/* Copyright 2019 ENDO Katsuhiro * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include "wait.h" #include "print.h" #include "debug.h" #include "matrix.h" #include "quantum.h" #include "board.h" #include "i2c_master.h" static board_info_t boards[NUM_BOARDS] = BOARD_INFOS; static board_info_t* master_board = NULL; static bool board_is_master(board_info_t* board); static bool board_is_initialized(board_info_t* board); static board_info_t* get_board_by_index(uint8_t board_index); static uint8_t board_merge_led_config(board_info_t* board, uint8_t iodir); static uint8_t board_merge_led_status(board_info_t* board, uint8_t data); static void board_master_init(void); static void board_slave_init(void); // // board interface // static void board_select_master_row(board_info_t* board, uint8_t row); static void board_unselect_master_row(board_info_t* board, uint8_t row); static void board_unselect_master_rows(board_info_t* board); static bool board_read_cols_on_master_row(board_info_t* board, matrix_row_t current_matrix[], uint8_t row); static void board_set_master_led(board_info_t* board, uint8_t led_index, bool status); static void board_select_slave_row(board_info_t* board, uint8_t row); static void board_unselect_slave_row(board_info_t* board, uint8_t row); static void board_unselect_slave_rows(board_info_t* board); static bool board_read_cols_on_slave_row(board_info_t* board, matrix_row_t current_matrix[], uint8_t row); static void board_set_slave_led(board_info_t* board, uint8_t led_index, bool status); static board_interface_t master_interface = {board_select_master_row, board_unselect_master_row, board_unselect_master_rows, board_read_cols_on_master_row, board_set_master_led}; static board_interface_t slave_interface = {board_select_slave_row, board_unselect_slave_row, board_unselect_slave_rows, board_read_cols_on_slave_row, board_set_slave_led}; static board_interface_t* get_interface(board_info_t* board) { if (board_is_master(board)) { return &master_interface; } return &slave_interface; } static void board_set_master_led(board_info_t* board, uint8_t led_index, bool status) { pin_t pin = board->led_pins[led_index]; board->led_status[led_index] = status; setPinOutput(pin); status ? writePinHigh(pin) : writePinLow(pin); } static void board_set_slave_led(board_info_t* board, uint8_t led_index, bool status) { board->led_status[led_index] = status; uint8_t iodir = board_merge_led_config(board, 0xff); uint8_t data = board_merge_led_status(board, 0x00); i2c_writeReg(EXPANDER_ADDR(board->i2c_address), EXPANDER_IODIRB, (const uint8_t*)&iodir, sizeof(iodir), BOARD_I2C_TIMEOUT); i2c_writeReg(EXPANDER_ADDR(board->i2c_address), EXPANDER_OLATB, (const uint8_t*)&data, sizeof(data), BOARD_I2C_TIMEOUT); } static uint8_t board_merge_led_config(board_info_t* board, uint8_t iodir) { for (uint8_t i = 0; i < NUM_LEDS; i++) { iodir &= PIN2MASK(board->led_pins[i]); } return iodir; } static bool board_slave_config(board_info_t* board) { uint8_t set = 0xff; uint8_t clear = 0x00; i2c_status_t res = 0; // Set to input res = i2c_writeReg(EXPANDER_ADDR(board->i2c_address), EXPANDER_IODIRA, (const uint8_t*)&set, sizeof(set), BOARD_I2C_TIMEOUT); if (res < 0) return false; // RESTRICTION: LEDs only on PORT B. set = board_merge_led_config(board, set); res = i2c_writeReg(EXPANDER_ADDR(board->i2c_address), EXPANDER_IODIRB, (const uint8_t*)&set, sizeof(set), BOARD_I2C_TIMEOUT); if (res < 0) return false; set = 0xff; // Pull up for input - enable res = i2c_writeReg(EXPANDER_ADDR(board->i2c_address), EXPANDER_GPPUA, (const uint8_t*)&set, sizeof(set), BOARD_I2C_TIMEOUT); if (res < 0) return false; res = i2c_writeReg(EXPANDER_ADDR(board->i2c_address), EXPANDER_GPPUB, (const uint8_t*)&set, sizeof(set), BOARD_I2C_TIMEOUT); if (res < 0) return false; // Disable interrupt res = i2c_writeReg(EXPANDER_ADDR(board->i2c_address), EXPANDER_GPINTENA, (const uint8_t*)&clear, sizeof(clear), BOARD_I2C_TIMEOUT); if (res < 0) return false; res = i2c_writeReg(EXPANDER_ADDR(board->i2c_address), EXPANDER_GPINTENB, (const uint8_t*)&clear, sizeof(clear), BOARD_I2C_TIMEOUT); if (res < 0) return false; // Polarity - same logic res = i2c_writeReg(EXPANDER_ADDR(board->i2c_address), EXPANDER_IPOLA, (const uint8_t*)&clear, sizeof(clear), BOARD_I2C_TIMEOUT); if (res < 0) return false; res = i2c_writeReg(EXPANDER_ADDR(board->i2c_address), EXPANDER_IPOLB, (const uint8_t*)&clear, sizeof(clear), BOARD_I2C_TIMEOUT); if (res < 0) return false; return true; } static void board_slave_init(void) { i2c_init(); _delay_ms(500); for (uint8_t i = 0; i < NUM_BOARDS; i++) { board_info_t* board = &boards[i]; if (board_is_master(board)) { continue; } if (i2c_start(EXPANDER_ADDR(board->i2c_address), BOARD_I2C_TIMEOUT) != I2C_STATUS_SUCCESS) { continue; } i2c_stop(); if (board_slave_config(board)) { board->initialized = true; } } } inline bool board_is_master(board_info_t* board) { if (board) { return board->master; } return false; } inline uint8_t matrix2board(uint8_t row) { return row % NUM_ROWS; } inline uint8_t board_index(uint8_t row) { return row / NUM_ROWS; } static board_info_t* get_master_board(void) { if (master_board == NULL) { for (uint8_t i = 0; i < NUM_BOARDS; i++) { if (boards[i].master) { master_board = &boards[i]; return master_board; } } } return NULL; } inline bool board_is_initialized(board_info_t* board) { return board == NULL ? false : board->initialized; } static board_info_t* get_board_by_index(uint8_t board_index) { if (board_index >= 0 && board_index < NUM_BOARDS) { if (!board_is_initialized(&boards[board_index])) { return NULL; } return &boards[board_index]; } return NULL; } static board_info_t* get_board(uint8_t row) { uint8_t idx = board_index(row); if (idx >= 0 && idx < NUM_BOARDS) { if (!board_is_initialized(&boards[idx])) { return NULL; } return &boards[idx]; } return NULL; } static uint8_t board_merge_led_status(board_info_t* board, uint8_t data) { if (!board_is_initialized(board)) { return data; } for (uint8_t i = 0; i < NUM_LEDS; i++) { bool status = board->led_status[i]; if (status) { data |= (uint8_t)1 << PIN2INDEX(board->led_pins[i]); } else { data &= PIN2MASK(board->led_pins[i]); } } return data; } // // Functions for slave // static uint8_t board_read_slave_cols(board_info_t* board) { if (!board_is_initialized(board)) { return 0xff; } uint8_t data = 0xff; i2c_status_t res = i2c_readReg(EXPANDER_ADDR(board->i2c_address), EXPANDER_GPIOA, &data, sizeof(data), BOARD_I2C_TIMEOUT); return (res < 0) ? 0xff : data; } static void board_select_slave_row(board_info_t* board, uint8_t board_row) { if (!board_is_initialized(board)) { return; } uint8_t pin = board->row_pins[board_row]; uint8_t iodir = board_merge_led_config(board, PIN2MASK(pin)); uint8_t status = board_merge_led_status(board, PIN2MASK(pin)); i2c_writeReg(EXPANDER_ADDR(board->i2c_address), EXPANDER_IODIRB, (const uint8_t*)&iodir, sizeof(iodir), BOARD_I2C_TIMEOUT); i2c_writeReg(EXPANDER_ADDR(board->i2c_address), EXPANDER_OLATB, (const uint8_t*)&status, sizeof(status), BOARD_I2C_TIMEOUT); } static void board_unselect_slave_rows(board_info_t* board) { if (!board_is_initialized(board)) { return; } uint8_t iodir = board_merge_led_config(board, 0xff); uint8_t data = board_merge_led_status(board, 0x00); i2c_writeReg(EXPANDER_ADDR(board->i2c_address), EXPANDER_IODIRB, (const uint8_t*)&iodir, sizeof(iodir), BOARD_I2C_TIMEOUT); i2c_writeReg(EXPANDER_ADDR(board->i2c_address), EXPANDER_OLATB, (const uint8_t*)&data, sizeof(data), BOARD_I2C_TIMEOUT); } static void board_unselect_slave_row(board_info_t* board, uint8_t board_row) { board_unselect_slave_rows(board); } /* * row : matrix row (not board row) */ static bool board_read_cols_on_slave_row(board_info_t* board, matrix_row_t current_matrix[], uint8_t row) { matrix_row_t last_row_value = current_matrix[row]; current_matrix[row] = 0; uint8_t board_row = matrix2board(row); board_select_slave_row(board, board_row); wait_us(30); uint8_t cols = board_read_slave_cols(board); for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) { uint8_t pin = board->col_pins[col_index]; uint8_t pin_state = cols & PIN2BIT(pin); current_matrix[row] |= pin_state ? 0 : (1 << col_index); } board_unselect_slave_row(board, board_row); return (last_row_value != current_matrix[row]); } // // Functions for master board // static void board_select_master_row(board_info_t* board, uint8_t board_row) { setPinOutput(board->row_pins[board_row]); writePinLow(board->row_pins[board_row]); } static void board_unselect_master_row(board_info_t* board, uint8_t board_row) { setPinInputHigh(board->row_pins[board_row]); } static void board_unselect_master_rows(board_info_t* board) { if (!board) { return; } for (uint8_t x = 0; x < NUM_ROWS; x++) { setPinInput(board->row_pins[x]); } } /* * row : matrix row (not board row) */ static bool board_read_cols_on_master_row(board_info_t* board, matrix_row_t current_matrix[], uint8_t row) { matrix_row_t last_row_value = current_matrix[row]; current_matrix[row] = 0; uint8_t board_row = matrix2board(row); board_select_master_row(board, board_row); wait_us(30); for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) { uint8_t pin_state = readPin(board->col_pins[col_index]); current_matrix[row] |= pin_state ? 0 : (1 << col_index); } board_unselect_master_row(board, board_row); return (last_row_value != current_matrix[row]); } static void board_master_init(void) { board_info_t* board = get_master_board(); if (!board) { return; } for (uint8_t x = 0; x < NUM_COLS; x++) { setPinInputHigh(board->col_pins[x]); } board->initialized = true; } static void board_setup(void) { for (uint8_t i = 0; i < NUM_BOARDS; i++) { board_info_t* board = &boards[i]; board->interface = get_interface(board); } } // // Public functions // // NOTE: Do not call this while matrix scanning... void board_set_led_by_index(uint8_t board_index, uint8_t led_index, bool status) { board_info_t* board = get_board_by_index(board_index); if (!board) return; if (led_index < 0 || led_index > NUM_LEDS) return; (*board->interface->set_led)(board, led_index, status); } bool board_read_cols_on_row(matrix_row_t current_matrix[], uint8_t row) { bool result = false; board_info_t* board = get_board(row); if (!board) { return false; } result = (*board->interface->read_cols_on_row)(board, current_matrix, row); return result; } void board_select_row(uint8_t row) { board_info_t* board = get_board(row); if (!board) { return; } uint8_t board_row = matrix2board(row); (*board->interface->select_row)(board, board_row); } void board_unselect_row(uint8_t row) { board_info_t* board = get_board(row); if (!board) { return; } uint8_t board_row = matrix2board(row); (*board->interface->unselect_row)(board, board_row); } void board_unselect_rows(void) { for (uint8_t i = 0; i < NUM_BOARDS; i++) { board_info_t* board = &boards[i]; (*board->interface->unselect_rows)(board); } } void board_init(void) { board_setup(); board_master_init(); board_slave_init(); board_unselect_rows(); }