// Copyright 2021-2022 Nick Brassel (@tzarc) // Copyright 2021 Paul Cotter (@gr1mr3aver) // SPDX-License-Identifier: GPL-2.0-or-later #include "qp_internal.h" #include "qp_comms.h" #include "qp_draw.h" #include "qgf.h" _Static_assert((QUANTUM_PAINTER_PIXDATA_BUFFER_SIZE > 0) && (QUANTUM_PAINTER_PIXDATA_BUFFER_SIZE % 16) == 0, "QUANTUM_PAINTER_PIXDATA_BUFFER_SIZE needs to be a non-zero multiple of 16"); //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Global variables // // NOTE: The variables in this section are intentionally outside a stack frame. They are able to be defined with larger // sizes than the normal stack frames would allow, and as such need to be external. // // **** DO NOT refactor this and decide to place the variables inside the function calling them -- you will **** // **** very likely get artifacts rendered to the screen as a result. **** // // Buffer used for transmitting native pixel data to the downstream device. uint8_t qp_internal_global_pixdata_buffer[QUANTUM_PAINTER_PIXDATA_BUFFER_SIZE]; // Static buffer to contain a generated color palette static bool generated_palette = false; static int16_t generated_steps = -1; static qp_pixel_t interpolated_fg_hsv888; static qp_pixel_t interpolated_bg_hsv888; #if QUANTUM_PAINTER_SUPPORTS_256_PALETTE qp_pixel_t qp_internal_global_pixel_lookup_table[256]; #else qp_pixel_t qp_internal_global_pixel_lookup_table[16]; #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Helpers uint32_t qp_internal_num_pixels_in_buffer(painter_device_t device) { struct painter_driver_t *driver = (struct painter_driver_t *)device; return ((QUANTUM_PAINTER_PIXDATA_BUFFER_SIZE * 8) / driver->native_bits_per_pixel); } // qp_setpixel internal implementation, but accepts a buffer with pre-converted native pixel. Only the first pixel is used. bool qp_internal_setpixel_impl(painter_device_t device, uint16_t x, uint16_t y) { struct painter_driver_t *driver = (struct painter_driver_t *)device; return driver->driver_vtable->viewport(device, x, y, x, y) && driver->driver_vtable->pixdata(device, qp_internal_global_pixdata_buffer, 1); } // Fills the global native pixel buffer with equivalent pixels matching the supplied HSV void qp_internal_fill_pixdata(painter_device_t device, uint32_t num_pixels, uint8_t hue, uint8_t sat, uint8_t val) { struct painter_driver_t *driver = (struct painter_driver_t *)device; uint32_t pixels_in_pixdata = qp_internal_num_pixels_in_buffer(device); num_pixels = QP_MIN(pixels_in_pixdata, num_pixels); // Convert the color to native pixel format qp_pixel_t color = {.hsv888 = {.h = hue, .s = sat, .v = val}}; driver->driver_vtable->palette_convert(device, 1, &color); // Append the required number of pixels uint8_t palette_idx = 0; for (uint32_t i = 0; i < num_pixels; ++i) { driver->driver_vtable->append_pixels(device, qp_internal_global_pixdata_buffer, &color, i, 1, &palette_idx); } } // Resets the global palette so that it can be regenerated. Only needed if the colors are identical, but a different display is used with a different internal pixel format. void qp_internal_invalidate_palette(void) { generated_palette = false; generated_steps = -1; } // Interpolates between two colors to generate a palette bool qp_internal_interpolate_palette(qp_pixel_t fg_hsv888, qp_pixel_t bg_hsv888, int16_t steps) { // Check if we need to generate a new palette -- if the input parameters match then assume the palette can stay unchanged. // This may present a problem if using the same parameters but a different screen converts pixels -- use qp_internal_invalidate_palette() to reset. if (generated_palette == true && generated_steps == steps && memcmp(&interpolated_fg_hsv888, &fg_hsv888, sizeof(fg_hsv888)) == 0 && memcmp(&interpolated_bg_hsv888, &bg_hsv888, sizeof(bg_hsv888)) == 0) { // We already have the correct palette, no point regenerating it. return false; } // Save the parameters so we know whether we can skip generation generated_palette = true; generated_steps = steps; interpolated_fg_hsv888 = fg_hsv888; interpolated_bg_hsv888 = bg_hsv888; int16_t hue_fg = fg_hsv888.hsv888.h; int16_t hue_bg = bg_hsv888.hsv888.h; // Make sure we take the "shortest" route from one hue to the other if ((hue_fg - hue_bg) >= 128) { hue_bg += 256; } else if ((hue_fg - hue_bg) <= -128) { hue_bg -= 256; } // Interpolate each of the lookup table entries for (int16_t i = 0; i < steps; ++i) { qp_internal_global_pixel_lookup_table[i].hsv888.h = (uint8_t)((hue_fg - hue_bg) * i / (steps - 1) + hue_bg); qp_internal_global_pixel_lookup_table[i].hsv888.s = (uint8_t)((fg_hsv888.hsv888.s - bg_hsv888.hsv888.s) * i / (steps - 1) + bg_hsv888.hsv888.s); qp_internal_global_pixel_lookup_table[i].hsv888.v = (uint8_t)((fg_hsv888.hsv888.v - bg_hsv888.hsv888.v) * i / (steps - 1) + bg_hsv888.hsv888.v); qp_dprintf("qp_internal_interpolate_palette: %3d of %d -- H: %3d, S: %3d, V: %3d\n", (int)(i + 1), (int)steps, (int)qp_internal_global_pixel_lookup_table[i].hsv888.h, (int)qp_internal_global_pixel_lookup_table[i].hsv888.s, (int)qp_internal_global_pixel_lookup_table[i].hsv888.v); } return true; } // Helper shared between image and font rendering -- sets up the global palette to match the palette block specified in the asset. Expects the stream to be positioned at the start of the block header. bool qp_internal_load_qgf_palette(qp_stream_t *stream, uint8_t bpp) { qgf_palette_v1_t palette_descriptor; if (qp_stream_read(&palette_descriptor, sizeof(qgf_palette_v1_t), 1, stream) != 1) { qp_dprintf("Failed to read palette_descriptor, expected length was not %d\n", (int)sizeof(qgf_palette_v1_t)); return false; } // BPP determines the number of palette entries, each entry is a HSV888 triplet. const uint16_t palette_entries = 1u << bpp; // Ensure we aren't reusing any palette qp_internal_invalidate_palette(); // Read the palette entries for (uint16_t i = 0; i < palette_entries; ++i) { // Read the palette entry qgf_palette_entry_v1_t entry; if (qp_stream_read(&entry, sizeof(qgf_palette_entry_v1_t), 1, stream) != 1) { return false; } // Update the lookup table qp_internal_global_pixel_lookup_table[i].hsv888.h = entry.h; qp_internal_global_pixel_lookup_table[i].hsv888.s = entry.s; qp_internal_global_pixel_lookup_table[i].hsv888.v = entry.v; qp_dprintf("qp_internal_load_qgf_palette: %3d of %d -- H: %3d, S: %3d, V: %3d\n", (int)(i + 1), (int)palette_entries, (int)qp_internal_global_pixel_lookup_table[i].hsv888.h, (int)qp_internal_global_pixel_lookup_table[i].hsv888.s, (int)qp_internal_global_pixel_lookup_table[i].hsv888.v); } return true; } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Quantum Painter External API: qp_setpixel bool qp_setpixel(painter_device_t device, uint16_t x, uint16_t y, uint8_t hue, uint8_t sat, uint8_t val) { struct painter_driver_t *driver = (struct painter_driver_t *)device; if (!driver->validate_ok) { qp_dprintf("qp_setpixel: fail (validation_ok == false)\n"); return false; } if (!qp_comms_start(device)) { qp_dprintf("Failed to start comms in qp_setpixel\n"); return false; } qp_internal_fill_pixdata(device, 1, hue, sat, val); bool ret = qp_internal_setpixel_impl(device, x, y); qp_comms_stop(device); qp_dprintf("qp_setpixel: %s\n", ret ? "ok" : "fail"); return ret; } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Quantum Painter External API: qp_line bool qp_line(painter_device_t device, uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint8_t hue, uint8_t sat, uint8_t val) { if (x0 == x1 || y0 == y1) { qp_dprintf("qp_line(%d, %d, %d, %d): entry (deferring to qp_rect)\n", (int)x0, (int)y0, (int)x1, (int)y1); bool ret = qp_rect(device, x0, y0, x1, y1, hue, sat, val, true); qp_dprintf("qp_line(%d, %d, %d, %d): %s (deferred to qp_rect)\n", (int)x0, (int)y0, (int)x1, (int)y1, ret ? "ok" : "fail"); return ret; } qp_dprintf("qp_line(%d, %d, %d, %d): entry\n", (int)x0, (int)y0, (int)x1, (int)y1); struct painter_driver_t *driver = (struct painter_driver_t *)device; if (!driver->validate_ok) { qp_dprintf("qp_line: fail (validation_ok == false)\n"); return false; } if (!qp_comms_start(device)) { qp_dprintf("Failed to start comms in qp_line\n"); return false; } qp_internal_fill_pixdata(device, 1, hue, sat, val); // draw angled line using Bresenham's algo int16_t x = ((int16_t)x0); int16_t y = ((int16_t)y0); int16_t slopex = ((int16_t)x0) < ((int16_t)x1) ? 1 : -1; int16_t slopey = ((int16_t)y0) < ((int16_t)y1) ? 1 : -1; int16_t dx = abs(((int16_t)x1) - ((int16_t)x0)); int16_t dy = -abs(((int16_t)y1) - ((int16_t)y0)); int16_t e = dx + dy; int16_t e2 = 2 * e; bool ret = true; while (x != x1 || y != y1) { if (!qp_internal_setpixel_impl(device, x, y)) { ret = false; break; } e2 = 2 * e; if (e2 >= dy) { e += dy; x += slopex; } if (e2 <= dx) { e += dx; y += slopey; } } // draw the last pixel if (!qp_internal_setpixel_impl(device, x, y)) { ret = false; } qp_comms_stop(device); qp_dprintf("qp_line(%d, %d, %d, %d): %s\n", (int)x0, (int)y0, (int)x1, (int)y1, ret ? "ok" : "fail"); return ret; } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Quantum Painter External API: qp_rect bool qp_internal_fillrect_helper_impl(painter_device_t device, uint16_t left, uint16_t top, uint16_t right, uint16_t bottom) { uint32_t pixels_in_pixdata = qp_internal_num_pixels_in_buffer(device); struct painter_driver_t *driver = (struct painter_driver_t *)device; uint16_t l = QP_MIN(left, right); uint16_t r = QP_MAX(left, right); uint16_t t = QP_MIN(top, bottom); uint16_t b = QP_MAX(top, bottom); uint16_t w = r - l + 1; uint16_t h = b - t + 1; uint32_t remaining = w * h; driver->driver_vtable->viewport(device, l, t, r, b); while (remaining > 0) { uint32_t transmit = QP_MIN(remaining, pixels_in_pixdata); if (!driver->driver_vtable->pixdata(device, qp_internal_global_pixdata_buffer, transmit)) { return false; } remaining -= transmit; } return true; } bool qp_rect(painter_device_t device, uint16_t left, uint16_t top, uint16_t right, uint16_t bottom, uint8_t hue, uint8_t sat, uint8_t val, bool filled) { qp_dprintf("qp_rect(%d, %d, %d, %d): entry\n", (int)left, (int)top, (int)right, (int)bottom); struct painter_driver_t *driver = (struct painter_driver_t *)device; if (!driver->validate_ok) { qp_dprintf("qp_rect: fail (validation_ok == false)\n"); return false; } // Cater for cases where people have submitted the coordinates backwards uint16_t l = QP_MIN(left, right); uint16_t r = QP_MAX(left, right); uint16_t t = QP_MIN(top, bottom); uint16_t b = QP_MAX(top, bottom); uint16_t w = r - l + 1; uint16_t h = b - t + 1; bool ret = true; if (!qp_comms_start(device)) { qp_dprintf("Failed to start comms in qp_rect\n"); return false; } if (filled) { // Fill up the pixdata buffer with the required number of native pixels qp_internal_fill_pixdata(device, w * h, hue, sat, val); // Perform the draw ret = qp_internal_fillrect_helper_impl(device, l, t, r, b); } else { // Fill up the pixdata buffer with the required number of native pixels qp_internal_fill_pixdata(device, QP_MAX(w, h), hue, sat, val); // Draw 4x filled single-width rects to create an outline if (!qp_internal_fillrect_helper_impl(device, l, t, r, t) || !qp_internal_fillrect_helper_impl(device, l, b, r, b) || !qp_internal_fillrect_helper_impl(device, l, t + 1, l, b - 1) || !qp_internal_fillrect_helper_impl(device, r, t + 1, r, b - 1)) { ret = false; } } qp_comms_stop(device); qp_dprintf("qp_rect(%d, %d, %d, %d): %s\n", (int)l, (int)t, (int)r, (int)b, ret ? "ok" : "fail"); return ret; }