Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

521 lines
15 KiB

/*
UTILS MODULE
Copyright (C) 2017-2019 by Xose Pérez <xose dot perez at gmail dot com>
*/
#include "espurna.h"
#include "board.h"
#include "ntp.h"
void setDefaultHostname() {
if (strlen(HOSTNAME) > 0) {
setSetting("hostname", F(HOSTNAME));
} else {
setSetting("hostname", getIdentifier());
}
}
const String& getDevice() {
static const String value(F(DEVICE));
return value;
}
const String& getManufacturer() {
static const String value(F(MANUFACTURER));
return value;
}
String getBoardName() {
return getSetting("boardName", F(DEVICE_NAME));
}
void setBoardName() {
if (!isEspurnaCore()) {
setSetting("boardName", F(DEVICE_NAME));
}
}
String getAdminPass() {
static const String defaultValue(F(ADMIN_PASS));
return getSetting("adminPass", defaultValue);
}
const String& getCoreVersion() {
static String version;
if (!version.length()) {
#ifdef ARDUINO_ESP8266_RELEASE
version = ESP.getCoreVersion();
if (version.equals("00000000")) {
version = String(ARDUINO_ESP8266_RELEASE);
}
version.replace("_", ".");
#else
#define _GET_COREVERSION_STR(X) #X
#define GET_COREVERSION_STR(X) _GET_COREVERSION_STR(X)
version = GET_COREVERSION_STR(ARDUINO_ESP8266_GIT_DESC);
#undef _GET_COREVERSION_STR
#undef GET_COREVERSION_STR
#endif
}
return version;
}
const String& getCoreRevision() {
static String revision;
if (!revision.length()) {
#ifdef ARDUINO_ESP8266_GIT_VER
revision = String(ARDUINO_ESP8266_GIT_VER, 16);
#else
revision = "(unspecified)";
#endif
}
return revision;
}
const String& getVersion() {
static const String value {
#if defined(APP_REVISION)
F(APP_VERSION APP_REVISION)
#else
F(APP_VERSION)
#endif
};
return value;
}
String buildTime() {
#if NTP_LEGACY_SUPPORT && NTP_SUPPORT
return ntpDateTime(__UNIX_TIMESTAMP__);
#elif NTP_SUPPORT
constexpr const time_t ts = __UNIX_TIMESTAMP__;
tm timestruct;
gmtime_r(&ts, &timestruct);
return ntpDateTime(&timestruct);
#else
char buffer[20];
snprintf_P(
buffer, sizeof(buffer), PSTR("%04d-%02d-%02d %02d:%02d:%02d"),
__TIME_YEAR__, __TIME_MONTH__, __TIME_DAY__,
__TIME_HOUR__, __TIME_MINUTE__, __TIME_SECOND__
);
return String(buffer);
#endif
}
#if NTP_SUPPORT
String getUptime() {
time_t uptime = systemUptime();
tm spec;
gmtime_r(&uptime, &spec);
char buffer[64];
sprintf_P(buffer, PSTR("%02dy %02dd %02dh %02dm %02ds"),
(spec.tm_year - 70), spec.tm_yday, spec.tm_hour,
spec.tm_min, spec.tm_sec
);
return String(buffer);
}
#else
String getUptime() {
return String(systemUptime(), 10);
}
#endif // NTP_SUPPORT
// -----------------------------------------------------------------------------
// INFO
// -----------------------------------------------------------------------------
extern "C" uint32_t _SPIFFS_start;
extern "C" uint32_t _SPIFFS_end;
unsigned int info_bytes2sectors(size_t size) {
return (int) (size + SPI_FLASH_SEC_SIZE - 1) / SPI_FLASH_SEC_SIZE;
}
unsigned long info_ota_space() {
return (ESP.getFreeSketchSpace() - 0x1000) & 0xFFFFF000;
}
unsigned long info_filesystem_space() {
return ((uint32_t)&_SPIFFS_end - (uint32_t)&_SPIFFS_start);
}
void _info_print_memory_layout_line(const char * name, unsigned long bytes, bool reset) {
static unsigned long index = 0;
if (reset) index = 0;
if (0 == bytes) return;
unsigned int _sectors = info_bytes2sectors(bytes);
DEBUG_MSG_P(PSTR("[MAIN] %-20s: %8lu bytes / %4d sectors (%4d to %4d)\n"), name, bytes, _sectors, index, index + _sectors - 1);
index += _sectors;
}
void _info_print_memory_layout_line(const char * name, unsigned long bytes) {
_info_print_memory_layout_line(name, bytes, false);
}
void infoMemory(const char * name, unsigned int total_memory, unsigned int free_memory) {
DEBUG_MSG_P(
PSTR("[MAIN] %-6s: %5u bytes initially | %5u bytes used (%2u%%) | %5u bytes free (%2u%%)\n"),
name,
total_memory,
total_memory - free_memory,
100 * (total_memory - free_memory) / total_memory,
free_memory,
100 * free_memory / total_memory
);
}
void infoMemory(const char* name, const HeapStats& stats) {
infoMemory(name, systemInitialFreeHeap(), stats.available);
}
void infoHeapStats(const char* name, const HeapStats& stats) {
DEBUG_MSG_P(
PSTR("[MAIN] %-6s: %5u contiguous bytes available (%u%% fragmentation)\n"),
name,
stats.usable,
stats.frag_pct
);
}
void infoHeapStats(bool show_frag_stats) {
auto stats = systemHeapStats();
infoMemory("Heap", stats);
if (show_frag_stats) {
infoHeapStats("Heap", stats);
}
}
const char* _info_wifi_sleep_mode(WiFiSleepType_t type) {
switch (type) {
case WIFI_NONE_SLEEP:
return "NONE";
case WIFI_LIGHT_SLEEP:
return "LIGHT";
case WIFI_MODEM_SLEEP:
return "MODEM";
default:
break;
}
return "UNKNOWN";
}
void info(bool first) {
#if DEBUG_SUPPORT
#if DEBUG_LOG_BUFFER_SUPPORT
if (first && debugLogBuffer()) return;
#endif
DEBUG_MSG_P(PSTR("\n\n---8<-------\n\n"));
// -------------------------------------------------------------------------
DEBUG_MSG_P(PSTR("[MAIN] " APP_NAME " %s\n"), getVersion().c_str());
DEBUG_MSG_P(PSTR("[MAIN] " APP_AUTHOR "\n"));
DEBUG_MSG_P(PSTR("[MAIN] " APP_WEBSITE "\n\n"));
DEBUG_MSG_P(PSTR("[MAIN] CPU chip ID: 0x%06X\n"), ESP.getChipId());
DEBUG_MSG_P(PSTR("[MAIN] CPU frequency: %u MHz\n"), ESP.getCpuFreqMHz());
DEBUG_MSG_P(PSTR("[MAIN] SDK version: %s\n"), ESP.getSdkVersion());
DEBUG_MSG_P(PSTR("[MAIN] Core version: %s\n"), getCoreVersion().c_str());
DEBUG_MSG_P(PSTR("[MAIN] Core revision: %s\n"), getCoreRevision().c_str());
DEBUG_MSG_P(PSTR("[MAIN] Built: %s\n"), buildTime().c_str());
DEBUG_MSG_P(PSTR("\n"));
// -------------------------------------------------------------------------
FlashMode_t mode [[gnu::unused]] = ESP.getFlashChipMode();
DEBUG_MSG_P(PSTR("[MAIN] Flash chip ID: 0x%06X\n"), ESP.getFlashChipId());
DEBUG_MSG_P(PSTR("[MAIN] Flash speed: %u Hz\n"), ESP.getFlashChipSpeed());
DEBUG_MSG_P(PSTR("[MAIN] Flash mode: %s\n"), mode == FM_QIO ? "QIO" : mode == FM_QOUT ? "QOUT" : mode == FM_DIO ? "DIO" : mode == FM_DOUT ? "DOUT" : "UNKNOWN");
DEBUG_MSG_P(PSTR("\n"));
// -------------------------------------------------------------------------
_info_print_memory_layout_line("Flash size (CHIP)", ESP.getFlashChipRealSize(), true);
_info_print_memory_layout_line("Flash size (SDK)", ESP.getFlashChipSize(), true);
_info_print_memory_layout_line("Reserved", 1 * SPI_FLASH_SEC_SIZE, true);
_info_print_memory_layout_line("Firmware size", ESP.getSketchSize());
_info_print_memory_layout_line("Max OTA size", info_ota_space());
_info_print_memory_layout_line("SPIFFS size", info_filesystem_space());
_info_print_memory_layout_line("EEPROM size", eepromSpace());
_info_print_memory_layout_line("Reserved", 4 * SPI_FLASH_SEC_SIZE);
DEBUG_MSG_P(PSTR("\n"));
// -------------------------------------------------------------------------
#if SPIFFS_SUPPORT
FSInfo fs_info;
bool fs = SPIFFS.info(fs_info);
if (fs) {
DEBUG_MSG_P(PSTR("[MAIN] SPIFFS total size : %8u bytes / %4d sectors\n"), fs_info.totalBytes, info_bytes2sectors(fs_info.totalBytes));
DEBUG_MSG_P(PSTR("[MAIN] used size : %8u bytes\n"), fs_info.usedBytes);
DEBUG_MSG_P(PSTR("[MAIN] block size : %8u bytes\n"), fs_info.blockSize);
DEBUG_MSG_P(PSTR("[MAIN] page size : %8u bytes\n"), fs_info.pageSize);
DEBUG_MSG_P(PSTR("[MAIN] max files : %8u\n"), fs_info.maxOpenFiles);
DEBUG_MSG_P(PSTR("[MAIN] max length : %8u\n"), fs_info.maxPathLength);
} else {
DEBUG_MSG_P(PSTR("[MAIN] No SPIFFS partition\n"));
}
DEBUG_MSG_P(PSTR("\n"));
#endif
// -------------------------------------------------------------------------
eepromSectorsDebug();
DEBUG_MSG_P(PSTR("\n"));
// -------------------------------------------------------------------------
infoMemory("EEPROM", SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE - settingsSize());
infoHeapStats(!first);
infoMemory("Stack", CONT_STACKSIZE, systemFreeStack());
DEBUG_MSG_P(PSTR("\n"));
// -------------------------------------------------------------------------
DEBUG_MSG_P(PSTR("[MAIN] Boot version: %d\n"), ESP.getBootVersion());
DEBUG_MSG_P(PSTR("[MAIN] Boot mode: %d\n"), ESP.getBootMode());
auto reason = customResetReason();
if (CustomResetReason::None != reason) {
DEBUG_MSG_P(PSTR("[MAIN] Last reset reason: %s\n"), customResetReasonToPayload(reason).c_str());
} else {
DEBUG_MSG_P(PSTR("[MAIN] Last reset reason: %s\n"), ESP.getResetReason().c_str());
DEBUG_MSG_P(PSTR("[MAIN] Last reset info: %s\n"), ESP.getResetInfo().c_str());
}
DEBUG_MSG_P(PSTR("\n"));
// -------------------------------------------------------------------------
DEBUG_MSG_P(PSTR("[MAIN] Board: %s\n"), getBoardName().c_str());
DEBUG_MSG_P(PSTR("[MAIN] Support: %s\n"), getEspurnaModules().c_str());
DEBUG_MSG_P(PSTR("[MAIN] OTA: %s\n"), getEspurnaOTAModules().c_str());
#if SENSOR_SUPPORT
DEBUG_MSG_P(PSTR("[MAIN] Sensors: %s\n"), getEspurnaSensors().c_str());
#endif
DEBUG_MSG_P(PSTR("[MAIN] WebUI image: %s\n"), getEspurnaWebUI().c_str());
DEBUG_MSG_P(PSTR("\n"));
// -------------------------------------------------------------------------
if (!first) {
DEBUG_MSG_P(PSTR("[MAIN] Firmware MD5: %s\n"), (char *) ESP.getSketchMD5().c_str());
}
if (ADC_MODE_VALUE == ADC_VCC) {
DEBUG_MSG_P(PSTR("[MAIN] Power: %u mV\n"), ESP.getVcc());
}
if (espurnaLoopDelay()) {
DEBUG_MSG_P(PSTR("[MAIN] Power saving delay value: %lu ms\n"), espurnaLoopDelay());
}
const WiFiSleepType_t sleep_mode = WiFi.getSleepMode();
if (sleep_mode != WIFI_NONE_SLEEP) {
DEBUG_MSG_P(PSTR("[MAIN] WiFi Sleep Mode: %s\n"), _info_wifi_sleep_mode(sleep_mode));
}
// -------------------------------------------------------------------------
#if SYSTEM_CHECK_ENABLED
if (!systemCheck()) {
DEBUG_MSG_P(PSTR("\n"));
DEBUG_MSG_P(PSTR("[MAIN] Device is in SAFE MODE\n"));
}
#endif
// -------------------------------------------------------------------------
DEBUG_MSG_P(PSTR("\n\n---8<-------\n\n"));
#endif // DEBUG_SUPPORT == 1
}
// -----------------------------------------------------------------------------
// SSL
// -----------------------------------------------------------------------------
bool sslCheckFingerPrint(const char * fingerprint) {
return (strlen(fingerprint) == 59);
}
bool sslFingerPrintArray(const char * fingerprint, unsigned char * bytearray) {
// check length (20 2-character digits ':' or ' ' separated => 20*2+19 = 59)
if (!sslCheckFingerPrint(fingerprint)) return false;
// walk the fingerprint
for (unsigned int i=0; i<20; i++) {
bytearray[i] = strtol(fingerprint + 3*i, NULL, 16);
}
return true;
}
bool sslFingerPrintChar(const char * fingerprint, char * destination) {
// check length (20 2-character digits ':' or ' ' separated => 20*2+19 = 59)
if (!sslCheckFingerPrint(fingerprint)) return false;
// copy it
strncpy(destination, fingerprint, 59);
// walk the fingerprint replacing ':' for ' '
for (unsigned char i = 0; i<59; i++) {
if (destination[i] == ':') destination[i] = ' ';
}
return true;
}
// -----------------------------------------------------------------------------
// Helper functions
// -----------------------------------------------------------------------------
char* ltrim(char * s) {
char *p = s;
while ((unsigned char) *p == ' ') ++p;
return p;
}
double roundTo(double num, unsigned char positions) {
double multiplier = 1;
while (positions-- > 0) multiplier *= 10;
return round(num * multiplier) / multiplier;
}
void nice_delay(unsigned long ms) {
unsigned long start = millis();
while (millis() - start < ms) delay(1);
}
bool isNumber(const String& value) {
if (value.length()) {
const char* begin { value.c_str() };
const char* end { value.c_str() + value.length() };
bool dot { false };
bool digit { false };
const char* ptr { begin };
while (ptr != end) {
switch (*ptr) {
case '\0':
break;
case '-':
case '+':
if (ptr != begin) {
return false;
}
break;
case '.':
if (dot) {
return false;
}
dot = true;
break;
case '0' ... '9':
digit = true;
break;
case 'a' ... 'z':
case 'A' ... 'Z':
return false;
}
++ptr;
}
return digit;
}
return false;
}
// ref: lwip2 lwip_strnstr with strnlen
char* strnstr(const char* buffer, const char* token, size_t n) {
size_t token_len = strnlen(token, n);
if (token_len == 0) {
return const_cast<char*>(buffer);
}
for (const char* p = buffer; *p && (p + token_len <= buffer + n); p++) {
if ((*p == *token) && (strncmp(p, token, token_len) == 0)) {
return const_cast<char*>(p);
}
}
return nullptr;
}
// From a byte array to an hexa char array ("A220EE...", double the size)
size_t hexEncode(const uint8_t * in, size_t in_size, char * out, size_t out_size) {
if ((2 * in_size + 1) > (out_size)) return 0;
static const char base16[] = "0123456789ABCDEF";
size_t index = 0;
while (index < in_size) {
out[(index*2)] = base16[(in[index] & 0xf0) >> 4];
out[(index*2)+1] = base16[(in[index] & 0xf)];
++index;
}
out[2*index] = '\0';
return index ? (1 + (2 * index)) : 0;
}
// From an hexa char array ("A220EE...") to a byte array (half the size)
size_t hexDecode(const char* in, size_t in_size, uint8_t* out, size_t out_size) {
if ((in_size & 1) || (out_size < (in_size / 2))) {
return 0;
}
// We can only return small values
constexpr uint8_t InvalidByte { 255u };
auto char2byte = [](char ch) -> uint8_t {
if ((ch >= '0') && (ch <= '9')) {
return (ch - '0');
} else if ((ch >= 'a') && (ch <= 'f')) {
return 10 + (ch - 'a');
} else if ((ch >= 'A') && (ch <= 'F')) {
return 10 + (ch - 'A');
} else {
return InvalidByte;
}
};
size_t index = 0;
size_t out_index = 0;
while (index < in_size) {
const uint8_t lhs = char2byte(in[index]) << 4;
const uint8_t rhs = char2byte(in[index + 1]);
if ((InvalidByte != lhs) && (InvalidByte != rhs)) {
out[out_index++] = lhs | rhs;
index += 2;
continue;
}
out_index = 0;
break;
}
return out_index;
}