Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1331 lines
36 KiB

/*
RF BRIDGE MODULE
Copyright (C) 2016-2019 by Xose Pérez <xose dot perez at gmail dot com>
*/
#include "rfbridge.h"
#if RFB_SUPPORT
#include "api.h"
#include "relay.h"
#include "terminal.h"
#include "mqtt.h"
#include "ws.h"
#include "utils.h"
BrokerBind(RfbridgeBroker);
#include <algorithm>
#include <bitset>
#include <cstring>
#include <list>
#include <memory>
// -----------------------------------------------------------------------------
// GLOBALS TO THE MODULE
// -----------------------------------------------------------------------------
unsigned char _rfb_repeats = RFB_SEND_REPEATS;
#if RFB_PROVIDER == RFB_PROVIDER_RCSWITCH
#include <RCSwitch.h>
RCSwitch * _rfb_modem;
bool _rfb_receive { false };
bool _rfb_transmit { false };
#else
constexpr bool _rfb_receive { true };
constexpr bool _rfb_transmit { true };
#endif
// -----------------------------------------------------------------------------
// MATCH RECEIVED CODE WITH THE SPECIFIC RELAY ID
// -----------------------------------------------------------------------------
#if RELAY_SUPPORT
struct RfbRelayMatch {
RfbRelayMatch() = default;
RfbRelayMatch(size_t id, PayloadStatus status) :
_id(id),
_status(status),
_found(true)
{}
void reset(size_t id, PayloadStatus status) {
_id = id;
_status = status;
_found = true;
}
size_t id() const {
return _id;
}
PayloadStatus status() const {
return _status;
}
explicit operator bool() const {
return _found;
}
private:
size_t _id { RelaysMax };
PayloadStatus _status { PayloadStatus::Unknown };
bool _found { false };
};
struct RfbLearn {
unsigned long ts;
size_t id;
bool status;
};
// Usage depends on the implementation. Will either:
// - efm8bb1: wait until learn OK / TIMEOUT code
// - rc-switch: receiver loop will check `ts` vs RFB_LEARN_TIMEOUT
static std::unique_ptr<RfbLearn> _rfb_learn;
// Individual lock for the relay, prevent rfbStatus from re-sending the code we just received
static std::bitset<RelaysMax> _rfb_relay_status_lock;
#endif // RELAY_SUPPORT
// -----------------------------------------------------------------------------
// EFM8BB1 PROTOCOL PARSING
// -----------------------------------------------------------------------------
constexpr uint8_t RfbDefaultProtocol { 0u };
constexpr uint8_t CodeStart { 0xAAu };
constexpr uint8_t CodeEnd { 0x55u };
constexpr uint8_t CodeAck { 0xA0u };
// both stock and https://github.com/Portisch/RF-Bridge-EFM8BB1/
// sending:
constexpr uint8_t CodeLearn { 0xA1u };
// receiving:
constexpr uint8_t CodeLearnTimeout { 0xA2u };
constexpr uint8_t CodeLearnOk { 0xA3u };
constexpr uint8_t CodeRecvBasic = { 0xA4u };
constexpr uint8_t CodeSendBasic = { 0xA5u };
// only https://github.com/Portisch/RF-Bridge-EFM8BB1/
constexpr uint8_t CodeRecvProto { 0xA6u };
constexpr uint8_t CodeRecvBucket { 0xB1u };
struct RfbParser {
using callback_type = void(uint8_t, const std::vector<uint8_t>&);
using state_type = void(RfbParser::*)(uint8_t);
// AA XX ... 55
// ^~~~~ ~~ - protocol head + tail
// ^~ - message code
// ^~~ - actual payload is always 9 bytes
static constexpr size_t PayloadSizeBasic { 9ul };
static constexpr size_t MessageSizeBasic { PayloadSizeBasic + 3ul };
static constexpr size_t MessageSizeMax { 112ul };
RfbParser() = delete;
RfbParser(const RfbParser&) = delete;
explicit RfbParser(callback_type* callback) :
_callback(callback)
{}
RfbParser(RfbParser&&) = default;
void stop(uint8_t c) {
}
void start(uint8_t c) {
switch (c) {
case CodeStart:
_state = &RfbParser::read_code;
break;
default:
_state = &RfbParser::stop;
break;
}
}
void read_code(uint8_t c) {
_payload_code = c;
switch (c) {
// Generic ACK signal. We *expect* this after our requests
case CodeAck:
// *Expect* any code within a certain window.
// Only matters to us, does not really do anything but help us to signal that the next code needs to be recorded
case CodeLearnTimeout:
_state = &RfbParser::read_end;
break;
// both stock and https://github.com/Portisch/RF-Bridge-EFM8BB1/
// receive 9 bytes, where first 3 2-byte tuples are timings
// and the last 3 bytes are the actual payload
case CodeLearnOk:
case CodeRecvBasic:
_payload_length = PayloadSizeBasic;
_state = &RfbParser::read_until_length;
break;
// specific to the https://github.com/Portisch/RF-Bridge-EFM8BB1/
// receive N bytes, where the 1st byte is the protocol ID and the next N-1 bytes are the payload
case CodeRecvProto:
_state = &RfbParser::read_length;
break;
// unlike CodeRecvProto, we don't have any length byte here :/ for some reason, it is there only when sending
// just bail out when we find CodeEnd
// (TODO: is number of buckets somehow convertible to the 'expected' size?)
case CodeRecvBucket:
_state = &RfbParser::read_length;
break;
default:
_state = &RfbParser::stop;
break;
}
}
void read_end(uint8_t c) {
if (CodeEnd == c) {
_callback(_payload_code, _payload);
}
_state = &RfbParser::stop;
}
void read_until_end(uint8_t c) {
if (CodeEnd == c) {
read_end(c);
return;
}
_payload.push_back(c);
}
void read_until_length(uint8_t c) {
_payload.push_back(c);
if ((_payload_offset + _payload_length) == _payload.size()) {
switch (_payload_code) {
case CodeLearnOk:
case CodeRecvBasic:
case CodeRecvProto:
_state = &RfbParser::read_end;
break;
case CodeRecvBucket:
_state = &RfbParser::read_until_end;
break;
default:
_state = &RfbParser::stop;
break;
}
_payload_length = 0u;
}
}
void read_length(uint8_t c) {
switch (_payload_code) {
case CodeRecvProto:
_payload_length = c;
break;
case CodeRecvBucket:
_payload_length = c * 2;
break;
default:
_state = &RfbParser::stop;
return;
}
_payload.push_back(c);
_payload_offset = _payload.size();
_state = &RfbParser::read_until_length;
}
bool loop(uint8_t c) {
(this->*_state)(c);
return (_state != &RfbParser::stop);
}
void reset() {
_payload.clear();
_payload_length = 0u;
_payload_offset = 0u;
_payload_code = 0u;
_state = &RfbParser::start;
}
void reserve(size_t size) {
_payload.reserve(size);
}
private:
callback_type* _callback { nullptr };
state_type _state { &RfbParser::start };
std::vector<uint8_t> _payload;
size_t _payload_length { 0ul };
size_t _payload_offset { 0ul };
uint8_t _payload_code { 0ul };
};
// -----------------------------------------------------------------------------
// MESSAGE SENDER
//
// Depends on the selected provider. While we do serialize RCSwitch results,
// we don't want to pass around such byte-array everywhere since we already
// know all of the required data members and can prepare a basic POD struct
// -----------------------------------------------------------------------------
#if RFB_PROVIDER == RFB_PROVIDER_EFM8BB1
struct RfbMessage {
RfbMessage(const RfbMessage&) = default;
RfbMessage(RfbMessage&&) = default;
explicit RfbMessage(uint8_t (&data)[RfbParser::PayloadSizeBasic], unsigned char repeats_) :
repeats(repeats_)
{
std::copy(data, data + sizeof(data), code);
}
uint8_t code[RfbParser::PayloadSizeBasic] { 0u };
uint8_t repeats { 1u };
};
#elif RFB_PROVIDER == RFB_PROVIDER_RCSWITCH
struct RfbMessage {
using code_type = decltype(std::declval<RCSwitch>().getReceivedValue());
static constexpr size_t BufferSize = sizeof(code_type) + 5;
uint8_t protocol;
uint16_t timing;
uint8_t bits;
code_type code;
uint8_t repeats;
};
#endif // RFB_PROVIDER == RFB_PROVIDER_EFM8BB1
static std::list<RfbMessage> _rfb_message_queue;
void _rfbLearnImpl();
void _rfbReceiveImpl();
void _rfbSendImpl(const RfbMessage& message);
// -----------------------------------------------------------------------------
// WEBUI INTEGRATION
// -----------------------------------------------------------------------------
#if WEB_SUPPORT
void _rfbWebSocketOnVisible(JsonObject& root) {
root["rfbVisible"] = 1;
}
#if RELAY_SUPPORT
void _rfbWebSocketSendCodeArray(JsonObject& root, size_t start, size_t size) {
JsonObject& rfb = root.createNestedObject("rfb");
rfb["size"] = size;
rfb["start"] = start;
JsonArray& on = rfb.createNestedArray("on");
JsonArray& off = rfb.createNestedArray("off");
for (auto id = start; id < (start + size); ++id) {
on.add(rfbRetrieve(id, true));
off.add(rfbRetrieve(id, false));
}
}
void _rfbWebSocketOnData(JsonObject& root) {
_rfbWebSocketSendCodeArray(root, 0ul, relayCount());
}
#endif // RELAY_SUPPORT
void _rfbWebSocketOnConnected(JsonObject& root) {
root["rfbRepeat"] = getSetting("rfbRepeat", RFB_SEND_REPEATS);
#if RELAY_SUPPORT
root["rfbCount"] = relayCount();
#endif
#if RFB_PROVIDER == RFB_PROVIDER_RCSWITCH
root["rfbdirectVisible"] = 1;
root["rfbRX"] = getSetting("rfbRX", RFB_RX_PIN);
root["rfbTX"] = getSetting("rfbTX", RFB_TX_PIN);
#endif
}
void _rfbWebSocketOnAction(uint32_t client_id, const char * action, JsonObject& data) {
#if RELAY_SUPPORT
if (strcmp(action, "rfblearn") == 0) rfbLearn(data["id"], data["status"]);
if (strcmp(action, "rfbforget") == 0) rfbForget(data["id"], data["status"]);
if (strcmp(action, "rfbsend") == 0) rfbStore(data["id"], data["status"], data["data"].as<const char*>());
#endif
}
bool _rfbWebSocketOnKeyCheck(const char * key, JsonVariant& value) {
return (strncmp(key, "rfb", 3) == 0);
}
#endif // WEB_SUPPORT
// -----------------------------------------------------------------------------
// RELAY <-> CODE MATCHING
// -----------------------------------------------------------------------------
#if RFB_PROVIDER == RFB_PROVIDER_EFM8BB1
// we only care about last 6 chars (3 bytes in hex),
// since in 'default' mode rfbridge only handles a single protocol
bool _rfbCompare(const char* lhs, const char* rhs, size_t length) {
return (0 == std::memcmp((lhs + length - 6), (rhs + length - 6), 6));
}
#elif RFB_PROVIDER == RFB_PROVIDER_RCSWITCH
// protocol is [2:3), actual payload is [10:), as bit length may vary
// although, we don't care if it does, since we expect length of both args to be the same
bool _rfbCompare(const char* lhs, const char* rhs, size_t length) {
return (0 == std::memcmp((lhs + 2), (rhs + 2), 2))
&& (0 == std::memcmp((lhs + 10), (rhs + 10), length - 10));
}
#endif // RFB_PROVIDER == RFB_PROVIDER_EFM8BB1
#if RELAY_SUPPORT
// try to find the 'code' saves as either rfbON# or rfbOFF#
//
// **always** expect full length code as input to simplify comparison
// previous implementation tried to help MQTT / API requests to match based on the saved code,
// thus requiring us to 'return' value from settings as the real code, replacing input
RfbRelayMatch _rfbMatch(const char* code) {
if (!relayCount()) {
return {};
}
const auto len = strlen(code);
// we gather all available options, as the kv store might be defined in any order
// scan kvs only once, since we want both ON and OFF options and don't want to depend on the relayCount()
RfbRelayMatch matched;
using namespace settings;
kv_store.foreach([code, len, &matched](kvs_type::KeyValueResult&& kv) {
const auto key = kv.key.read();
PayloadStatus status = key.startsWith(F("rfbON"))
? PayloadStatus::On : key.startsWith(F("rfbOFF"))
? PayloadStatus::Off : PayloadStatus::Unknown;
if (PayloadStatus::Unknown == status) {
return;
}
const auto value = kv.value.read();
if (len != value.length()) {
return;
}
if (!_rfbCompare(code, value.c_str(), len)) {
return;
}
// note: strlen is constexpr here
const char* id_ptr = key.c_str() + (
(PayloadStatus::On == status) ? strlen("rfbON") : strlen("rfbOFF"));
if (*id_ptr == '\0') {
return;
}
size_t id;
if (!tryParseId(id_ptr, relayCount, id)) {
return;
}
// when we see the same id twice, we match the opposite statuses
if (matched && (id == matched.id())) {
matched.reset(matched.id(), PayloadStatus::Toggle);
return;
}
matched.reset(matched ? std::min(id, matched.id()) : id, status);
});
return matched;
}
void _rfbLearnFromString(std::unique_ptr<RfbLearn>& learn, const char* buffer) {
if (!learn) return;
DEBUG_MSG_P(PSTR("[RF] Learned relay ID %u after %u ms\n"), learn->id, millis() - learn->ts);
rfbStore(learn->id, learn->status, buffer);
// Websocket update needs to happen right here, since the only time
// we send these in bulk is at the very start of the connection
#if WEB_SUPPORT
auto id = learn->id;
wsPost([id](JsonObject& root) {
_rfbWebSocketSendCodeArray(root, id, 1ul);
});
#endif
learn.reset(nullptr);
}
bool _rfbRelayHandler(const char* buffer, bool locked = false) {
bool result { false };
auto match = _rfbMatch(buffer);
if (match) {
DEBUG_MSG_P(PSTR("[RF] Matched with the relay ID %u\n"), match.id());
_rfb_relay_status_lock.set(match.id(), locked);
switch (match.status()) {
case PayloadStatus::On:
case PayloadStatus::Off:
relayStatus(match.id(), (PayloadStatus::On == match.status()));
result = true;
break;
case PayloadStatus::Toggle:
relayToggle(match.id());
result = true;
case PayloadStatus::Unknown:
break;
}
}
return result;
}
void _rfbLearnStartFromPayload(const char* payload) {
// The payload must be the `relayID,mode` (where mode is either 0 or 1)
const char* sep = strchr(payload, ',');
if (nullptr == sep) {
return;
}
// ref. RelaysMax, we only have up to 2 digits
char relay[3] {0, 0, 0};
if ((sep - payload) > 2) {
return;
}
std::copy(payload, sep, relay);
size_t id;
if (!tryParseId(relay, relayCount(), id)) {
DEBUG_MSG_P(PSTR("[RF] Invalid relay ID (%u)\n"), id);
return;
}
++sep;
if ((*sep == '0') || (*sep == '1')) {
rfbLearn(id, (*sep != '0'));
}
}
void _rfbLearnFromReceived(std::unique_ptr<RfbLearn>& learn, const char* buffer) {
if (millis() - learn->ts > RFB_LEARN_TIMEOUT) {
DEBUG_MSG_P(PSTR("[RF] Learn timeout after %u ms\n"), millis() - learn->ts);
learn.reset(nullptr);
return;
}
_rfbLearnFromString(learn, buffer);
}
#endif // RELAY_SUPPORT
// -----------------------------------------------------------------------------
// RF handler implementations
// -----------------------------------------------------------------------------
#if RFB_PROVIDER == RFB_PROVIDER_EFM8BB1
void _rfbEnqueue(uint8_t (&code)[RfbParser::PayloadSizeBasic], unsigned char repeats = 1u) {
if (!_rfb_transmit) return;
_rfb_message_queue.push_back(RfbMessage(code, repeats));
}
bool _rfbEnqueue(const char* code, size_t length, unsigned char repeats = 1u) {
uint8_t buffer[RfbParser::PayloadSizeBasic] { 0u };
if (hexDecode(code, length, buffer, sizeof(buffer))) {
_rfbEnqueue(buffer, repeats);
return true;
}
DEBUG_MSG_P(PSTR("[RF] Cannot decode the message\n"));
return false;
}
void _rfbSendRaw(const uint8_t* message, size_t size) {
Serial.write(message, size);
}
void _rfbAckImpl() {
static uint8_t message[3] {
CodeStart, CodeAck, CodeEnd
};
DEBUG_MSG_P(PSTR("[RF] Sending ACK\n"));
Serial.write(message, sizeof(message));
Serial.flush();
}
void _rfbLearnImpl() {
static uint8_t message[3] {
CodeStart, CodeLearn, CodeEnd
};
DEBUG_MSG_P(PSTR("[RF] Sending LEARN\n"));
Serial.write(message, sizeof(message));
Serial.flush();
}
void _rfbSendImpl(const RfbMessage& message) {
Serial.write(CodeStart);
Serial.write(CodeSendBasic);
_rfbSendRaw(message.code, sizeof(message.code));
Serial.write(CodeEnd);
Serial.flush();
}
void _rfbParse(uint8_t code, const std::vector<uint8_t>& payload) {
switch (code) {
case CodeAck:
DEBUG_MSG_P(PSTR("[RF] Received ACK\n"));
break;
case CodeLearnTimeout:
_rfbAckImpl();
#if RELAY_SUPPORT
if (_rfb_learn) {
DEBUG_MSG_P(PSTR("[RF] Learn timeout after %u ms\n"), millis() - _rfb_learn->ts);
_rfb_learn.reset(nullptr);
}
#endif
break;
case CodeLearnOk:
case CodeRecvBasic: {
_rfbAckImpl();
char buffer[(RfbParser::PayloadSizeBasic * 2) + 1] = {0};
if (hexEncode(payload.data(), payload.size(), buffer, sizeof(buffer))) {
DEBUG_MSG_P(PSTR("[RF] Received code: %s\n"), buffer);
#if RELAY_SUPPORT
if (CodeLearnOk == code) {
_rfbLearnFromString(_rfb_learn, buffer);
} else {
_rfbRelayHandler(buffer, true);
}
#endif
#if MQTT_SUPPORT
mqttSend(MQTT_TOPIC_RFIN, buffer, false, false);
#endif
#if BROKER_SUPPORT
RfbridgeBroker::Publish(RfbDefaultProtocol, buffer + 12);
#endif
}
break;
}
case CodeRecvProto:
case CodeRecvBucket: {
_rfbAckImpl();
char buffer[(RfbParser::MessageSizeMax * 2) + 1] = {0};
if (hexEncode(payload.data(), payload.size(), buffer, sizeof(buffer))) {
DEBUG_MSG_P(PSTR("[RF] Received %s code: %s\n"),
(CodeRecvProto == code) ? "advanced" : "bucket", buffer
);
#if MQTT_SUPPORT
mqttSend(MQTT_TOPIC_RFIN, buffer, false, false);
#endif
#if BROKER_SUPPORT
// ref. https://github.com/Portisch/RF-Bridge-EFM8BB1/wiki/0xA6#example-of-a-received-decoded-protocol
RfbridgeBroker::Publish(payload[0], buffer + 2);
#endif
} else {
DEBUG_MSG_P(PSTR("[RF] Received 0x%02X (%u bytes)\n"), code, payload.size());
}
break;
}
}
}
static RfbParser _rfb_parser(_rfbParse);
void _rfbReceiveImpl() {
while (Serial.available()) {
auto c = Serial.read();
if (c < 0) {
continue;
}
// narrowing is justified, as `c` can only contain byte-sized value
if (!_rfb_parser.loop(static_cast<uint8_t>(c))) {
_rfb_parser.reset();
}
}
}
// note that we don't care about queue here, just dump raw message as-is
void _rfbSendRawFromPayload(const char * raw) {
auto rawlen = strlen(raw);
if (rawlen > (RfbParser::MessageSizeMax * 2)) return;
if ((rawlen < 6) || (rawlen & 1)) return;
DEBUG_MSG_P(PSTR("[RF] Sending RAW MESSAGE \"%s\"\n"), raw);
size_t bytes = 0;
uint8_t message[RfbParser::MessageSizeMax] { 0u };
if ((bytes = hexDecode(raw, rawlen, message, sizeof(message)))) {
if (message[0] != CodeStart) return;
if (message[bytes - 1] != CodeEnd) return;
_rfbSendRaw(message, bytes);
}
}
#elif RFB_PROVIDER == RFB_PROVIDER_RCSWITCH
namespace {
size_t _rfb_bytes_for_bits(size_t bits) {
decltype(bits) bytes = 0;
decltype(bits) need = 0;
while (need < bits) {
need += 8u;
bytes += 1u;
}
return bytes;
}
// TODO: RCSwitch code type: long unsigned int != uint32_t, thus the specialization
static_assert(sizeof(uint32_t) == sizeof(long unsigned int), "");
template <typename T>
T _rfb_bswap(T value);
template <>
[[gnu::unused]] uint32_t _rfb_bswap(uint32_t value) {
return __builtin_bswap32(value);
}
template <>
[[gnu::unused]] long unsigned int _rfb_bswap(long unsigned int value) {
return __builtin_bswap32(value);
}
template <>
[[gnu::unused]] uint64_t _rfb_bswap(uint64_t value) {
return __builtin_bswap64(value);
}
}
void _rfbEnqueue(uint8_t protocol, uint16_t timing, uint8_t bits, RfbMessage::code_type code, unsigned char repeats = 1u) {
if (!_rfb_transmit) return;
_rfb_message_queue.push_back(RfbMessage{protocol, timing, bits, code, repeats});
}
void _rfbEnqueue(const char* message, size_t length, unsigned char repeats = 1u) {
uint8_t buffer[RfbMessage::BufferSize] { 0u };
if (hexDecode(message, length, buffer, sizeof(buffer))) {
const auto bytes = _rfb_bytes_for_bits(buffer[4]);
uint8_t raw_code[sizeof(RfbMessage::code_type)] { 0u };
std::memcpy(&raw_code[sizeof(raw_code) - bytes], &buffer[5], bytes);
RfbMessage::code_type code;
std::memcpy(&code, raw_code, sizeof(code));
_rfbEnqueue(buffer[1], (buffer[2] << 8) | buffer[3], buffer[4], _rfb_bswap(code), repeats);
return;
}
DEBUG_MSG_P(PSTR("[RF] Cannot decode the message\n"));
}
void _rfbLearnImpl() {
DEBUG_MSG_P(PSTR("[RF] Entering LEARN mode\n"));
}
void _rfbSendImpl(const RfbMessage& message) {
if (!_rfb_transmit) return;
// TODO: note that this seems to be setting global setting
// if code for some reason forgets this, we end up with the previous value
_rfb_modem->setProtocol(message.protocol);
if (message.timing) {
_rfb_modem->setPulseLength(message.timing);
}
yield();
_rfb_modem->send(message.code, message.bits);
_rfb_modem->resetAvailable();
}
// Try to mimic the basic RF message format. although, we might have different size of the code itself
// Skip leading zeroes and only keep the useful data
//
// TODO: 'timing' value shooould be relatively small,
// since it's original intent was to be used with 16bit ints
// TODO: both 'protocol' and 'bitlength' fit in a byte, despite being declared as 'unsigned int'
size_t _rfbModemPack(uint8_t (&out)[RfbMessage::BufferSize], RfbMessage::code_type code, unsigned int protocol, unsigned int timing, unsigned int bits) {
static_assert((sizeof(decltype(code)) == 4) || (sizeof(decltype(code)) == 8), "");
size_t index = 0;
out[index++] = 0xC0;
out[index++] = static_cast<uint8_t>(protocol);
out[index++] = static_cast<uint8_t>(timing >> 8);
out[index++] = static_cast<uint8_t>(timing);
out[index++] = static_cast<uint8_t>(bits);
auto bytes = _rfb_bytes_for_bits(bits);
if (bytes > (sizeof(out) - index)) {
return 0;
}
// manually overload each bswap, since we can't use ternary here
// (and `if constexpr (...)` is only available starting from Arduino Core 3.x.x)
decltype(code) swapped = _rfb_bswap(code);
uint8_t raw[sizeof(swapped)];
std::memcpy(raw, &swapped, sizeof(raw));
while (bytes) {
out[index++] = raw[sizeof(raw) - (bytes--)];
}
return index;
}
void _rfbReceiveImpl() {
if (!_rfb_receive) return;
// TODO: rc-switch isr handler sets 4 variables at the same time and never checks their existence before overwriting them
// thus, we can't *really* trust that all 4 are from the same reading :/
// TODO: in theory, we may also expirience memory tearing while doing 2 separate 32bit reads on the 64bit code value,
// while isr handler *may* write into it at the same time
auto rf_code = _rfb_modem->getReceivedValue();
if (!rf_code) {
return;
}
#if RFB_RECEIVE_DELAY
static unsigned long last = 0;
if (millis() - last < RFB_RECEIVE_DELAY) {
_rfb_modem->resetAvailable();
return;
}
last = millis();
#endif
uint8_t message[RfbMessage::BufferSize];
auto real_msgsize = _rfbModemPack(
message,
rf_code,
_rfb_modem->getReceivedProtocol(),
_rfb_modem->getReceivedDelay(),
_rfb_modem->getReceivedBitlength()
);
char buffer[(sizeof(message) * 2) + 1] = {0};
if (hexEncode(message, real_msgsize, buffer, sizeof(buffer))) {
DEBUG_MSG_P(PSTR("[RF] Received code: %s\n"), buffer);
#if RELAY_SUPPORT
if (_rfb_learn) {
_rfbLearnFromReceived(_rfb_learn, buffer);
} else {
_rfbRelayHandler(buffer, true);
}
#endif
#if MQTT_SUPPORT
mqttSend(MQTT_TOPIC_RFIN, buffer, false, false);
#endif
#if BROKER_SUPPORT
RfbridgeBroker::Publish(message[1], buffer + 10);
#endif
}
_rfb_modem->resetAvailable();
}
#endif // RFB_PROVIDER == ...
void _rfbSendQueued() {
if (!_rfb_transmit) return;
if (_rfb_message_queue.empty()) return;
static unsigned long last = 0;
if (millis() - last < RFB_SEND_DELAY) return;
last = millis();
auto message = _rfb_message_queue.front();
_rfb_message_queue.pop_front();
_rfbSendImpl(message);
// Sometimes we really want to repeat the message, not only to rely on built-in transfer repeat
if (message.repeats > 1) {
message.repeats -= 1;
_rfb_message_queue.push_back(std::move(message));
}
yield();
}
// Check if the payload looks like a HEX code (plus comma, specifying the 'repeats' arg for the queue)
void _rfbSendFromPayload(const char * payload) {
size_t len { strlen(payload) };
if (!len) {
return;
}
decltype(_rfb_repeats) repeats { _rfb_repeats };
const char* sep { strchr(payload, ',') };
if (sep) {
len -= strlen(sep);
sep += 1;
if ('\0' == *sep) return;
if ('-' == *sep) return;
char *endptr = nullptr;
repeats = strtoul(sep, &endptr, 10);
if (endptr == payload || endptr[0] != '\0') {
return;
}
}
if (!len || (len & 1)) {
return;
}
DEBUG_MSG_P(PSTR("[RF] Enqueuing MESSAGE '%s' %u time(s)\n"), payload, repeats);
// We postpone the actual sending until the loop, as we may've been called from MQTT or HTTP API
// RFB_PROVIDER implementation should select the appropriate de-serialization function
_rfbEnqueue(payload, len, repeats);
}
void rfbSend(const char* code) {
_rfbSendFromPayload(code);
}
void rfbSend(const String& code) {
_rfbSendFromPayload(code.c_str());
}
#if MQTT_SUPPORT
void _rfbMqttCallback(unsigned int type, const char * topic, char * payload) {
if (type == MQTT_CONNECT_EVENT) {
#if RELAY_SUPPORT
mqttSubscribe(MQTT_TOPIC_RFLEARN);
#endif
#if RFB_PROVIDER == RFB_PROVIDER_EFM8BB1
mqttSubscribe(MQTT_TOPIC_RFRAW);
#endif
if (_rfb_transmit) {
mqttSubscribe(MQTT_TOPIC_RFOUT);
}
return;
}
if (type == MQTT_MESSAGE_EVENT) {
String t = mqttMagnitude((char *) topic);
#if RELAY_SUPPORT
if (t.equals(MQTT_TOPIC_RFLEARN)) {
_rfbLearnStartFromPayload(payload);
return;
}
#endif
if (t.equals(MQTT_TOPIC_RFOUT)) {
#if RELAY_SUPPORT
// we *sometimes* want to check the code against available rfbON / rfbOFF
// e.g. in case we want to control some external device and have an external remote.
// - when remote press happens, relays stay in sync when we receive the code via the processing loop
// - when we send the code here, we never register it as *sent*, thus relays need to be made in sync manually
if (!_rfbRelayHandler(payload)) {
#endif
_rfbSendFromPayload(payload);
#if RELAY_SUPPORT
}
#endif
return;
}
#if RFB_PROVIDER == RFB_PROVIDER_EFM8BB1
if (t.equals(MQTT_TOPIC_RFRAW)) {
// in case this is RAW message, we should not match anything and just send it as-is to the serial
_rfbSendRawFromPayload(payload);
return;
}
#endif
return;
}
}
#endif // MQTT_SUPPORT
#if API_SUPPORT
void _rfbApiSetup() {
apiRegister(F(MQTT_TOPIC_RFOUT),
apiOk, // just a stub, nothing to return
[](ApiRequest& request) {
_rfbSendFromPayload(request.param(F("value")).c_str());
return true;
}
);
#if RELAY_SUPPORT
apiRegister(F(MQTT_TOPIC_RFLEARN),
[](ApiRequest& request) {
char buffer[64] { 0 };
if (_rfb_learn) {
snprintf_P(buffer, sizeof(buffer), PSTR("learning id:%u,status:%c"),
_rfb_learn->id, _rfb_learn->status ? 't' : 'f'
);
} else {
snprintf_P(buffer, sizeof(buffer), PSTR("waiting"));
}
request.send(buffer);
return true;
},
[](ApiRequest& request) {
_rfbLearnStartFromPayload(request.param(F("value")).c_str());
return true;
}
);
#endif
#if RFB_PROVIDER == RFB_PROVIDER_EFM8BB1
apiRegister(F(MQTT_TOPIC_RFRAW),
apiOk, // just a stub, nothing to return
[](ApiRequest& request) {
_rfbSendRawFromPayload(request.param(F("value")).c_str());
return true;
}
);
#endif
}
#endif // API_SUPPORT
#if TERMINAL_SUPPORT
void _rfbCommandStatusDispatch(const terminal::CommandContext& ctx, size_t id, const String& payload, RelayStatusCallback callback) {
auto parsed = rpcParsePayload(payload.c_str());
switch (parsed) {
case PayloadStatus::On:
case PayloadStatus::Off:
callback(id, (parsed == PayloadStatus::On));
return;
case PayloadStatus::Toggle:
case PayloadStatus::Unknown:
terminalError(ctx, F("Invalid status"));
break;
}
}
void _rfbInitCommands() {
terminalRegisterCommand(F("RFB.SEND"), [](const terminal::CommandContext& ctx) {
if (ctx.argc == 2) {
rfbSend(ctx.argv[1]);
return;
}
terminalError(ctx, F("RFB.SEND <CODE>"));
});
#if RELAY_SUPPORT
terminalRegisterCommand(F("RFB.LEARN"), [](const terminal::CommandContext& ctx) {
if (ctx.argc != 3) {
terminalError(ctx, F("RFB.LEARN <ID> <STATUS>"));
return;
}
size_t id;
if (!tryParseId(ctx.argv[1].c_str(), relayCount, id)) {
terminalError(ctx, F("Invalid relay ID"));
return;
}
_rfbCommandStatusDispatch(ctx, id, ctx.argv[2], rfbLearn);
});
terminalRegisterCommand(F("RFB.FORGET"), [](const terminal::CommandContext& ctx) {
if (ctx.argc < 2) {
terminalError(ctx, F("RFB.FORGET <ID> [<STATUS>]"));
return;
}
size_t id;
if (!tryParseId(ctx.argv[1].c_str(), relayCount, id)) {
terminalError(ctx, F("Invalid relay ID"));
return;
}
if (ctx.argc == 3) {
_rfbCommandStatusDispatch(ctx, id, ctx.argv[2], rfbForget);
return;
}
rfbForget(id, true);
rfbForget(id, false);
terminalOK(ctx);
});
#endif // if RELAY_SUPPORT
#if RFB_PROVIDER == RFB_PROVIDER_EFM8BB1
terminalRegisterCommand(F("RFB.WRITE"), [](const terminal::CommandContext& ctx) {
if (ctx.argc != 2) {
terminalError(ctx, F("RFB.WRITE <PAYLOAD>"));
return;
}
_rfbSendRawFromPayload(ctx.argv[1].c_str());
terminalOK(ctx);
});
#endif
}
#endif // TERMINAL_SUPPORT
// -----------------------------------------------------------------------------
// PUBLIC
// -----------------------------------------------------------------------------
void rfbStore(size_t id, bool status, const char * code) {
SettingsKey key { status ? F("rfbON") : F("rfbOFF"), id };
setSetting(key, code);
DEBUG_MSG_P(PSTR("[RF] Saved %s => \"%s\"\n"), key.c_str(), code);
}
String rfbRetrieve(size_t id, bool status) {
return getSetting({ status ? F("rfbON") : F("rfbOFF"), id });
}
#if RELAY_SUPPORT
void rfbStatus(size_t id, bool status) {
// TODO: This is a left-over from the old implementation. Right now we set this lock when relay handler
// is called within the receiver, while this is called from either relayStatus or relay loop calling
// this via provider callback. This prevents us from re-sending the code we just received.
// TODO: Consider having 'origin' of the relay change. Either supply relayStatus with an additional arg,
// or track these statuses directly.
if (!_rfb_relay_status_lock[id]) {
rfbSend(rfbRetrieve(id, status));
}
_rfb_relay_status_lock[id] = false;
}
void rfbLearn(size_t id, bool status) {
_rfb_learn.reset(new RfbLearn { millis(), id, status });
_rfbLearnImpl();
}
void rfbForget(size_t id, bool status) {
delSetting({status ? F("rfbON") : F("rfbOFF"), id});
// Websocket update needs to happen right here, since the only time
// we send these in bulk is at the very start of the connection
#if WEB_SUPPORT
wsPost([id](JsonObject& root) {
_rfbWebSocketSendCodeArray(root, id, 1ul);
});
#endif
}
#endif // RELAY_SUPPORT
// -----------------------------------------------------------------------------
// SETUP & LOOP
// -----------------------------------------------------------------------------
#if RELAY_SUPPORT && (RFB_PROVIDER == RFB_PROVIDER_RCSWITCH)
// TODO: remove this in 1.16.0
void _rfbSettingsMigrate(int version) {
if (!version || (version > 4)) {
return;
}
auto migrate_code = [](String& out, const String& in) -> bool {
out = "";
if (18 == in.length()) {
uint8_t bits { 0u };
if (!hexDecode(in.c_str() + 8, 2, &bits, 1)) {
return false;
}
auto bytes = _rfb_bytes_for_bits(bits);
out = in.substring(0, 10);
out += (in.c_str() + in.length() - (2 * bytes));
return in != out;
}
return false;
};
String buffer;
auto relays = relayCount();
for (decltype(relays) id = 0; id < relays; ++id) {
SettingsKey on_key {F("rfbON"), id};
if (migrate_code(buffer, getSetting(on_key))) {
setSetting(on_key, buffer);
}
SettingsKey off_key {F("rfbOFF"), id};
if (migrate_code(buffer, getSetting(off_key))) {
setSetting(off_key, buffer);
}
}
}
#endif
void rfbSetup() {
#if RFB_PROVIDER == RFB_PROVIDER_EFM8BB1
_rfb_parser.reserve(RfbParser::MessageSizeBasic);
#elif RFB_PROVIDER == RFB_PROVIDER_RCSWITCH
#if RELAY_SUPPORT
_rfbSettingsMigrate(migrateVersion());
#endif
{
auto rx = getSetting("rfbRX", RFB_RX_PIN);
auto tx = getSetting("rfbTX", RFB_TX_PIN);
if ((GPIO_NONE == rx) && (GPIO_NONE == tx)) {
DEBUG_MSG_P(PSTR("[RF] Neither RX or TX are set\n"));
return;
}
_rfb_modem = new RCSwitch();
if (gpioLock(rx)) {
_rfb_receive = true;
_rfb_modem->enableReceive(rx);
DEBUG_MSG_P(PSTR("[RF] RF receiver on GPIO %u\n"), rx);
}
if (gpioLock(tx)) {
auto transmit = getSetting("rfbTransmit", RFB_TRANSMIT_REPEATS);
_rfb_transmit = true;
_rfb_modem->enableTransmit(tx);
_rfb_modem->setRepeatTransmit(transmit);
DEBUG_MSG_P(PSTR("[RF] RF transmitter on GPIO %u\n"), tx);
}
}
#endif
#if RELAY_SUPPORT
relaySetStatusNotify(rfbStatus);
relaySetStatusChange(rfbStatus);
#endif
#if MQTT_SUPPORT
mqttRegister(_rfbMqttCallback);
#endif
#if API_SUPPORT
_rfbApiSetup();
#endif
#if WEB_SUPPORT
wsRegister()
#if RELAY_SUPPORT
.onData(_rfbWebSocketOnData)
.onAction(_rfbWebSocketOnAction)
#endif
.onConnected(_rfbWebSocketOnConnected)
.onVisible(_rfbWebSocketOnVisible)
.onKeyCheck(_rfbWebSocketOnKeyCheck);
#endif
#if TERMINAL_SUPPORT
_rfbInitCommands();
#endif
_rfb_repeats = getSetting("rfbRepeat", RFB_SEND_REPEATS);
// Note: as rfbridge protocol is simplistic enough, we rely on Serial queue to deliver timely updates
// learn / command acks / etc. are not queued, only RF messages are
espurnaRegisterLoop([]() {
_rfbReceiveImpl();
_rfbSendQueued();
});
}
#endif // RFB_SUPPORT