You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

228 lines
7.5 KiB

  1. /*
  2. Copyright 2012 Jun Wako
  3. Copyright 2014 Jack Humbert
  4. This program is free software: you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation, either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program. If not, see <http://www.gnu.org/licenses/>.
  14. */
  15. #include <stdint.h>
  16. #include <stdbool.h>
  17. #if defined(__AVR__)
  18. #include <avr/io.h>
  19. #endif
  20. #include "wait.h"
  21. #include "print.h"
  22. #include "debug.h"
  23. #include "util.h"
  24. #include "matrix.h"
  25. #include "timer.h"
  26. #include "dichotomy.h"
  27. #include "pointing_device.h"
  28. #include "report.h"
  29. #if (MATRIX_COLS <= 8)
  30. # define print_matrix_header() print("\nr/c 01234567\n")
  31. # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
  32. # define matrix_bitpop(i) bitpop(matrix[i])
  33. # define ROW_SHIFTER ((uint8_t)1)
  34. #elif (MATRIX_COLS <= 16)
  35. # define print_matrix_header() print("\nr/c 0123456789ABCDEF\n")
  36. # define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row))
  37. # define matrix_bitpop(i) bitpop16(matrix[i])
  38. # define ROW_SHIFTER ((uint16_t)1)
  39. #elif (MATRIX_COLS <= 32)
  40. # define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n")
  41. # define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row))
  42. # define matrix_bitpop(i) bitpop32(matrix[i])
  43. # define ROW_SHIFTER ((uint32_t)1)
  44. #endif
  45. #define MAIN_ROWMASK 0xFFF0;
  46. #define LOWER_ROWMASK 0x3FC0;
  47. /* matrix state(1:on, 0:off) */
  48. static matrix_row_t matrix[MATRIX_ROWS];
  49. __attribute__ ((weak))
  50. void matrix_init_quantum(void) {
  51. matrix_init_kb();
  52. }
  53. __attribute__ ((weak))
  54. void matrix_scan_quantum(void) {
  55. matrix_scan_kb();
  56. }
  57. __attribute__ ((weak))
  58. void matrix_init_kb(void) {
  59. matrix_init_user();
  60. }
  61. __attribute__ ((weak))
  62. void matrix_scan_kb(void) {
  63. matrix_scan_user();
  64. }
  65. __attribute__ ((weak))
  66. void matrix_init_user(void) {
  67. }
  68. __attribute__ ((weak))
  69. void matrix_scan_user(void) {
  70. }
  71. inline
  72. uint8_t matrix_rows(void) {
  73. return MATRIX_ROWS;
  74. }
  75. inline
  76. uint8_t matrix_cols(void) {
  77. return MATRIX_COLS;
  78. }
  79. void matrix_init(void) {
  80. DDRF |= (1<<6);
  81. DDRF |= (1<<5);
  82. DDRD |= (1<<1);
  83. matrix_init_quantum();
  84. }
  85. uint8_t matrix_scan(void)
  86. {
  87. SERIAL_UART_INIT();
  88. //xprintf("\r\nTRYING TO SCAN");
  89. uint32_t timeout = 0;
  90. //the s character requests the RF slave to send the matrix
  91. SERIAL_UART_DATA = 's';
  92. //trust the external keystates entirely, erase the last data
  93. uint8_t uart_data[11] = {0};
  94. //there are 10 bytes corresponding to 10 columns, and an end byte
  95. for (uint8_t i = 0; i < 11; i++) {
  96. //wait for the serial data, timeout if it's been too long
  97. //this only happened in testing with a loose wire, but does no
  98. //harm to leave it in here
  99. while(!SERIAL_UART_RXD_PRESENT){
  100. timeout++;
  101. if (timeout > 10000){
  102. xprintf("\r\nTime out in keyboard.");
  103. break;
  104. }
  105. }
  106. uart_data[i] = SERIAL_UART_DATA;
  107. }
  108. //check for the end packet, the key state bytes use the LSBs, so 0xE0
  109. //will only show up here if the correct bytes were recieved
  110. uint8_t checksum = 0x00;
  111. for (uint8_t z=0; z<10; z++){
  112. checksum = checksum^uart_data[z];
  113. }
  114. checksum = checksum ^ (uart_data[10] & 0xF0);
  115. // Smash the checksum from 1 byte into 4 bits
  116. checksum = (checksum ^ ((checksum & 0xF0)>>4)) & 0x0F;
  117. //xprintf("\r\nGOT RAW PACKET: \r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d",uart_data[0],uart_data[1],uart_data[2],uart_data[3],uart_data[4],uart_data[5],uart_data[6],uart_data[7],uart_data[8],uart_data[9],uart_data[10],checksum);
  118. if ((uart_data[10] & 0x0F) == checksum) { //this is an arbitrary binary checksum (1001) (that would be 0x9.)
  119. //xprintf("\r\nGOT PACKET: \r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d",uart_data[0],uart_data[1],uart_data[2],uart_data[3],uart_data[4],uart_data[5]);
  120. //shifting and transferring the keystates to the QMK matrix variable
  121. //bits 1-12 are row 1, 13-24 are row 2, 25-36 are row 3,
  122. //bits 37-42 are row 4 (only 6 wide, 1-3 are 0, and 10-12 are 0)
  123. //bits 43-48 are row 5 (same as row 4)
  124. /* ASSUMING MSB FIRST */
  125. matrix[0] = (((uint16_t) uart_data[0] << 8) | ((uint16_t) uart_data[1])) & MAIN_ROWMASK;
  126. matrix[1] = ((uint16_t) uart_data[1] << 12) | ((uint16_t) uart_data[2] << 4);
  127. matrix[2] = (((uint16_t) uart_data[3] << 8) | ((uint16_t) uart_data[4])) & MAIN_ROWMASK;
  128. matrix[3] = (((uint16_t) uart_data[4] << 9) | ((uint16_t) uart_data[5] << 1)) & LOWER_ROWMASK;
  129. matrix[4] = (((uint16_t) uart_data[5] << 7) | ((uart_data[10] & 1<<7) ? 1:0) << 13 | ((uart_data[10] & 1<<6) ? 1:0) << 6) & LOWER_ROWMASK;
  130. /* OK, TURNS OUT THAT WAS A BAD ASSUMPTION */
  131. for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
  132. //I've unpacked these into the mirror image of what QMK expects them to be, so...
  133. /*uint8_t halfOne = (matrix[i]>>8);
  134. uint8_t halfTwo = (matrix[i] & 0xFF);
  135. halfOne = ((halfOne * 0x0802LU & 0x22110LU) | (halfOne * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
  136. halfTwo = ((halfTwo * 0x0802LU & 0x22110LU) | (halfTwo * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
  137. matrix[i] = ((halfTwo<<8) & halfOne);*/
  138. //matrix[i] = ((matrix[i] * 0x0802LU & 0x22110LU) | (matrix[i] * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
  139. matrix[i] = bitrev16(matrix[i]);
  140. //bithack mirror! Doesn't make any sense, but works - and efficiently.
  141. }
  142. //if (uart_data[6]!=0 || uart_data[7]!=0){
  143. //if (maxCount<101){
  144. // xprintf("\r\nMouse data: x=%d, y=%d",(int8_t)uart_data[6],(int8_t)uart_data[7]);
  145. //}
  146. report_mouse_t currentReport = {};
  147. //check for the end packet, bytes 1-4 are movement and scroll
  148. //but byte 5 has bits 0-3 for the scroll button state
  149. //(1000 if pressed, 0000 if not) and bits 4-7 are always 1
  150. //We can use this to verify the report sent properly.
  151. currentReport = pointing_device_get_report();
  152. //shifting and transferring the info to the mouse report varaible
  153. //mouseReport.x = 127 max -127 min
  154. currentReport.x = (int8_t) uart_data[6];
  155. //mouseReport.y = 127 max -127 min
  156. currentReport.y = (int8_t) uart_data[7];
  157. //mouseReport.v = 127 max -127 min (scroll vertical)
  158. currentReport.v = (int8_t) uart_data[8];
  159. //mouseReport.h = 127 max -127 min (scroll horizontal)
  160. currentReport.h = (int8_t) uart_data[9];
  161. /*
  162. currentReport.x = 0;
  163. currentReport.y = 0;
  164. currentReport.v = 0;
  165. currentReport.h = 0;*/
  166. pointing_device_set_report(currentReport);
  167. } else {
  168. //xprintf("\r\nRequested packet, data 10 was %d but checksum was %d",(uart_data[10] & 0x0F), (checksum & 0x0F));
  169. }
  170. //matrix_print();
  171. matrix_scan_quantum();
  172. return 1;
  173. }
  174. inline
  175. bool matrix_is_on(uint8_t row, uint8_t col)
  176. {
  177. return (matrix[row] & ((matrix_row_t)1<<col));
  178. }
  179. inline
  180. matrix_row_t matrix_get_row(uint8_t row)
  181. {
  182. return matrix[row];
  183. }
  184. void matrix_print(void)
  185. {
  186. print_matrix_header();
  187. for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
  188. phex(row); print(": ");
  189. print_matrix_row(row);
  190. print("\n");
  191. }
  192. }
  193. uint8_t matrix_key_count(void)
  194. {
  195. uint8_t count = 0;
  196. for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
  197. count += matrix_bitpop(i);
  198. }
  199. return count;
  200. }