Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

526 lines
16 KiB

/*
POWER MODULE
Copyright (C) 2016-2017 by Xose Pérez <xose dot perez at gmail dot com>
*/
#if POWER_PROVIDER != POWER_PROVIDER_NONE
// -----------------------------------------------------------------------------
// MODULE GLOBALS AND CACHE
// -----------------------------------------------------------------------------
#include "power.h"
#include <Hash.h>
#include <ArduinoJson.h>
bool _power_enabled = false;
bool _power_ready = false;
double _power_current = 0;
double _power_voltage = 0;
double _power_apparent = 0;
MedianFilter _filter_current = MedianFilter(POWER_REPORT_EVERY);
#if POWER_HAS_ACTIVE
double _power_active = 0;
MedianFilter _filter_voltage = MedianFilter(POWER_REPORT_EVERY);
MedianFilter _filter_active = MedianFilter(POWER_REPORT_EVERY);
MedianFilter _filter_apparent = MedianFilter(POWER_REPORT_EVERY);
#endif
#if POWER_PROVIDER & POWER_PROVIDER_EMON
#include <EmonLiteESP.h>
EmonLiteESP _emon;
#endif
#if POWER_PROVIDER == POWER_PROVIDER_EMON_ADC121
#include "brzo_i2c.h"
// ADC121 Registers
#define ADC121_REG_RESULT 0x00
#define ADC121_REG_ALERT 0x01
#define ADC121_REG_CONFIG 0x02
#define ADC121_REG_LIMITL 0x03
#define ADC121_REG_LIMITH 0x04
#define ADC121_REG_HYST 0x05
#define ADC121_REG_CONVL 0x06
#define ADC121_REG_CONVH 0x07
#endif // POWER_PROVIDER == POWER_PROVIDER_EMON_ADC121
#if POWER_PROVIDER == POWER_PROVIDER_HLW8012
#include <HLW8012.h>
#include <ESP8266WiFi.h>
HLW8012 _hlw8012;
WiFiEventHandler _power_wifi_onconnect;
WiFiEventHandler _power_wifi_ondisconnect;
#endif // POWER_PROVIDER == POWER_PROVIDER_HLW8012
// -----------------------------------------------------------------------------
// PROVIDERS
// -----------------------------------------------------------------------------
#if POWER_PROVIDER & POWER_PROVIDER_EMON
unsigned int currentCallback() {
#if POWER_PROVIDER == POWER_PROVIDER_EMON_ANALOG
return analogRead(0);
#endif // POWER_PROVIDER == POWER_PROVIDER_EMON_ANALOG
#if POWER_PROVIDER == POWER_PROVIDER_EMON_ADC121
uint8_t buffer[2];
brzo_i2c_start_transaction(POWER_I2C_ADDRESS, I2C_SCL_FREQUENCY);
buffer[0] = ADC121_REG_RESULT;
brzo_i2c_write(buffer, 1, false);
brzo_i2c_read(buffer, 2, false);
brzo_i2c_end_transaction();
unsigned int value;
value = (buffer[0] & 0x0F) << 8;
value |= buffer[1];
return value;
#endif // POWER_PROVIDER == POWER_PROVIDER_EMON_ADC121
}
#endif // POWER_PROVIDER & POWER_PROVIDER_EMON
#if POWER_PROVIDER == POWER_PROVIDER_HLW8012
void ICACHE_RAM_ATTR _hlw_cf1_isr() {
_hlw8012.cf1_interrupt();
}
void ICACHE_RAM_ATTR _hlw_cf_isr() {
_hlw8012.cf_interrupt();
}
void _hlwSetCalibration() {
double value;
value = getSetting("powerRatioP", 0).toFloat();
if (value > 0) _hlw8012.setPowerMultiplier(value);
value = getSetting("powerRatioC", 0).toFloat();
if (value > 0) _hlw8012.setCurrentMultiplier(value);
value = getSetting("powerRatioV", 0).toFloat();
if (value > 0) _hlw8012.setVoltageMultiplier(value);
}
void _hlwGetCalibration() {
setSetting("powerRatioP", _hlw8012.getPowerMultiplier());
setSetting("powerRatioC", _hlw8012.getCurrentMultiplier());
setSetting("powerRatioV", _hlw8012.getVoltageMultiplier());
saveSettings();
}
void _hlwResetCalibration() {
_hlw8012.resetMultipliers();
_hlwGetCalibration();
}
void _hlwExpectedPower(unsigned int power) {
if (power > 0) {
_hlw8012.expectedActivePower(power);
_hlwGetCalibration();
}
}
void _hlwExpectedCurrent(double current) {
if (current > 0) {
_hlw8012.expectedCurrent(current);
_hlwGetCalibration();
}
}
void _hlwExpectedVoltage(unsigned int voltage) {
if (voltage > 0) {
_hlw8012.expectedVoltage(voltage);
_hlwGetCalibration();
}
}
#endif
double _powerCurrent() {
#if POWER_PROVIDER & POWER_PROVIDER_EMON
double current = _emon.getCurrent(POWER_SAMPLES);
current -= POWER_CURRENT_OFFSET;
if (current < 0) current = 0;
return current;
#elif POWER_PROVIDER == POWER_PROVIDER_HLW8012
return _hlw8012.getCurrent();
#else
return 0;
#endif
}
double _powerVoltage() {
#if POWER_PROVIDER & POWER_PROVIDER_EMON
return _power_voltage;
#elif POWER_PROVIDER == POWER_PROVIDER_HLW8012
return _hlw8012.getVoltage();
#else
return 0;
#endif
}
#if POWER_HAS_ACTIVE
double _powerActivePower() {
#if POWER_PROVIDER == POWER_PROVIDER_HLW8012
return _hlw8012.getActivePower();
#else
return 0;
#endif
}
#endif
double _powerApparentPower() {
#if POWER_PROVIDER & POWER_PROVIDER_EMON
return _powerCurrent() * _powerVoltage();
#elif POWER_PROVIDER == POWER_PROVIDER_HLW8012
return _hlw8012.getApparentPower();
#else
return 0;
#endif
}
// -----------------------------------------------------------------------------
// PRIVATE METHODS
// -----------------------------------------------------------------------------
#if WEB_SUPPORT
void _powerAPISetup() {
apiRegister(MQTT_TOPIC_CURRENT, MQTT_TOPIC_CURRENT, [](char * buffer, size_t len) {
if (_power_ready) {
dtostrf(getCurrent(), len-1, POWER_CURRENT_PRECISION, buffer);
} else {
buffer = NULL;
}
});
apiRegister(MQTT_TOPIC_VOLTAGE, MQTT_TOPIC_VOLTAGE, [](char * buffer, size_t len) {
if (_power_ready) {
snprintf_P(buffer, len, PSTR("%d"), getVoltage());
} else {
buffer = NULL;
}
});
apiRegister(MQTT_TOPIC_APPARENT, MQTT_TOPIC_APPARENT, [](char * buffer, size_t len) {
if (_power_ready) {
snprintf_P(buffer, len, PSTR("%d"), getApparentPower());
} else {
buffer = NULL;
}
});
#if POWER_HAS_ACTIVE
apiRegister(MQTT_TOPIC_POWER, MQTT_TOPIC_POWER, [](char * buffer, size_t len) {
if (_power_ready) {
snprintf_P(buffer, len, PSTR("%d"), getActivePower());
} else {
buffer = NULL;
}
});
#endif
}
#endif // WEB_SUPPORT
void _powerReset() {
_filter_current.reset();
#if POWER_HAS_ACTIVE
_filter_apparent.reset();
_filter_voltage.reset();
_filter_active.reset();
#endif
}
// -----------------------------------------------------------------------------
// MAGNITUDE API
// -----------------------------------------------------------------------------
bool hasActivePower() {
return POWER_HAS_ACTIVE;
}
double getCurrent() {
return _power_current;
}
double getVoltage() {
return _power_voltage;
}
double getApparentPower() {
return _power_apparent;
}
#if POWER_HAS_ACTIVE
double getActivePower() {
return _power_active;
}
double getReactivePower() {
if (_power_apparent > _power_active) {
return sqrt(_power_apparent * _power_apparent - _power_active * _power_active);
}
return 0;
}
double getPowerFactor() {
if (_power_active > _power_apparent) return 1;
if (_power_apparent == 0) return 0;
return (double) _power_active / _power_apparent;
}
#endif
// -----------------------------------------------------------------------------
// PUBLIC API
// -----------------------------------------------------------------------------
bool powerEnabled() {
return _power_enabled;
}
void powerEnabled(bool enabled) {
_power_enabled = enabled;
#if (POWER_PROVIDER == POWER_PROVIDER_HLW8012) && HLW8012_USE_INTERRUPTS
if (_power_enabled) {
attachInterrupt(HLW8012_CF1_PIN, _hlw_cf1_isr, CHANGE);
attachInterrupt(HLW8012_CF_PIN, _hlw_cf_isr, CHANGE);
} else {
detachInterrupt(HLW8012_CF1_PIN);
detachInterrupt(HLW8012_CF_PIN);
}
#endif
}
void powerConfigure() {
#if POWER_PROVIDER & POWER_PROVIDER_EMON
_emon.setCurrentRatio(getSetting("powerRatioC", POWER_CURRENT_RATIO).toFloat());
_power_voltage = getSetting("powerVoltage", POWER_VOLTAGE).toFloat();
#endif
#if POWER_PROVIDER == POWER_PROVIDER_HLW8012
_hlwSetCalibration();
_hlwGetCalibration();
#endif
}
void powerSetup() {
// backwards compatibility
moveSetting("pwMainsVoltage", "powerVoltage");
moveSetting("emonMains", "powerVoltage");
moveSetting("emonVoltage", "powerVoltage");
moveSetting("pwCurrentRatio", "powerRatioC");
moveSetting("emonRatio", "powerRatioC");
moveSetting("powPowerMult", "powerRatioP");
moveSetting("powCurrentMult", "powerRatioC");
moveSetting("powVoltageMult", "powerRatioV");
#if POWER_PROVIDER == POWER_PROVIDER_HLW8012
// Initialize HLW8012
// void begin(unsigned char cf_pin, unsigned char cf1_pin, unsigned char sel_pin, unsigned char currentWhen = HIGH, bool use_interrupts = false, unsigned long pulse_timeout = PULSE_TIMEOUT);
// * cf_pin, cf1_pin and sel_pin are GPIOs to the HLW8012 IC
// * currentWhen is the value in sel_pin to select current sampling
// * set use_interrupts to true to use interrupts to monitor pulse widths
// * leave pulse_timeout to the default value, recommended when using interrupts
#if HLW8012_USE_INTERRUPTS
_hlw8012.begin(HLW8012_CF_PIN, HLW8012_CF1_PIN, HLW8012_SEL_PIN, HLW8012_SEL_CURRENT, true);
#else
_hlw8012.begin(HLW8012_CF_PIN, HLW8012_CF1_PIN, HLW8012_SEL_PIN, HLW8012_SEL_CURRENT, false, 1000000);
#endif
// These values are used to calculate current, voltage and power factors as per datasheet formula
// These are the nominal values for the Sonoff POW resistors:
// * The CURRENT_RESISTOR is the 1milliOhm copper-manganese resistor in series with the main line
// * The VOLTAGE_RESISTOR_UPSTREAM are the 5 470kOhm resistors in the voltage divider that feeds the V2P pin in the HLW8012
// * The VOLTAGE_RESISTOR_DOWNSTREAM is the 1kOhm resistor in the voltage divider that feeds the V2P pin in the HLW8012
_hlw8012.setResistors(HLW8012_CURRENT_R, HLW8012_VOLTAGE_R_UP, HLW8012_VOLTAGE_R_DOWN);
#endif // POWER_PROVIDER == POWER_PROVIDER_HLW8012
#if POWER_PROVIDER & POWER_PROVIDER_EMON
_emon.initCurrent(currentCallback, POWER_ADC_BITS, POWER_REFERENCE_VOLTAGE, POWER_CURRENT_RATIO);
#endif
#if POWER_PROVIDER == POWER_PROVIDER_EMON_ADC121
uint8_t buffer[2];
buffer[0] = ADC121_REG_CONFIG;
buffer[1] = 0x00;
brzo_i2c_start_transaction(POWER_I2C_ADDRESS, I2C_SCL_FREQUENCY);
brzo_i2c_write(buffer, 2, false);
brzo_i2c_end_transaction();
#endif
powerConfigure();
#if POWER_PROVIDER & POWER_PROVIDER_EMON
_emon.warmup();
#endif
#if POWER_PROVIDER == POWER_PROVIDER_HLW8012
_power_wifi_onconnect = WiFi.onStationModeGotIP([](WiFiEventStationModeGotIP ipInfo) {
powerEnabled(true);
});
_power_wifi_ondisconnect = WiFi.onStationModeDisconnected([](WiFiEventStationModeDisconnected ipInfo) {
powerEnabled(false);
});
#endif
// API
#if WEB_SUPPORT
_powerAPISetup();
#endif
DEBUG_MSG_P(PSTR("[POWER] POWER_PROVIDER = %d\n"), POWER_PROVIDER);
}
void powerLoop() {
static unsigned long last = 0;
static bool was_disabled = false;
if (!_power_enabled) {
was_disabled = true;
return;
}
if (was_disabled) {
was_disabled = false;
last = millis();
_powerReset();
}
if (millis() - last < POWER_INTERVAL) return;
last = millis();
// Get instantaneous values from HAL
double current = _powerCurrent();
double voltage = _powerVoltage();
double apparent = _powerApparentPower();
#if POWER_HAS_ACTIVE
double active = _powerActivePower();
#endif
// Filters
_filter_current.add(current);
#if POWER_HAS_ACTIVE
_filter_apparent.add(apparent);
_filter_voltage.add(voltage);
_filter_active.add(active);
#endif
char current_buffer[10];
dtostrf(current, sizeof(current_buffer)-1, POWER_CURRENT_PRECISION, current_buffer);
DEBUG_MSG_P(PSTR("[POWER] Current: %sA\n"), current_buffer);
DEBUG_MSG_P(PSTR("[POWER] Voltage: %sA\n"), voltage);
DEBUG_MSG_P(PSTR("[POWER] Apparent Power: %dW\n"), apparent);
#if POWER_HAS_ACTIVE
DEBUG_MSG_P(PSTR("[POWER] Active Power: %dW\n"), active);
DEBUG_MSG_P(PSTR("[POWER] Reactive Power: %dW\n"), getReactivePower());
DEBUG_MSG_P(PSTR("[POWER] Power Factor: %d%%\n"), 100 * getPowerFactor());
#endif
// Update websocket clients
#if WEB_SUPPORT
{
DynamicJsonBuffer jsonBuffer;
JsonObject& root = jsonBuffer.createObject();
root["powerVisible"] = 1;
root["powerCurrent"] = String(current_buffer);
root["powerVoltage"] = voltage;
root["powerApparentPower"] = apparent;
#if POWER_HAS_ACTIVE
root["powerActivePower"] = active;
root["powerReactivePower"] = getReactivePower();
root["powerPowerfactor"] = int(100 * getPowerFactor());
#endif
String output;
root.printTo(output);
wsSend(output.c_str());
}
#endif
// Send MQTT messages averaged every POWER_REPORT_EVERY measurements
if (_filter_current.count() == POWER_REPORT_EVERY) {
// Get the fitered values
_power_current = _filter_current.average(true);
#if POWER_HAS_ACTIVE
_power_apparent = _filter_apparent.average(true);
_power_voltage = _filter_voltage.average(true);
_power_active = _filter_active.average(true);
double power = _power_active;
#else
_power_apparent = _power_current * _power_voltage;
double power = _power_apparent;
#endif
double delta_energy = power * POWER_ENERGY_FACTOR;
char delta_energy_buffer[10];
dtostrf(delta_energy, sizeof(delta_energy_buffer)-1, POWER_CURRENT_PRECISION, delta_energy_buffer);
_power_ready = true;
// Report values to MQTT broker
{
mqttSend(MQTT_TOPIC_CURRENT, current_buffer);
mqttSend(MQTT_TOPIC_APPARENT, String((int) _power_apparent).c_str());
mqttSend(MQTT_TOPIC_ENERGY, delta_energy_buffer);
#if POWER_HAS_ACTIVE
mqttSend(MQTT_TOPIC_POWER, String((int) _power_active).c_str());
mqttSend(MQTT_TOPIC_VOLTAGE, String((int) _power_voltage).c_str());
#endif
}
// Report values to Domoticz
#if DOMOTICZ_SUPPORT
{
char buffer[20];
snprintf_P(buffer, sizeof(buffer), PSTR("%d;%s"), power, delta_energy_buffer);
domoticzSend("dczPowIdx", 0, buffer);
domoticzSend("dczEnergyIdx", 0, delta_energy_buffer);
domoticzSend("dczCurrentIdx", 0, current_buffer);
#if POWER_HAS_ACTIVE
snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _power_voltage);
domoticzSend("dczVoltIdx", 0, buffer);
#endif
}
#endif
#if INFLUXDB_SUPPORT
{
influxDBSend(MQTT_TOPIC_CURRENT, current_buffer);
influxDBSend(MQTT_TOPIC_APPARENT, String((int) _power_apparent).c_str());
influxDBSend(MQTT_TOPIC_ENERGY, delta_energy_buffer);
#if POWER_HAS_ACTIVE
influxDBSend(MQTT_TOPIC_POWER, String((int) _power_active).c_str());
influxDBSend(MQTT_TOPIC_VOLTAGE, String((int) _power_voltage).c_str());
#endif
}
#endif
}
// Toggle between current and voltage monitoring
#if (POWER_PROVIDER == POWER_PROVIDER_HLW8012) && (HLW8012_USE_INTERRUPTS == 0)
_hlw8012.toggleMode();
#endif // (POWER_PROVIDER == POWER_PROVIDER_HLW8012) && (HLW8012_USE_INTERRUPTS == 0)
}
#endif // POWER_PROVIDER != POWER_PROVIDER_NONE