Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

806 lines
25 KiB

/*
SENSOR MODULE
Copyright (C) 2016-2018 by Xose Pérez <xose dot perez at gmail dot com>
*/
#if SENSOR_SUPPORT
#include <vector>
#include "filters/MaxFilter.h"
#include "filters/MedianFilter.h"
#include "filters/MovingAverageFilter.h"
#include "sensors/BaseSensor.h"
typedef struct {
BaseSensor * sensor; // Sensor object
BaseFilter * filter; // Filter object
unsigned char local; // Local index in its provider
unsigned char type; // Type of measurement
unsigned char global; // Global index in its type
double current; // Current (last) value, unfiltered
double filtered; // Filtered (averaged) value
double reported; // Last reported value
double min_change; // Minimum value change to report
} sensor_magnitude_t;
std::vector<BaseSensor *> _sensors;
std::vector<sensor_magnitude_t> _magnitudes;
unsigned char _counts[MAGNITUDE_MAX];
bool _sensor_realtime = API_REAL_TIME_VALUES;
unsigned long _sensor_read_interval = 1000 * SENSOR_READ_INTERVAL;
unsigned char _sensor_report_every = SENSOR_REPORT_EVERY;
unsigned char _sensor_temperature_units = SENSOR_TEMPERATURE_UNITS;
unsigned char _sensor_energy_units = SENSOR_ENERGY_UNITS;
double _sensor_temperature_correction = SENSOR_TEMPERATURE_CORRECTION;
// -----------------------------------------------------------------------------
// Private
// -----------------------------------------------------------------------------
unsigned char _magnitudeDecimals(unsigned char type) {
if (type < MAGNITUDE_MAX) return pgm_read_byte(magnitude_decimals + type);
return 0;
}
double _magnitudeProcess(unsigned char type, double value) {
if (type == MAGNITUDE_TEMPERATURE) {
if (_sensor_temperature_units == TMP_FAHRENHEIT) value = value * 1.8 + 32;
value = value + _sensor_temperature_correction;
}
if (type == MAGNITUDE_ENERGY || type == MAGNITUDE_ENERGY_DELTA) {
if (_sensor_energy_units == ENERGY_KWH) value = value / 3600000;
}
return roundTo(value, _magnitudeDecimals(type));
}
// -----------------------------------------------------------------------------
#if WEB_SUPPORT
void _sensorWebSocketSendData(JsonObject& root) {
char buffer[10];
bool hasTemperature = false;
JsonArray& list = root.createNestedArray("magnitudes");
for (unsigned char i=0; i<_magnitudes.size(); i++) {
sensor_magnitude_t magnitude = _magnitudes[i];
unsigned char decimals = _magnitudeDecimals(magnitude.type);
dtostrf(magnitude.current, 1-sizeof(buffer), decimals, buffer);
JsonObject& element = list.createNestedObject();
element["index"] = int(magnitude.global);
element["type"] = int(magnitude.type);
element["value"] = String(buffer);
element["units"] = magnitudeUnits(magnitude.type);
element["description"] = magnitude.sensor->slot(magnitude.local);
element["error"] = magnitude.sensor->error();
if (magnitude.type == MAGNITUDE_TEMPERATURE) hasTemperature = true;
}
if (hasTemperature) root["temperatureVisible"] = 1;
}
void _sensorWebSocketStart(JsonObject& root) {
for (unsigned char i=0; i<_sensors.size(); i++) {
BaseSensor * sensor = _sensors[i];
#if EMON_ANALOG_SUPPORT
if (sensor->getID() == SENSOR_EMON_ANALOG_ID) {
root["emonVisible"] = 1;
root["pwrVoltage"] = ((EmonAnalogSensor *) sensor)->getVoltage();
}
#endif
#if HLW8012_SUPPORT
if (sensor->getID() == SENSOR_HLW8012_ID) {
root["hlwVisible"] = 1;
}
#endif
}
if (_magnitudes.size() > 0) {
root["sensorsVisible"] = 1;
//root["apiRealTime"] = _sensor_realtime;
root["tmpUnits"] = _sensor_temperature_units;
root["energyUnits"] = _sensor_energy_units;
root["tmpCorrection"] = _sensor_temperature_correction;
root["snsRead"] = _sensor_read_interval / 1000;
root["snsReport"] = _sensor_report_every;
}
/*
// Sensors manifest
JsonArray& manifest = root.createNestedArray("manifest");
#if BMX280_SUPPORT
BMX280Sensor::manifest(manifest);
#endif
// Sensors configuration
JsonArray& sensors = root.createNestedArray("sensors");
for (unsigned char i; i<_sensors.size(); i++) {
JsonObject& sensor = sensors.createNestedObject();
sensor["index"] = i;
sensor["id"] = _sensors[i]->getID();
_sensors[i]->getConfig(sensor);
}
*/
}
void _sensorAPISetup() {
for (unsigned char magnitude_id=0; magnitude_id<_magnitudes.size(); magnitude_id++) {
sensor_magnitude_t magnitude = _magnitudes[magnitude_id];
String topic = magnitudeTopic(magnitude.type);
if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) topic = topic + "/" + String(magnitude.global);
apiRegister(topic.c_str(), [magnitude_id](char * buffer, size_t len) {
sensor_magnitude_t magnitude = _magnitudes[magnitude_id];
unsigned char decimals = _magnitudeDecimals(magnitude.type);
double value = _sensor_realtime ? magnitude.current : magnitude.filtered;
dtostrf(value, 1-len, decimals, buffer);
});
}
}
#endif
#if TERMINAL_SUPPORT
void _sensorInitCommands() {
settingsRegisterCommand(F("MAGNITUDES"), [](Embedis* e) {
for (unsigned char i=0; i<_magnitudes.size(); i++) {
sensor_magnitude_t magnitude = _magnitudes[i];
DEBUG_MSG_P(PSTR("[SENSOR] * %2d: %s @ %s (%s/%d)\n"),
i,
magnitudeTopic(magnitude.type).c_str(),
magnitude.sensor->slot(magnitude.local).c_str(),
magnitudeTopic(magnitude.type).c_str(),
magnitude.global
);
}
DEBUG_MSG_P(PSTR("+OK\n"));
});
}
#endif
void _sensorTick() {
for (unsigned char i=0; i<_sensors.size(); i++) {
_sensors[i]->tick();
}
}
void _sensorPre() {
for (unsigned char i=0; i<_sensors.size(); i++) {
_sensors[i]->pre();
if (!_sensors[i]->status()) {
DEBUG_MSG_P(PSTR("[SENSOR] Error reading data from %s (error: %d)\n"),
_sensors[i]->description().c_str(),
_sensors[i]->error()
);
}
}
}
void _sensorPost() {
for (unsigned char i=0; i<_sensors.size(); i++) {
_sensors[i]->post();
}
}
// -----------------------------------------------------------------------------
// Sensor initialization
// -----------------------------------------------------------------------------
void _sensorInit() {
/*
This is temporal, in the future sensors will be initialized based on
soft configuration (data stored in EEPROM config) so you will be able
to define and configure new sensors on the fly
At the time being, only enabled sensors (those with *_SUPPORT to 1) are being
loaded and initialized here. If you want to add new sensors of the same type
just duplicate the block and change the arguments for the set* methods.
Check the DHT block below for an example
*/
#if ANALOG_SUPPORT
{
AnalogSensor * sensor = new AnalogSensor();
_sensors.push_back(sensor);
}
#endif
#if BH1750_SUPPORT
{
BH1750Sensor * sensor = new BH1750Sensor();
sensor->setAddress(BH1750_ADDRESS);
sensor->setMode(BH1750_MODE);
_sensors.push_back(sensor);
}
#endif
#if BMX280_SUPPORT
{
BMX280Sensor * sensor = new BMX280Sensor();
sensor->setAddress(BMX280_ADDRESS);
_sensors.push_back(sensor);
}
#endif
#if DALLAS_SUPPORT
{
DallasSensor * sensor = new DallasSensor();
sensor->setGPIO(DALLAS_PIN);
_sensors.push_back(sensor);
}
#endif
#if DHT_SUPPORT
{
DHTSensor * sensor = new DHTSensor();
sensor->setGPIO(DHT_PIN);
sensor->setType(DHT_TYPE);
_sensors.push_back(sensor);
}
#endif
/*
// Example on how to add a second DHT sensor
// DHT2_PIN and DHT2_TYPE should be defined in sensors.h file
#if DHT_SUPPORT
{
DHTSensor * sensor = new DHTSensor();
sensor->setGPIO(DHT2_PIN);
sensor->setType(DHT2_TYPE);
_sensors.push_back(sensor);
}
#endif
*/
#if DIGITAL_SUPPORT
{
DigitalSensor * sensor = new DigitalSensor();
sensor->setGPIO(DIGITAL_PIN);
sensor->setMode(DIGITAL_PIN_MODE);
sensor->setDefault(DIGITAL_DEFAULT_STATE);
_sensors.push_back(sensor);
}
#endif
#if ECH1560_SUPPORT
{
ECH1560Sensor * sensor = new ECH1560Sensor();
sensor->setCLK(ECH1560_CLK_PIN);
sensor->setMISO(ECH1560_MISO_PIN);
sensor->setInverted(ECH1560_INVERTED);
_sensors.push_back(sensor);
}
#endif
#if EMON_ADC121_SUPPORT
{
EmonADC121Sensor * sensor = new EmonADC121Sensor();
sensor->setAddress(EMON_ADC121_I2C_ADDRESS);
sensor->setVoltage(EMON_MAINS_VOLTAGE);
sensor->setReference(EMON_REFERENCE_VOLTAGE);
sensor->setCurrentRatio(0, EMON_CURRENT_RATIO);
_sensors.push_back(sensor);
}
#endif
#if EMON_ADS1X15_SUPPORT
{
EmonADS1X15Sensor * sensor = new EmonADS1X15Sensor();
sensor->setAddress(EMON_ADS1X15_I2C_ADDRESS);
sensor->setType(EMON_ADS1X15_TYPE);
sensor->setMask(EMON_ADS1X15_MASK);
sensor->setGain(EMON_ADS1X15_GAIN);
sensor->setVoltage(EMON_MAINS_VOLTAGE);
sensor->setCurrentRatio(0, EMON_CURRENT_RATIO);
sensor->setCurrentRatio(1, EMON_CURRENT_RATIO);
sensor->setCurrentRatio(2, EMON_CURRENT_RATIO);
sensor->setCurrentRatio(3, EMON_CURRENT_RATIO);
_sensors.push_back(sensor);
}
#endif
#if EMON_ANALOG_SUPPORT
{
EmonAnalogSensor * sensor = new EmonAnalogSensor();
sensor->setVoltage(EMON_MAINS_VOLTAGE);
sensor->setReference(EMON_REFERENCE_VOLTAGE);
sensor->setCurrentRatio(0, EMON_CURRENT_RATIO);
_sensors.push_back(sensor);
}
#endif
#if EVENTS_SUPPORT
{
EventSensor * sensor = new EventSensor();
sensor->setGPIO(EVENTS_PIN);
sensor->setMode(EVENTS_PIN_MODE);
sensor->setDebounceTime(EVENTS_DEBOUNCE);
sensor->setInterruptMode(EVENTS_INTERRUPT_MODE);
_sensors.push_back(sensor);
}
#endif
#if HLW8012_SUPPORT
{
HLW8012Sensor * sensor = new HLW8012Sensor();
sensor->setSEL(HLW8012_SEL_PIN);
sensor->setCF(HLW8012_CF_PIN);
sensor->setCF1(HLW8012_CF1_PIN);
sensor->setSELCurrent(HLW8012_SEL_CURRENT);
_sensors.push_back(sensor);
}
#endif
#if MHZ19_SUPPORT
{
MHZ19Sensor * sensor = new MHZ19Sensor();
sensor->setRX(MHZ19_RX_PIN);
sensor->setTX(MHZ19_TX_PIN);
_sensors.push_back(sensor);
}
#endif
#if PMSX003_SUPPORT
{
PMSX003Sensor * sensor = new PMSX003Sensor();
sensor->setRX(PMS_RX_PIN);
sensor->setTX(PMS_TX_PIN);
_sensors.push_back(sensor);
}
#endif
#if SHT3X_I2C_SUPPORT
{
SHT3XI2CSensor * sensor = new SHT3XI2CSensor();
sensor->setAddress(SHT3X_I2C_ADDRESS);
_sensors.push_back(sensor);
}
#endif
#if SI7021_SUPPORT
{
SI7021Sensor * sensor = new SI7021Sensor();
sensor->setAddress(SI7021_ADDRESS);
_sensors.push_back(sensor);
}
#endif
#if V9261F_SUPPORT
{
V9261FSensor * sensor = new V9261FSensor();
sensor->setRX(V9261F_PIN);
sensor->setInverted(V9261F_PIN_INVERSE);
_sensors.push_back(sensor);
}
#endif
}
void _sensorCallback(unsigned char i, unsigned char type, const char * payload) {
DEBUG_MSG_P(PSTR("[SENSOR] Sensor #%u callback, type %u, payload: '%s'\n"), i, type, payload);
}
void _sensorConfigure() {
for (unsigned char i=0; i<_sensors.size(); i++) {
#if EMON_ANALOG_SUPPORT
if (_sensors[i]->getID() == SENSOR_EMON_ANALOG_ID) {
double value;
EmonAnalogSensor * sensor = (EmonAnalogSensor *) _sensors[i];
if (value = (getSetting("pwrExpectedP", 0).toInt() == 0)) {
value = getSetting("pwrRatioC", EMON_CURRENT_RATIO).toFloat();
if (value > 0) sensor->setCurrentRatio(0, value);
} else {
sensor->expectedPower(0, value);
setSetting("pwrRatioC", sensor->getCurrentRatio(0));
}
if (getSetting("pwrResetCalibration", 0).toInt() == 1) {
sensor->setCurrentRatio(0, EMON_CURRENT_RATIO);
delSetting("pwrRatioC");
}
sensor->setVoltage(getSetting("pwrVoltage", EMON_MAINS_VOLTAGE).toInt());
}
#endif // EMON_ANALOG_SUPPORT
// Force sensor to reload config
_sensors[i]->begin();
// Hook callback
_sensors[i]->onEvent([i](unsigned char type, const char * payload) {
_sensorCallback(i, type, payload);
});
#if HLW8012_SUPPORT
if (_sensors[i]->getID() == SENSOR_HLW8012_ID) {
double value;
HLW8012Sensor * sensor = (HLW8012Sensor *) _sensors[i];
if (value = getSetting("pwrExpectedC", 0).toFloat()) {
sensor->expectedCurrent(value);
setSetting("pwrRatioC", sensor->getCurrentRatio());
} else {
value = getSetting("pwrRatioC", 0).toFloat();
if (value > 0) sensor->setCurrentRatio(value);
}
if (value = getSetting("pwrExpectedV", 0).toInt()) {
sensor->expectedVoltage(value);
setSetting("pwrRatioV", sensor->getVoltageRatio());
} else {
value = getSetting("pwrRatioV", 0).toFloat();
if (value > 0) sensor->setVoltageRatio(value);
}
if (value = getSetting("pwrExpectedP", 0).toInt()) {
sensor->expectedPower(value);
setSetting("pwrRatioP", sensor->getPowerRatio());
} else {
value = getSetting("pwrRatioP", 0).toFloat();
if (value > 0) sensor->setPowerRatio(value);
}
if (getSetting("pwrResetCalibration", 0).toInt() == 1) {
sensor->resetRatios();
delSetting("pwrRatioC");
delSetting("pwrRatioV");
delSetting("pwrRatioP");
}
}
#endif // HLW8012_SUPPORT
}
// General sensor settings
_sensor_read_interval = 1000 * constrain(getSetting("snsRead", SENSOR_READ_INTERVAL).toInt(), SENSOR_READ_MIN_INTERVAL, SENSOR_READ_MAX_INTERVAL);
_sensor_report_every = constrain(getSetting("snsReport", SENSOR_REPORT_EVERY).toInt(), SENSOR_REPORT_MIN_EVERY, SENSOR_REPORT_MAX_EVERY);
_sensor_realtime = getSetting("apiRealTime", API_REAL_TIME_VALUES).toInt() == 1;
_sensor_temperature_units = getSetting("tmpUnits", SENSOR_TEMPERATURE_UNITS).toInt();
_sensor_energy_units = getSetting("energyUnits", SENSOR_ENERGY_UNITS).toInt();
_sensor_temperature_correction = getSetting("tmpCorrection", SENSOR_TEMPERATURE_CORRECTION).toFloat();
// Update filter sizes
for (unsigned char i=0; i<_magnitudes.size(); i++) {
_magnitudes[i].filter->resize(_sensor_report_every);
}
// Save settings
delSetting("pwrExpectedP");
delSetting("pwrExpectedC");
delSetting("pwrExpectedV");
delSetting("pwrResetCalibration");
//saveSettings();
}
void _magnitudesInit() {
for (unsigned char i=0; i<_sensors.size(); i++) {
BaseSensor * sensor = _sensors[i];
DEBUG_MSG_P(PSTR("[SENSOR] %s\n"), sensor->description().c_str());
if (sensor->error() != 0) DEBUG_MSG_P(PSTR("[SENSOR] -> ERROR %d\n"), sensor->error());
for (unsigned char k=0; k<sensor->count(); k++) {
unsigned char type = sensor->type(k);
sensor_magnitude_t new_magnitude;
new_magnitude.sensor = sensor;
new_magnitude.local = k;
new_magnitude.type = type;
new_magnitude.global = _counts[type];
new_magnitude.current = 0;
new_magnitude.filtered = 0;
new_magnitude.reported = 0;
new_magnitude.min_change = 0;
if (type == MAGNITUDE_DIGITAL) {
new_magnitude.filter = new MaxFilter();
} else if (type == MAGNITUDE_EVENTS) {
new_magnitude.filter = new MovingAverageFilter();
} else {
new_magnitude.filter = new MedianFilter();
}
new_magnitude.filter->resize(_sensor_report_every);
_magnitudes.push_back(new_magnitude);
DEBUG_MSG_P(PSTR("[SENSOR] -> %s:%d\n"), magnitudeTopic(type).c_str(), _counts[type]);
_counts[type] = _counts[type] + 1;
}
}
}
// -----------------------------------------------------------------------------
// Public
// -----------------------------------------------------------------------------
unsigned char sensorCount() {
return _sensors.size();
}
unsigned char magnitudeCount() {
return _magnitudes.size();
}
String magnitudeName(unsigned char index) {
if (index < _magnitudes.size()) {
sensor_magnitude_t magnitude = _magnitudes[index];
return magnitude.sensor->slot(magnitude.local);
}
return String();
}
unsigned char magnitudeType(unsigned char index) {
if (index < _magnitudes.size()) {
return int(_magnitudes[index].type);
}
return MAGNITUDE_NONE;
}
unsigned char magnitudeIndex(unsigned char index) {
if (index < _magnitudes.size()) {
return int(_magnitudes[index].global);
}
return 0;
}
String magnitudeTopic(unsigned char type) {
char buffer[16] = {0};
if (type < MAGNITUDE_MAX) strncpy_P(buffer, magnitude_topics[type], sizeof(buffer));
return String(buffer);
}
String magnitudeTopicIndex(unsigned char index) {
char topic[32] = {0};
if (index < _magnitudes.size()) {
sensor_magnitude_t magnitude = _magnitudes[index];
if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) {
snprintf(topic, sizeof(topic), "%s/%u", magnitudeTopic(magnitude.type).c_str(), magnitude.global);
} else {
snprintf(topic, sizeof(topic), "%s", magnitudeTopic(magnitude.type).c_str());
}
}
return String(topic);
}
String magnitudeUnits(unsigned char type) {
char buffer[8] = {0};
if (type < MAGNITUDE_MAX) {
if ((type == MAGNITUDE_TEMPERATURE) && (_sensor_temperature_units == TMP_FAHRENHEIT)) {
strncpy_P(buffer, magnitude_fahrenheit, sizeof(buffer));
} else if ((type == MAGNITUDE_ENERGY) && (_sensor_energy_units == ENERGY_KWH)) {
strncpy_P(buffer, magnitude_kwh, sizeof(buffer));
} else if ((type == MAGNITUDE_ENERGY_DELTA) && (_sensor_energy_units == ENERGY_KWH)) {
strncpy_P(buffer, magnitude_kwh, sizeof(buffer));
} else {
strncpy_P(buffer, magnitude_units[type], sizeof(buffer));
}
}
return String(buffer);
}
// -----------------------------------------------------------------------------
void sensorSetup() {
// Load sensors
_sensorInit();
// Configure stored values
_sensorConfigure();
// Load magnitudes
_magnitudesInit();
#if WEB_SUPPORT
// Websockets
wsOnSendRegister(_sensorWebSocketStart);
wsOnSendRegister(_sensorWebSocketSendData);
wsOnAfterParseRegister(_sensorConfigure);
// API
_sensorAPISetup();
#endif
#if TERMINAL_SUPPORT
_sensorInitCommands();
#endif
// Register loop
espurnaRegisterLoop(sensorLoop);
}
void sensorLoop() {
static unsigned long last_update = 0;
static unsigned long report_count = 0;
if (_magnitudes.size() == 0) return;
// Tick hook
_sensorTick();
// Check if we should read new data
if (millis() - last_update > _sensor_read_interval) {
last_update = millis();
report_count = (report_count + 1) % _sensor_report_every;
double current;
double filtered;
char buffer[64];
// Pre-read hook
_sensorPre();
// Get readings
for (unsigned char i=0; i<_magnitudes.size(); i++) {
sensor_magnitude_t magnitude = _magnitudes[i];
if (magnitude.sensor->status()) {
unsigned char decimals = _magnitudeDecimals(magnitude.type);
current = magnitude.sensor->value(magnitude.local);
magnitude.filter->add(current);
// Special case
if (magnitude.type == MAGNITUDE_EVENTS) current = magnitude.filter->result();
current = _magnitudeProcess(magnitude.type, current);
_magnitudes[i].current = current;
// Debug
#if SENSOR_DEBUG
{
dtostrf(current, 1-sizeof(buffer), decimals, buffer);
DEBUG_MSG_P(PSTR("[SENSOR] %s - %s: %s%s\n"),
magnitude.sensor->slot(magnitude.local).c_str(),
magnitudeTopic(magnitude.type).c_str(),
buffer,
magnitudeUnits(magnitude.type).c_str()
);
}
#endif // SENSOR_DEBUG
// Time to report (we do it every _sensor_report_every readings)
if (report_count == 0) {
filtered = magnitude.filter->result();
magnitude.filter->reset();
filtered = _magnitudeProcess(magnitude.type, filtered);
_magnitudes[i].filtered = filtered;
// Check if there is a minimum change threshold to report
if (fabs(filtered - magnitude.reported) >= magnitude.min_change) {
_magnitudes[i].reported = filtered;
dtostrf(filtered, 1-sizeof(buffer), decimals, buffer);
#if BROKER_SUPPORT
brokerPublish(magnitudeTopic(magnitude.type).c_str(), magnitude.local, buffer);
#endif
#if MQTT_SUPPORT
mqttSend(magnitudeTopicIndex(i).c_str(), buffer);
#if SENSOR_PUBLISH_ADDRESSES
char topic[32];
snprintf(topic, sizeof(topic), "%s/%s", SENSOR_ADDRESS_TOPIC, magnitudeTopic(magnitude.type).c_str());
if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) {
mqttSend(topic, magnitude.global, magnitude.sensor->address(magnitude.local).c_str());
} else {
mqttSend(topic, magnitude.sensor->address(magnitude.local).c_str());
}
#endif // SENSOR_PUBLISH_ADDRESSES
#endif // MQTT_SUPPORT
#if INFLUXDB_SUPPORT
if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) {
idbSend(magnitudeTopic(magnitude.type).c_str(), magnitude.global, buffer);
} else {
idbSend(magnitudeTopic(magnitude.type).c_str(), buffer);
}
#endif // INFLUXDB_SUPPORT
#if THINGSPEAK_SUPPORT
tspkEnqueueMeasurement(i, buffer);
#endif
#if DOMOTICZ_SUPPORT
{
char key[15];
snprintf_P(key, sizeof(key), PSTR("dczMagnitude%d"), i);
if (magnitude.type == MAGNITUDE_HUMIDITY) {
int status;
if (filtered > 70) {
status = HUMIDITY_WET;
} else if (filtered > 45) {
status = HUMIDITY_COMFORTABLE;
} else if (filtered > 30) {
status = HUMIDITY_NORMAL;
} else {
status = HUMIDITY_DRY;
}
char status_buf[5];
itoa(status, status_buf, 10);
domoticzSend(key, buffer, status_buf);
} else {
domoticzSend(key, 0, buffer);
}
}
#endif // DOMOTICZ_SUPPORT
} // if (fabs(filtered - magnitude.reported) >= magnitude.min_change)
} // if (report_count == 0)
} // if (magnitude.sensor->status())
} // for (unsigned char i=0; i<_magnitudes.size(); i++)
// Post-read hook
_sensorPost();
#if WEB_SUPPORT
wsSend(_sensorWebSocketSendData);
#endif
#if THINGSPEAK_SUPPORT
if (report_count == 0) tspkFlush();
#endif
}
}
#endif // SENSOR_SUPPORT