You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

226 lines
7.5 KiB

  1. /*
  2. Copyright 2012 Jun Wako
  3. Copyright 2014 Jack Humbert
  4. This program is free software: you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation, either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program. If not, see <http://www.gnu.org/licenses/>.
  14. */
  15. #include <stdint.h>
  16. #include <stdbool.h>
  17. #if defined(__AVR__)
  18. #include <avr/io.h>
  19. #endif
  20. #include "wait.h"
  21. #include "print.h"
  22. #include "debug.h"
  23. #include "util.h"
  24. #include "matrix.h"
  25. #include "timer.h"
  26. #include "dichotomy.h"
  27. #include "pointing_device.h"
  28. #include "report.h"
  29. #include "protocol/serial.h"
  30. #if (MATRIX_COLS <= 8)
  31. # define print_matrix_header() print("\nr/c 01234567\n")
  32. # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
  33. # define matrix_bitpop(i) bitpop(matrix[i])
  34. # define ROW_SHIFTER ((uint8_t)1)
  35. #elif (MATRIX_COLS <= 16)
  36. # define print_matrix_header() print("\nr/c 0123456789ABCDEF\n")
  37. # define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row))
  38. # define matrix_bitpop(i) bitpop16(matrix[i])
  39. # define ROW_SHIFTER ((uint16_t)1)
  40. #elif (MATRIX_COLS <= 32)
  41. # define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n")
  42. # define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row))
  43. # define matrix_bitpop(i) bitpop32(matrix[i])
  44. # define ROW_SHIFTER ((uint32_t)1)
  45. #endif
  46. #define MAIN_ROWMASK 0xFFF0;
  47. #define LOWER_ROWMASK 0x3FC0;
  48. /* matrix state(1:on, 0:off) */
  49. static matrix_row_t matrix[MATRIX_ROWS];
  50. __attribute__ ((weak))
  51. void matrix_init_quantum(void) {
  52. matrix_init_kb();
  53. }
  54. __attribute__ ((weak))
  55. void matrix_scan_quantum(void) {
  56. matrix_scan_kb();
  57. }
  58. __attribute__ ((weak))
  59. void matrix_init_kb(void) {
  60. matrix_init_user();
  61. }
  62. __attribute__ ((weak))
  63. void matrix_scan_kb(void) {
  64. matrix_scan_user();
  65. }
  66. __attribute__ ((weak))
  67. void matrix_init_user(void) {
  68. }
  69. __attribute__ ((weak))
  70. void matrix_scan_user(void) {
  71. }
  72. inline
  73. uint8_t matrix_rows(void) {
  74. return MATRIX_ROWS;
  75. }
  76. inline
  77. uint8_t matrix_cols(void) {
  78. return MATRIX_COLS;
  79. }
  80. void matrix_init(void) {
  81. matrix_init_quantum();
  82. serial_init();
  83. }
  84. uint8_t matrix_scan(void)
  85. {
  86. //xprintf("\r\nTRYING TO SCAN");
  87. uint32_t timeout = 0;
  88. //the s character requests the RF slave to send the matrix
  89. SERIAL_UART_DATA = 's';
  90. //trust the external keystates entirely, erase the last data
  91. uint8_t uart_data[11] = {0};
  92. //there are 10 bytes corresponding to 10 columns, and an end byte
  93. for (uint8_t i = 0; i < 11; i++) {
  94. //wait for the serial data, timeout if it's been too long
  95. //this only happened in testing with a loose wire, but does no
  96. //harm to leave it in here
  97. while(!SERIAL_UART_RXD_PRESENT){
  98. timeout++;
  99. if (timeout > 10000){
  100. xprintf("\r\nTime out in keyboard.");
  101. break;
  102. }
  103. }
  104. uart_data[i] = SERIAL_UART_DATA;
  105. }
  106. //check for the end packet, the key state bytes use the LSBs, so 0xE0
  107. //will only show up here if the correct bytes were recieved
  108. uint8_t checksum = 0x00;
  109. for (uint8_t z=0; z<10; z++){
  110. checksum = checksum^uart_data[z];
  111. }
  112. checksum = checksum ^ (uart_data[10] & 0xF0);
  113. // Smash the checksum from 1 byte into 4 bits
  114. checksum = (checksum ^ ((checksum & 0xF0)>>4)) & 0x0F;
  115. //xprintf("\r\nGOT RAW PACKET: \r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d",uart_data[0],uart_data[1],uart_data[2],uart_data[3],uart_data[4],uart_data[5],uart_data[6],uart_data[7],uart_data[8],uart_data[9],uart_data[10],checksum);
  116. if ((uart_data[10] & 0x0F) == checksum) { //this is an arbitrary binary checksum (1001) (that would be 0x9.)
  117. //xprintf("\r\nGOT PACKET: \r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d",uart_data[0],uart_data[1],uart_data[2],uart_data[3],uart_data[4],uart_data[5]);
  118. //shifting and transferring the keystates to the QMK matrix variable
  119. //bits 1-12 are row 1, 13-24 are row 2, 25-36 are row 3,
  120. //bits 37-42 are row 4 (only 6 wide, 1-3 are 0, and 10-12 are 0)
  121. //bits 43-48 are row 5 (same as row 4)
  122. /* ASSUMING MSB FIRST */
  123. matrix[0] = (((uint16_t) uart_data[0] << 8) | ((uint16_t) uart_data[1])) & MAIN_ROWMASK;
  124. matrix[1] = ((uint16_t) uart_data[1] << 12) | ((uint16_t) uart_data[2] << 4);
  125. matrix[2] = (((uint16_t) uart_data[3] << 8) | ((uint16_t) uart_data[4])) & MAIN_ROWMASK;
  126. matrix[3] = (((uint16_t) uart_data[4] << 9) | ((uint16_t) uart_data[5] << 1)) & LOWER_ROWMASK;
  127. matrix[4] = (((uint16_t) uart_data[5] << 7) | ((uart_data[10] & 1<<7) ? 1:0) << 13 | ((uart_data[10] & 1<<6) ? 1:0) << 6) & LOWER_ROWMASK;
  128. /* OK, TURNS OUT THAT WAS A BAD ASSUMPTION */
  129. for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
  130. //I've unpacked these into the mirror image of what QMK expects them to be, so...
  131. /*uint8_t halfOne = (matrix[i]>>8);
  132. uint8_t halfTwo = (matrix[i] & 0xFF);
  133. halfOne = ((halfOne * 0x0802LU & 0x22110LU) | (halfOne * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
  134. halfTwo = ((halfTwo * 0x0802LU & 0x22110LU) | (halfTwo * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
  135. matrix[i] = ((halfTwo<<8) & halfOne);*/
  136. //matrix[i] = ((matrix[i] * 0x0802LU & 0x22110LU) | (matrix[i] * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
  137. matrix[i] = bitrev16(matrix[i]);
  138. //bithack mirror! Doesn't make any sense, but works - and efficiently.
  139. }
  140. //if (uart_data[6]!=0 || uart_data[7]!=0){
  141. //if (maxCount<101){
  142. // xprintf("\r\nMouse data: x=%d, y=%d",(int8_t)uart_data[6],(int8_t)uart_data[7]);
  143. //}
  144. report_mouse_t currentReport = {};
  145. //check for the end packet, bytes 1-4 are movement and scroll
  146. //but byte 5 has bits 0-3 for the scroll button state
  147. //(1000 if pressed, 0000 if not) and bits 4-7 are always 1
  148. //We can use this to verify the report sent properly.
  149. currentReport = pointing_device_get_report();
  150. //shifting and transferring the info to the mouse report varaible
  151. //mouseReport.x = 127 max -127 min
  152. currentReport.x = (int8_t) uart_data[6];
  153. //mouseReport.y = 127 max -127 min
  154. currentReport.y = (int8_t) uart_data[7];
  155. //mouseReport.v = 127 max -127 min (scroll vertical)
  156. currentReport.v = (int8_t) uart_data[8];
  157. //mouseReport.h = 127 max -127 min (scroll horizontal)
  158. currentReport.h = (int8_t) uart_data[9];
  159. /*
  160. currentReport.x = 0;
  161. currentReport.y = 0;
  162. currentReport.v = 0;
  163. currentReport.h = 0;*/
  164. pointing_device_set_report(currentReport);
  165. } else {
  166. //xprintf("\r\nRequested packet, data 10 was %d but checksum was %d",(uart_data[10] & 0x0F), (checksum & 0x0F));
  167. }
  168. //matrix_print();
  169. matrix_scan_quantum();
  170. return 1;
  171. }
  172. inline
  173. bool matrix_is_on(uint8_t row, uint8_t col)
  174. {
  175. return (matrix[row] & ((matrix_row_t)1<<col));
  176. }
  177. inline
  178. matrix_row_t matrix_get_row(uint8_t row)
  179. {
  180. return matrix[row];
  181. }
  182. void matrix_print(void)
  183. {
  184. print_matrix_header();
  185. for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
  186. print_hex8(row); print(": ");
  187. print_matrix_row(row);
  188. print("\n");
  189. }
  190. }
  191. uint8_t matrix_key_count(void)
  192. {
  193. uint8_t count = 0;
  194. for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
  195. count += matrix_bitpop(i);
  196. }
  197. return count;
  198. }