned char green, unsigned char blue) {
_light_channel[0].inputValue = constrain(red, 0, LIGHT_MAX_VALUE);
_light_channel[1].inputValue = constrain(green, 0, LIGHT_MAX_VALUE);;
_light_channel[2].inputValue = constrain(blue, 0, LIGHT_MAX_VALUE);;
}
void _generateBrightness() {
double brightness = (double) _light_brightness / LIGHT_MAX_BRIGHTNESS;
// Convert RGB to RGBW(W)
if (_light_has_color && _light_use_white) {
// Substract the common part from RGB channels and add it to white channel. So [250,150,50] -> [200,100,0,50]
unsigned char white = std::min(_light_channel[0].inputValue, std::min(_light_channel[1].inputValue, _light_channel[2].inputValue));
for (unsigned int i=0; i < 3; i++) {
_light_channel[i].value = _light_channel[i].inputValue - white;
}
// Split the White Value across 2 White LED Strips.
if (_light_use_cct) {
// This change the range from 153-500 to 0-347 so we get a value between 0 and 1 in the end.
double miredFactor = ((double) _light_mireds - (double) LIGHT_COLDWHITE_MIRED)/((double) LIGHT_WARMWHITE_MIRED - (double) LIGHT_COLDWHITE_MIRED);
// set cold white
_light_channel[3].inputValue = 0;
_light_channel[3].value = round(((double) 1.0 - miredFactor) * white);
// set warm white
_light_channel[4].inputValue = 0;
_light_channel[4].value = round(miredFactor * white);
} else {
_light_channel[3].inputValue = 0;
_light_channel[3].value = white;
}
// Scale up to equal input values. So [250,150,50] -> [200,100,0,50] -> [250, 125, 0, 63]
unsigned char max_in = std::max(_light_channel[0].inputValue, std::max(_light_channel[1].inputValue, _light_channel[2].inputValue));
unsigned char max_out = std::max(std::max(_light_channel[0].value, _light_channel[1].value), std::max(_light_channel[2].value, _light_channel[3].value));
unsigned char channelSize = _light_use_cct ? 5 : 4;
if (_light_use_cct) {
max_out = std::max(max_out, _light_channel[4].value);
}
double factor = (max_out > 0) ? (double) (max_in / max_out) : 0;
for (unsigned char i=0; i < channelSize; i++) {
_light_channel[i].value = round((double) _light_channel[i].value * factor * brightness);
}
// Scale white channel to match brightness
for (unsigned char i=3; i < channelSize; i++) {
_light_channel[i].value = constrain(_light_channel[i].value * LIGHT_WHITE_FACTOR, 0, LIGHT_MAX_BRIGHTNESS);
}
// For the rest of channels, don't apply brightness, it is already in the inputValue
// i should be 4 when RGBW and 5 when RGBWW
for (unsigned char i=channelSize; i < _light_channel.size(); i++) {
_light_channel[i].value = _light_channel[i].inputValue;
}
} else {
// Apply brightness equally to all channels
for (unsigned char i=0; i < _light_channel.size(); i++) {
_light_channel[i].value = _light_channel[i].inputValue * brightness;
}
}
}
// -----------------------------------------------------------------------------
// Input Values
// -----------------------------------------------------------------------------
void _fromLong(unsigned long value, bool brightness) {
if (brightness) {
_setRGBInputValue((value >> 24) & 0xFF, (value >> 16) & 0xFF, (value >> 8) & 0xFF);
_light_brightness = (value & 0xFF) * LIGHT_MAX_BRIGHTNESS / 255;
} else {
_setRGBInputValue((value >> 16) & 0xFF, (value >> 8) & 0xFF, (value) & 0xFF);
}
}
void _fromRGB(const char * rgb) {
char * p = (char *) rgb;
if (strlen(p) == 0) return;
switch (p[0]) {
case '#': // HEX Value
if (_light_has_color) {
++p;
unsigned long value = strtoul(p, NULL, 16);
// RGBA values are interpreted like RGB + brightness
_fromLong(value, strlen(p) > 7);
}
break;
case 'M': // Mired Value
_fromMireds(atol(p + 1));
break;
case 'K': // Kelvin Value
_fromKelvin(atol(p + 1));
break;
default: // assume decimal values separated by commas
char * tok;
unsigned char count = 0;
unsigned char channels = _light_channel.size();
tok = strtok(p, ",");
while (tok != NULL) {
_light_channel[count].inputValue = atoi(tok);
if (++count == channels) break;
tok = strtok(NULL, ",");
}
// RGB but less than 3 values received, assume it is 0
if (_light_has_color && (count < 3)) {
// check channel 1 and 2:
for (int i = 1; i <= 2; i++) {
if (count < (i+1)) {
_light_channel[i].inputValue = 0;
}
}
}
break;
}
}
// HSV string is expected to be "H,S,V", where:
// 0 <= H <= 360
// 0 <= S <= 100
// 0 <= V <= 100
void _fromHSV(const char * hsv) {
char * ptr = (char *) hsv;
if (strlen(ptr) == 0) return;
if (!_light_has_color) return;
char * tok;
unsigned char count = 0;
unsigned int value[3] = {0};
tok = strtok(ptr, ",");
while (tok != NULL) {
value[count] = atoi(tok);
if (++count == 3) break;
tok = strtok(NULL, ",");
}
if (count != 3) return;
// HSV to RGB transformation -----------------------------------------------
//INPUT: [0,100,57]
//IS: [145,0,0]
//SHOULD: [255,0,0]
double h = (value[0] == 360) ? 0 : (double) value[0] / 60.0;
double f = (h - floor(h));
double s = (double) value[1] / 100.0;
_light_brightness = round((double) value[2] * 2.55); // (255/100)
unsigned char p = round(255 * (1.0 - s));
unsigned char q = round(255 * (1.0 - s * f));
unsigned char t = round(255 * (1.0 - s * (1.0 - f)));
switch (int(h)) {
case 0:
_setRGBInputValue(255, t, p);
break;
case 1:
_setRGBInputValue(q, 255, p);
break;
case 2:
_setRGBInputValue(p, 255, t);
break;
case 3:
_setRGBInputValue(p, q, 255);
break;
case 4:
_setRGBInputValue(t, p, 255);
break;
case 5:
_setRGBInputValue(255, p, q);
break;
default:
_setRGBInputValue(0, 0, 0);
break;
}
}
// Thanks to Sacha Telgenhof for sharing this code in his AiLight library
// https://github.com/stelgenhof/AiLight
void _fromKelvin(unsigned long kelvin) {
if (!_light_has_color) return;
_light_mireds = constrain(round(1000000UL / kelvin), LIGHT_MIN_MIREDS, LIGHT_MAX_MIREDS);
if (_light_use_cct) {
_setRGBInputValue(LIGHT_MAX_VALUE, LIGHT_MAX_VALUE, LIGHT_MAX_VALUE);
return;
}
// Calculate colors
kelvin /= 100;
unsigned int red = (kelvin <= 66)
? LIGHT_MAX_VALUE
: 329.698727446 * fs_pow((double) (kelvin - 60), -0.1332047592);
unsigned int green = (kelvin <= 66)
? 99.4708025861 * fs_log(kelvin) - 161.1195681661
: 288.1221695283 * fs_pow((double) kelvin, -0.0755148492);
unsigned int blue = (kelvin >= 66)
? LIGHT_MAX_VALUE
: ((kelvin <= 19)
? 0
: 138.5177312231 * fs_log(kelvin - 10) - 305.0447927307);
_setRGBInputValue(red, green, blue);
}
// Color temperature is measured in mireds (kelvin = 1e6/mired)
void _fromMireds(unsigned long mireds) {
unsigned long kelvin = constrain(1000000UL / mireds, 1000, 40000);
_fromKelvin(kelvin);
}
// -----------------------------------------------------------------------------
// Output Values
// -----------------------------------------------------------------------------
void _toRGB(char * rgb, size_t len, bool target) {
unsigned long value = 0;
value += target ? _light_channel[0].target : _light_channel[0].inputValue;
value <<= 8;
value += target ? _light_channel[1].target : _light_channel[1].inputValue;
value <<= 8;
value += target ? _light_channel[2].target : _light_channel[2].inputValue;
snprintf_P(rgb, len, PSTR("#%06X"), value);
}
void _toRGB(char * rgb, size_t len) {
_toRGB(rgb, len, false);
}
void _toHSV(char * hsv, size_t len, bool target) {
double h, s, v;
double brightness = (double) _light_brightness / LIGHT_MAX_BRIGHTNESS;
double r = (double) ((target ? _light_channel[0].target : _light_channel[0].inputValue) * brightness) / 255.0;
double g = (double) ((target ? _light_channel[1].target : _light_channel[1].inputValue) * brightness) / 255.0;
double b = (double) ((target ? _light_channel[2].target : _light_channel[2].inputValue) * brightness) / 255.0;
double min = std::min(r, std::min(g, b));
double max = std::max(r, std::max(g, b));
v = 100.0 * max;
if (v == 0) {
h = s = 0;
} else {
s = 100.0 * (max - min) / max;
if (s == 0) {
h = 0;
} else {
if (max == r) {
if (g >= b) {
h = 0.0 + 60.0 * (g - b) / (max - min);
} else {
h = 360.0 + 60.0 * (g - b) / (max - min);
}
} else if (max == g) {
h = 120.0 + 60.0 * (b - r) / (max - min);
} else {
h = 240.0 + 60.0 * (r - g) / (max - min);
}
}
}
// String
snprintf_P(hsv, len, PSTR("%d,%d,%d"), round(h), round(s), round(v));
}
void _toHSV(char * hsv, size_t len) {
_toHSV(hsv, len, false);
}
void _toLong(char * color, size_t len, bool target) {
if (!_light_has_color) return;
snprintf_P(color, len, PSTR("%d,%d,%d"),
(int) (target ? _light_channel[0].target : _light_channel[0].inputValue),
(int) (target ? _light_channel[1].target : _light_channel[1].inputValue),
(int) (target ? _light_channel[2].target : _light_channel[2].inputValue)
);
}
void _toLong(char * color, size_t len) {
_toLong(color, len, false);
}
void _toCSV(char * buffer, size_t len, bool applyBrightness, bool target) {
char num[10];
float b = applyBrightness ? (float) _light_brightness / LIGHT_MAX_BRIGHTNESS : 1;
for (unsigned char i=0; i<_light_channel.size(); i++) {
itoa((target ? _light_channel[i].target : _light_channel[i].inputValue) * b, num, 10);
if (i>0) strncat(buffer, ",", len--);
strncat(buffer, num, len);
len = len - strlen(num);
}
}
void _toCSV(char * buffer, size_t len, bool applyBrightness) {
_toCSV(buffer, len, applyBrightness, false);
}
// -----------------------------------------------------------------------------
// PROVIDER
// -----------------------------------------------------------------------------
unsigned int _toPWM(unsigned long value, bool gamma, bool reverse) {
value = constrain(value, 0, LIGHT_MAX_VALUE);
if (gamma) value = _light_gamma_table[value];
if (LIGHT_MAX_VALUE != LIGHT_LIMIT_PWM) value = map(value, 0, LIGHT_MAX_VALUE, 0, LIGHT_LIMIT_PWM);
if (reverse) value = LIGHT_LIMIT_PWM - value;
return value;
}
// Returns a PWM value for the given channel ID
unsigned int _toPWM(unsigned char id) {
bool useGamma = _light_use_gamma && _light_has_color && (id < 3);
return _toPWM(_light_channel[id].current, useGamma, _light_channel[id].reverse);
}
void _transition() {
// Update transition ticker
_light_steps_left--;
if (_light_steps_left == 0) _light_transition_ticker.detach();
// Transitions
for (unsigned int i=0; i < _light_channel.size(); i++) {
if (_light_steps_left == 0) {
_light_channel[i].current = _light_channel[i].target;
} else {
double difference = (double) (_light_channel[i].target - _light_channel[i].current) / (_light_steps_left + 1);
_light_channel[i].current = _light_channel[i].current + difference;
}
}
}
void _lightProviderUpdate() {
_transition();
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
for (unsigned char i=0; i<_light_channel.size(); i++) {
_my92xx->setChannel(_light_channel_map[i], _toPWM(i));
}
_my92xx->setState(true);
_my92xx->update();
#endif
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
for (unsigned int i=0; i < _light_channel.size(); i++) {
pwm_set_duty(_toPWM(i), i);
}
pwm_start();
#endif
}
// -----------------------------------------------------------------------------
// PERSISTANCE
// -----------------------------------------------------------------------------
void _lightColorSave() {
for (unsigned int i=0; i < _light_channel.size(); i++) {
setSetting("ch", i, _light_channel[i].inputValue);
}
setSetting("brightness", _light_brightness);
setSetting("mireds", _light_mireds);
saveSettings();
}
void _lightColorRestore() {
for (unsigned int i=0; i < _light_channel.size(); i++) {
_light_channel[i].inputValue = getSetting("ch", i, i==0 ? 255 : 0).toInt();
}
_light_brightness = getSetting("brightness", LIGHT_MAX_BRIGHTNESS).toInt();
_light_mireds = getSetting("mireds", _light_mireds).toInt();
lightUpdate(false, false);
}
// -----------------------------------------------------------------------------
// MQTT
// -----------------------------------------------------------------------------
#if MQTT_SUPPORT
void _lightMQTTCallback(unsigned int type, const char * topic, const char * payload) {
String mqtt_group_color = getSetting("mqttGroupColor");
if (type == MQTT_CONNECT_EVENT) {
if (_light_has_color) {
mqttSubscribe(MQTT_TOPIC_BRIGHTNESS);
mqttSubscribe(MQTT_TOPIC_MIRED);
mqttSubscribe(MQTT_TOPIC_KELVIN);
mqttSubscribe(MQTT_TOPIC_COLOR_RGB);
mqttSubscribe(MQTT_TOPIC_COLOR_HSV);
mqttSubscribe(MQTT_TOPIC_TRANSITION);
}
// Group color
if (mqtt_group_color.length() > 0) mqttSubscribeRaw(mqtt_group_color.c_str());
// Channels
char buffer[strlen(MQTT_TOPIC_CHANNEL) + 3];
snprintf_P(buffer, sizeof(buffer), PSTR("%s/+"), MQTT_TOPIC_CHANNEL);
mqttSubscribe(buffer);
}
if (type == MQTT_MESSAGE_EVENT) {
// Group color
if ((mqtt_group_color.length() > 0) & (mqtt_group_color.equals(topic))) {
lightColor(payload, true);
lightUpdate(true, mqttForward(), false);
return;
}
// Match topic
String t = mqttMagnitude((char *) topic);
// Color temperature in mireds
if (t.equals(MQTT_TOPIC_MIRED)) {
_fromMireds(atol(payload));
lightUpdate(true, mqttForward());
return;
}
// Color temperature in kelvins
if (t.equals(MQTT_TOPIC_KELVIN)) {
_fromKelvin(atol(payload));
lightUpdate(true, mqttForward());
return;
}
// Color
if (t.equals(MQTT_TOPIC_COLOR_RGB)) {
lightColor(payload, true);
lightUpdate(true, mqttForward());
return;
}
if (t.equals(MQTT_TOPIC_COLOR_HSV)) {
lightColor(payload, false);
lightUpdate(true, mqttForward());
return;
}
// Brightness
if (t.equals(MQTT_TOPIC_BRIGHTNESS)) {
_light_brightness = constrain(atoi(payload), 0, LIGHT_MAX_BRIGHTNESS);
lightUpdate(true, mqttForward());
return;
}
// Transitions
if (t.equals(MQTT_TOPIC_TRANSITION)) {
lightTransitionTime(atol(payload));
return;
}
// Channel
if (t.startsWith(MQTT_TOPIC_CHANNEL)) {
unsigned int channelID = t.substring(strlen(MQTT_TOPIC_CHANNEL)+1).toInt();
if (channelID >= _light_channel.size()) {
DEBUG_MSG_P(PSTR("[LIGHT] Wrong channelID (%d)\n"), channelID);
return;
}
lightChannel(channelID, atoi(payload));
lightUpdate(true, mqttForward());
return;
}
}
}
void lightMQTT() {
char buffer[20];
if (_light_has_color) {
// Color
if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) {
_toRGB(buffer, sizeof(buffer), true);
} else {
_toLong(buffer, sizeof(buffer), true);
}
mqttSend(MQTT_TOPIC_COLOR_RGB, buffer);
_toHSV(buffer, sizeof(buffer), true);
mqttSend(MQTT_TOPIC_COLOR_HSV, buffer);
// Mireds
snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_mireds);
mqttSend(MQTT_TOPIC_MIRED, buffer);
}
// Channels
for (unsigned int i=0; i < _light_channel.size(); i++) {
itoa(_light_channel[i].target, buffer, 10);
mqttSend(MQTT_TOPIC_CHANNEL, i, buffer);
}
// Brightness
snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_brightness);
mqttSend(MQTT_TOPIC_BRIGHTNESS, buffer);
}
void lightMQTTGroup() {
String mqtt_group_color = getSetting("mqttGroupColor");
if (mqtt_group_color.length()>0) {
char buffer[20];
_toCSV(buffer, sizeof(buffer), true);
mqttSendRaw(mqtt_group_color.c_str(), buffer);
}
}
#endif
// -----------------------------------------------------------------------------
// Broker
// -----------------------------------------------------------------------------
#if BROKER_SUPPORT
void lightBroker() {
char buffer[10];
for (unsigned int i=0; i < _light_channel.size(); i++) {
itoa(_light_channel[i].inputValue, buffer, 10);
brokerPublish(BROKER_MSG_TYPE_STATUS, MQTT_TOPIC_CHANNEL, i, buffer);
}
}
#endif
// -----------------------------------------------------------------------------
// API
// -----------------------------------------------------------------------------
unsigned char lightChannels() {
return _light_channel.size();
}
bool lightHasColor() {
return _light_has_color;
}
void _lightComms(unsigned char mask) {
// Report color & brightness to MQTT broker
#if MQTT_SUPPORT
if (mask & 0x01) lightMQTT();
if (mask & 0x02) lightMQTTGroup();
#endif
// Report color to WS clients (using current brightness setting)
#if WEB_SUPPORT
wsSend(_lightWebSocketOnSend);
#endif
// Report channels to local broker
#if BROKER_SUPPORT
lightBroker();
#endif
}
void lightUpdate(bool save, bool forward, bool group_forward) {
_generateBrightness();
// Update channels
for (unsigned int i=0; i < _light_channel.size(); i++) {
_light_channel[i].target = _light_state && _light_channel[i].state ? _light_channel[i].value : 0;
//DEBUG_MSG_P("[LIGHT] Channel #%u target value: %u\n", i, _light_channel[i].target);
}
// Configure color transition
_light_steps_left = _light_use_transitions ? _light_transition_time / LIGHT_TRANSITION_STEP : 1;
_light_transition_ticker.attach_ms(LIGHT_TRANSITION_STEP, _lightProviderUpdate);
// Delay every communication 100ms to avoid jamming
unsigned char mask = 0;
if (forward) mask += 1;
if (group_forward) mask += 2;
_light_comms_ticker.once_ms(LIGHT_COMMS_DELAY, _lightComms, mask);
#if LIGHT_SAVE_ENABLED
// Delay saving to EEPROM 5 seconds to avoid wearing it out unnecessarily
if (save) _light_save_ticker.once(LIGHT_SAVE_DELAY, _lightColorSave);
#endif
};
void lightUpdate(bool save, bool forward) {
lightUpdate(save, forward, true);
}
#if LIGHT_SAVE_ENABLED == 0
void lightSave() {
_lightColorSave();
}
#endif
void lightState(unsigned char i, bool state) {
_light_channel[i].state = state;
}
bool lightState(unsigned char i) {
return _light_channel[i].state;
}
void lightState(bool state) {
_light_state = state;
}
bool lightState() {
return _light_state;
}
void lightColor(const char * color, bool rgb) {
DEBUG_MSG_P(PSTR("[LIGHT] %s: %s\n"), rgb ? "RGB" : "HSV", color);
if (rgb) {
_fromRGB(color);
} else {
_fromHSV(color);
}
}
void lightColor(const char * color) {
lightColor(color, true);
}
void lightColor(unsigned long color) {
_fromLong(color, false);
}
String lightColor(bool rgb) {
char str[12];
if (rgb) {
_toRGB(str, sizeof(str));
} else {
_toHSV(str, sizeof(str));
}
return String(str);
}
String lightColor() {
return lightColor(true);
}
unsigned int lightChannel(unsigned char id) {
if (id <= _light_channel.size()) {
return _light_channel[id].inputValue;
}
return 0;
}
void lightChannel(unsigned char id, int value) {
if (id <= _light_channel.size()) {
_light_channel[id].inputValue = constrain(value, 0, LIGHT_MAX_VALUE);
}
}
void lightChannelStep(unsigned char id, int steps) {
lightChannel(id, lightChannel(id) + steps * LIGHT_STEP);
}
unsigned int lightBrightness() {
return _light_brightness;
}
void lightBrightness(int b) {
_light_brightness = constrain(b, 0, LIGHT_MAX_BRIGHTNESS);
}
void lightBrightnessStep(int steps) {
lightBrightness(_light_brightness + steps * LIGHT_STEP);
}
unsigned long lightTransitionTime() {
if (_light_use_transitions) {
return _light_transition_time;
} else {
return 0;
}
}
void lightTransitionTime(unsigned long m) {
if (0 == m) {
_light_use_transitions = false;
} else {
_light_use_transitions = true;
_light_transition_time = m;
}
setSetting("useTransitions", _light_use_transitions);
setSetting("lightTime", _light_transition_time);
saveSettings();
}
// -----------------------------------------------------------------------------
// SETUP
// -----------------------------------------------------------------------------
#if WEB_SUPPORT
bool _lightWebSocketOnReceive(const char * key, JsonVariant& value) {
if (strncmp(key, "light", 5) == 0) return true;
if (strncmp(key, "use", 3) == 0) return true;
return false;
}
void _lightWebSocketOnSend(JsonObject& root) {
root["colorVisible"] = 1;
root["mqttGroupColor"] = getSetting("mqttGroupColor");
root["useColor"] = _light_has_color;
root["useWhite"] = _light_use_white;
root["useGamma"] = _light_use_gamma;
root["useTransitions"] = _light_use_transitions;
root["lightTime"] = _light_transition_time;
root["useCSS"] = getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1;
bool useRGB = getSetting("useRGB", LIGHT_USE_RGB).toInt() == 1;
root["useRGB"] = useRGB;
if (_light_has_color) {
if (_light_use_cct) {
root["useCCT"] = _light_use_cct;
root["mireds"] = _light_mireds;
}
if (useRGB) {
root["rgb"] = lightColor(true);
} else {
root["hsv"] = lightColor(false);
}
}
JsonArray& channels = root.createNestedArray("channels");
for (unsigned char id=0; id < _light_channel.size(); id++) {
channels.add(lightChannel(id));
}
root["brightness"] = lightBrightness();
}
void _lightWebSocketOnAction(uint32_t client_id, const char * action, JsonObject& data) {
if (_light_has_color) {
if (strcmp(action, "color") == 0) {
if (data.containsKey("rgb")) {
lightColor(data["rgb"], true);
lightUpdate(true, true);
}
if (data.containsKey("hsv")) {
lightColor(data["hsv"], false);
lightUpdate(true, true);
}
}
if (_light_use_cct) {
if (strcmp(action, "mireds") == 0) {
_fromMireds(data["mireds"]);
lightUpdate(true, true);
}
}
}
if (strcmp(action, "channel") == 0) {
if (data.containsKey("id") && data.containsKey("value")) {
lightChannel(data["id"], data["value"]);
lightUpdate(true, true);
}
}
if (strcmp(action, "brightness") == 0) {
if (data.containsKey("value")) {
lightBrightness(data["value"]);
lightUpdate(true, true);
}
}
}
#endif
#if API_SUPPORT
void _lightAPISetup() {
if (_light_has_color) {
apiRegister(MQTT_TOPIC_COLOR_RGB,
[](char * buffer, size_t len) {
if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) {
_toRGB(buffer, len, true);
} else {
_toLong(buffer, len, true);
}
},
[](const char * payload) {
lightColor(payload, true);
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_COLOR_HSV,
[](char * buffer, size_t len) {
_toHSV(buffer, len, true);
},
[](const char * payload) {
lightColor(payload, false);
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_KELVIN,
[](char * buffer, size_t len) {},
[](const char * payload) {
_fromKelvin(atol(payload));
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_MIRED,
[](char * buffer, size_t len) {},
[](const char * payload) {
_fromMireds(atol(payload));
lightUpdate(true, true);
}
);
}
for (unsigned int id=0; id<_light_channel.size(); id++) {
char key[15];
snprintf_P(key, sizeof(key), PSTR("%s/%d"), MQTT_TOPIC_CHANNEL, id);
apiRegister(key,
[id](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), _light_channel[id].target);
},
[id](const char * payload) {
lightChannel(id, atoi(payload));
lightUpdate(true, true);
}
);
}
apiRegister(MQTT_TOPIC_TRANSITION,
[](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), lightTransitionTime());
},
[](const char * payload) {
lightTransitionTime(atol(payload));
}
);
apiRegister(MQTT_TOPIC_BRIGHTNESS,
[](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), _light_brightness);
},
[](const char * payload) {
lightBrightness(atoi(payload));
lightUpdate(true, true);
}
);
}
#endif // API_SUPPORT
#if TERMINAL_SUPPORT
void _lightInitCommands() {
settingsRegisterCommand(F("BRIGHTNESS"), [](Embedis* e) {
if (e->argc > 1) {
lightBrightness(String(e->argv[1]).toInt());
lightUpdate(true, true);
}
DEBUG_MSG_P(PSTR("Brightness: %d\n"), lightBrightness());
DEBUG_MSG_P(PSTR("+OK\n"));
});
settingsRegisterCommand(F("CHANNEL"), [](Embedis* e) {
if (e->argc < 2) {
DEBUG_MSG_P(PSTR("-ERROR: Wrong arguments\n"));
}
int id = String(e->argv[1]).toInt();
if (e->argc > 2) {
int value = String(e->argv[2]).toInt();
lightChannel(id, value);
lightUpdate(true, true);
}
DEBUG_MSG_P(PSTR("Channel #%d: %d\n"), id, lightChannel(id));
DEBUG_MSG_P(PSTR("+OK\n"));
});
settingsRegisterCommand(F("COLOR"), [](Embedis* e) {
if (e->argc > 1) {
String color = String(e->argv[1]);
lightColor(color.c_str());
lightUpdate(true, true);
}
DEBUG_MSG_P(PSTR("Color: %s\n"), lightColor().c_str());
DEBUG_MSG_P(PSTR("+OK\n"));
});
settingsRegisterCommand(F("KELVIN"), [](Embedis* e) {
if (e->argc > 1) {
String color = String("K") + String(e->argv[1]);
lightColor(color.c_str());
lightUpdate(true, true);
}
DEBUG_MSG_P(PSTR("Color: %s\n"), lightColor().c_str());
DEBUG_MSG_P(PSTR("+OK\n"));
});
settingsRegisterCommand(F("MIRED"), [](Embedis* e) {
if (e->argc > 1) {
String color = String("M") + String(e->argv[1]);
lightColor(color.c_str());
lightUpdate(true, true);
}
DEBUG_MSG_P(PSTR("Color: %s\n"), lightColor().c_str());
DEBUG_MSG_P(PSTR("+OK\n"));
});
}
#endif // TERMINAL_SUPPORT
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
unsigned long getIOMux(unsigned long gpio) {
unsigned long muxes[16] = {
PERIPHS_IO_MUX_GPIO0_U, PERIPHS_IO_MUX_U0TXD_U, PERIPHS_IO_MUX_GPIO2_U, PERIPHS_IO_MUX_U0RXD_U,
PERIPHS_IO_MUX_GPIO4_U, PERIPHS_IO_MUX_GPIO5_U, PERIPHS_IO_MUX_SD_CLK_U, PERIPHS_IO_MUX_SD_DATA0_U,
PERIPHS_IO_MUX_SD_DATA1_U, PERIPHS_IO_MUX_SD_DATA2_U, PERIPHS_IO_MUX_SD_DATA3_U, PERIPHS_IO_MUX_SD_CMD_U,
PERIPHS_IO_MUX_MTDI_U, PERIPHS_IO_MUX_MTCK_U, PERIPHS_IO_MUX_MTMS_U, PERIPHS_IO_MUX_MTDO_U
};
return muxes[gpio];
}
unsigned long getIOFunc(unsigned long gpio) {
unsigned long funcs[16] = {
FUNC_GPIO0, FUNC_GPIO1, FUNC_GPIO2, FUNC_GPIO3,
FUNC_GPIO4, FUNC_GPIO5, FUNC_GPIO6, FUNC_GPIO7,
FUNC_GPIO8, FUNC_GPIO9, FUNC_GPIO10, FUNC_GPIO11,
FUNC_GPIO12, FUNC_GPIO13, FUNC_GPIO14, FUNC_GPIO15
};
return funcs[gpio];
}
#endif
void _lightConfigure() {
_light_has_color = getSetting("useColor", LIGHT_USE_COLOR).toInt() == 1;
if (_light_has_color && (_light_channel.size() < 3)) {
_light_has_color = false;
setSetting("useColor", _light_has_color);
}
_light_use_white = getSetting("useWhite", LIGHT_USE_WHITE).toInt() == 1;
if (_light_use_white && (_light_channel.size() < 4)) {
_light_use_white = false;
setSetting("useWhite", _light_use_white);
}
_light_use_cct = getSetting("useCCT", LIGHT_USE_CCT).toInt() == 1;
if (_light_use_cct && ((_light_channel.size() < 5) || !_light_use_white)) {
_light_use_cct = false;
setSetting("useCCT", _light_use_cct);
}
_light_use_gamma = getSetting("useGamma", LIGHT_USE_GAMMA).toInt() == 1;
_light_use_transitions = getSetting("useTransitions", LIGHT_USE_TRANSITIONS).toInt() == 1;
_light_transition_time = getSetting("lightTime", LIGHT_TRANSITION_TIME).toInt();
}
void lightSetup() {
#ifdef LIGHT_ENABLE_PIN
pinMode(LIGHT_ENABLE_PIN, OUTPUT);
digitalWrite(LIGHT_ENABLE_PIN, HIGH);
#endif
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
_my92xx = new my92xx(MY92XX_MODEL, MY92XX_CHIPS, MY92XX_DI_PIN, MY92XX_DCKI_PIN, MY92XX_COMMAND);
for (unsigned char i=0; i<LIGHT_CHANNELS; i++) {
_light_channel.push_back((channel_t) {0, false, true, 0, 0, 0});
}
#endif
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
#ifdef LIGHT_CH1_PIN
_light_channel.push_back((channel_t) {LIGHT_CH1_PIN, LIGHT_CH1_INVERSE, true, 0, 0, 0});
#endif
#ifdef LIGHT_CH2_PIN
_light_channel.push_back((channel_t) {LIGHT_CH2_PIN, LIGHT_CH2_INVERSE, true, 0, 0, 0});
#endif
#ifdef LIGHT_CH3_PIN
_light_channel.push_back((channel_t) {LIGHT_CH3_PIN, LIGHT_CH3_INVERSE, true, 0, 0, 0});
#endif
#ifdef LIGHT_CH4_PIN
_light_channel.push_back((channel_t) {LIGHT_CH4_PIN, LIGHT_CH4_INVERSE, true, 0, 0, 0});
#endif
#ifdef LIGHT_CH5_PIN
_light_channel.push_back((channel_t) {LIGHT_CH5_PIN, LIGHT_CH5_INVERSE, true, 0, 0, 0});
#endif
uint32 pwm_duty_init[PWM_CHANNEL_NUM_MAX];
uint32 io_info[PWM_CHANNEL_NUM_MAX][3];
for (unsigned int i=0; i < _light_channel.size(); i++) {
pwm_duty_init[i] = 0;
io_info[i][0] = getIOMux(_light_channel[i].pin);
io_info[i][1] = getIOFunc(_light_channel[i].pin);
io_info[i][2] = _light_channel[i].pin;
pinMode(_light_channel[i].pin, OUTPUT);
}
pwm_init(LIGHT_MAX_PWM, pwm_duty_init, PWM_CHANNEL_NUM_MAX, io_info);
pwm_start();
#endif
DEBUG_MSG_P(PSTR("[LIGHT] LIGHT_PROVIDER = %d\n"), LIGHT_PROVIDER);
DEBUG_MSG_P(PSTR("[LIGHT] Number of channels: %d\n"), _light_channel.size());
_lightConfigure();
_lightColorRestore();
#if WEB_SUPPORT
wsOnSendRegister(_lightWebSocketOnSend);
wsOnActionRegister(_lightWebSocketOnAction);
wsOnReceiveRegister(_lightWebSocketOnReceive);
#endif
#if API_SUPPORT
_lightAPISetup();
#endif
#if MQTT_SUPPORT
mqttRegister(_lightMQTTCallback);
#endif
#if TERMINAL_SUPPORT
_lightInitCommands();
#endif
// Main callbacks
espurnaRegisterReload([]() {
#if LIGHT_SAVE_ENABLED == 0
lightSave();
#endif
_lightConfigure();
});
}
#endif // LIGHT_PROVIDER != LIGHT_PROVIDER_NONE