/* Copyright 2017 Jason Williams * Copyright 2018 Jack Humbert * Copyright 2018 Yiancar * Copyright 2020 MelGeek * Copyright 2021 MasterSpoon * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "is31flcommon.h" #include "i2c_master.h" #include "wait.h" #include // Set defaults for Timeout and Persistence #ifndef ISSI_TIMEOUT # define ISSI_TIMEOUT 100 #endif #ifndef ISSI_PERSISTENCE # define ISSI_PERSISTENCE 0 #endif // Transfer buffer for TWITransmitData() uint8_t g_twi_transfer_buffer[20]; // These buffers match the PWM & scaling registers. // Storing them like this is optimal for I2C transfers to the registers. uint8_t g_pwm_buffer[DRIVER_COUNT][ISSI_MAX_LEDS]; bool g_pwm_buffer_update_required[DRIVER_COUNT] = {false}; uint8_t g_scaling_buffer[DRIVER_COUNT][ISSI_SCALING_SIZE]; bool g_scaling_buffer_update_required[DRIVER_COUNT] = {false}; // For writing of single register entry void IS31FL_write_single_register(uint8_t addr, uint8_t reg, uint8_t data) { // Set register address and register data ready to write g_twi_transfer_buffer[0] = reg; g_twi_transfer_buffer[1] = data; #if ISSI_PERSISTENCE > 0 for (uint8_t i = 0; i < ISSI_PERSISTENCE; i++) { if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, ISSI_TIMEOUT) == 0) break; } #else i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, ISSI_TIMEOUT); #endif } // For writing of mulitple register entries to make use of address auto increment // Once the controller has been called and we have written the first bit of data // the controller will move to the next register meaning we can write sequential blocks. bool IS31FL_write_multi_registers(uint8_t addr, uint8_t *source_buffer, uint8_t buffer_size, uint8_t transfer_size, uint8_t start_reg_addr) { // Split the buffer into chunks to transfer for (int i = 0; i < buffer_size; i += transfer_size) { // Set the first entry of transfer buffer to the first register we want to write g_twi_transfer_buffer[0] = i + start_reg_addr; // Copy the section of our source buffer into the transfer buffer after first register address memcpy(g_twi_transfer_buffer + 1, source_buffer + i, transfer_size); #if ISSI_PERSISTENCE > 0 for (uint8_t i = 0; i < ISSI_PERSISTENCE; i++) { if (i2c_transmit(addr << 1, g_twi_transfer_buffer, transfer_size + 1, ISSI_TIMEOUT) != 0) { return false; } } #else if (i2c_transmit(addr << 1, g_twi_transfer_buffer, transfer_size + 1, ISSI_TIMEOUT) != 0) { return false; } #endif } return true; } void IS31FL_unlock_register(uint8_t addr, uint8_t page) { // unlock the command register and select Page to write IS31FL_write_single_register(addr, ISSI_COMMANDREGISTER_WRITELOCK, ISSI_REGISTER_UNLOCK); IS31FL_write_single_register(addr, ISSI_COMMANDREGISTER, page); } void IS31FL_common_init(uint8_t addr, uint8_t ssr) { // Setup phase, need to take out of software shutdown and configure // ISSI_SSR_x is passed to allow Master / Slave setting where applicable // Unlock the command register & select Function Register IS31FL_unlock_register(addr, ISSI_PAGE_FUNCTION); // Set Configuration Register to remove Software shutdown IS31FL_write_single_register(addr, ISSI_REG_CONFIGURATION, ISSI_CONFIGURATION); // Set Golbal Current Control Register IS31FL_write_single_register(addr, ISSI_REG_GLOBALCURRENT, ISSI_GLOBALCURRENT); // Set Pull up & Down for SWx CSy IS31FL_write_single_register(addr, ISSI_REG_PULLDOWNUP, ISSI_PULLDOWNUP); // Set Tempature Status #ifdef ISSI_REG_TEMP IS31FL_write_single_register(addr, ISSI_REG_TEMP, ISSI_TEMP); #endif // Set Spread Spectrum Register, passed through as sets SYNC function IS31FL_write_single_register(addr, ISSI_REG_SSR, ssr); // Set PWM Frequency Enable Register if applicable #ifdef ISSI_REG_PWM_ENABLE IS31FL_write_single_register(addr, ISSI_REG_PWM_ENABLE, ISSI_PWM_ENABLE); #endif // Set PWM Frequency Register if applicable #ifdef ISSI_REG_PWM_SET IS31FL_write_single_register(addr, ISSI_REG_PWM_SET, ISSI_PWM_SET); #endif // Wait 10ms to ensure the device has woken up. wait_ms(10); } void IS31FL_common_update_pwm_register(uint8_t addr, uint8_t index) { if (g_pwm_buffer_update_required[index]) { // Queue up the correct page IS31FL_unlock_register(addr, ISSI_PAGE_PWM); // Hand off the update to IS31FL_write_multi_registers IS31FL_write_multi_registers(addr, g_pwm_buffer[index], ISSI_MAX_LEDS, ISSI_PWM_TRF_SIZE, ISSI_PWM_REG_1ST); // Update flags that pwm_buffer has been updated g_pwm_buffer_update_required[index] = false; } } #ifdef ISSI_MANUAL_SCALING void IS31FL_set_manual_scaling_buffer(void) { for (int i = 0; i < ISSI_MANUAL_SCALING; i++) { is31_led scale = g_is31_scaling[i]; # ifdef RGB_MATRIX_ENABLE if (scale.driver >= 0 && scale.driver < RGB_MATRIX_LED_COUNT) { is31_led led = g_is31_leds[scale.driver]; g_scaling_buffer[led.driver][led.r] = scale.r; g_scaling_buffer[led.driver][led.g] = scale.g; g_scaling_buffer[led.driver][led.b] = scale.b; # elif defined(LED_MATRIX_ENABLE) if (scale.driver >= 0 && scale.driver < LED_MATRIX_LED_COUNT) { is31_led led = g_is31_leds[scale.driver]; g_scaling_buffer[led.driver][led.v] = scale.v; # endif g_scaling_buffer_update_required[led.driver] = true; } } } #endif void IS31FL_common_update_scaling_register(uint8_t addr, uint8_t index) { if (g_scaling_buffer_update_required[index]) { // Queue up the correct page IS31FL_unlock_register(addr, ISSI_PAGE_SCALING); // Hand off the update to IS31FL_write_multi_registers IS31FL_write_multi_registers(addr, g_scaling_buffer[index], ISSI_SCALING_SIZE, ISSI_SCALING_TRF_SIZE, ISSI_SCL_REG_1ST); // Update flags that scaling_buffer has been updated g_scaling_buffer_update_required[index] = false; } } #ifdef RGB_MATRIX_ENABLE // Colour is set by adjusting PWM register void IS31FL_RGB_set_color(int index, uint8_t red, uint8_t green, uint8_t blue) { if (index >= 0 && index < RGB_MATRIX_LED_COUNT) { is31_led led = g_is31_leds[index]; g_pwm_buffer[led.driver][led.r] = red; g_pwm_buffer[led.driver][led.g] = green; g_pwm_buffer[led.driver][led.b] = blue; g_pwm_buffer_update_required[led.driver] = true; } } void IS31FL_RGB_set_color_all(uint8_t red, uint8_t green, uint8_t blue) { for (int i = 0; i < RGB_MATRIX_LED_COUNT; i++) { IS31FL_RGB_set_color(i, red, green, blue); } } // Setup Scaling register that decides the peak current of each LED void IS31FL_RGB_set_scaling_buffer(uint8_t index, bool red, bool green, bool blue) { is31_led led = g_is31_leds[index]; if (red) { g_scaling_buffer[led.driver][led.r] = ISSI_SCAL_RED; } else { g_scaling_buffer[led.driver][led.r] = ISSI_SCAL_RED_OFF; } if (green) { g_scaling_buffer[led.driver][led.g] = ISSI_SCAL_GREEN; } else { g_scaling_buffer[led.driver][led.g] = ISSI_SCAL_GREEN_OFF; } if (blue) { g_scaling_buffer[led.driver][led.b] = ISSI_SCAL_BLUE; } else { g_scaling_buffer[led.driver][led.b] = ISSI_SCAL_BLUE_OFF; } g_scaling_buffer_update_required[led.driver] = true; } #elif defined(LED_MATRIX_ENABLE) // LED Matrix Specific scripts void IS31FL_simple_set_scaling_buffer(uint8_t index, bool value) { is31_led led = g_is31_leds[index]; if (value) { g_scaling_buffer[led.driver][led.v] = ISSI_SCAL_LED; } else { g_scaling_buffer[led.driver][led.v] = ISSI_SCAL_LED_OFF; } g_scaling_buffer_update_required[led.driver] = true; } void IS31FL_simple_set_brightness(int index, uint8_t value) { if (index >= 0 && index < LED_MATRIX_LED_COUNT) { is31_led led = g_is31_leds[index]; g_pwm_buffer[led.driver][led.v] = value; g_pwm_buffer_update_required[led.driver] = true; } } void IS31FL_simple_set_brigntness_all(uint8_t value) { for (int i = 0; i < LED_MATRIX_LED_COUNT; i++) { IS31FL_simple_set_brightness(i, value); } } #endif