/* Copyright 2017, 2022 Joseph Wasson, Vladislav Kucheriavykh * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "process_steno.h" #include "quantum_keycodes.h" #include "keymap_steno.h" #include #ifdef VIRTSER_ENABLE # include "virtser.h" #endif #ifdef STENO_ENABLE_ALL # include "eeprom.h" #endif // All steno keys that have been pressed to form this chord, // stored in MAX_STROKE_SIZE groups of 8-bit arrays. static uint8_t chord[MAX_STROKE_SIZE] = {0}; // The number of physical keys actually being held down. // This is not always equal to the number of 1 bits in `chord` because it is possible to // simultaneously press down four keys, then release three of those four keys and then press yet // another key while the fourth finger is still holding down its key. // At the end of this scenario given as an example, `chord` would have five bits set to 1 but // `n_pressed_keys` would be set to 2 because there are only two keys currently being pressed down. static int8_t n_pressed_keys = 0; #ifdef STENO_ENABLE_ALL static steno_mode_t mode; #elif defined(STENO_ENABLE_GEMINI) static const steno_mode_t mode = STENO_MODE_GEMINI; #elif defined(STENO_ENABLE_BOLT) static const steno_mode_t mode = STENO_MODE_BOLT; #endif static inline void steno_clear_chord(void) { memset(chord, 0, sizeof(chord)); } #ifdef STENO_ENABLE_GEMINI # ifdef VIRTSER_ENABLE void send_steno_chord_gemini(void) { // Set MSB to 1 to indicate the start of packet chord[0] |= 0x80; for (uint8_t i = 0; i < GEMINI_STROKE_SIZE; ++i) { virtser_send(chord[i]); } } # else # pragma message "VIRTSER_ENABLE = yes is required for Gemini PR to work properly out of the box!" # endif // VIRTSER_ENABLE /** * @precondition: `key` is pressed */ bool add_gemini_key_to_chord(uint8_t key) { // Although each group of the packet is 8 bits long, the MSB is reserved // to indicate whether that byte is the first byte of the packet (MSB=1) // or one of the remaining five bytes of the packet (MSB=0). // As a consequence, only 7 out of the 8 bits are left to be used as a bit array // for the steno keys of that group. const int group_idx = key / 7; const int intra_group_idx = key - group_idx * 7; // The 0th steno key of the group has bit=0b01000000, the 1st has bit=0b00100000, etc. const uint8_t bit = 1 << (6 - intra_group_idx); chord[group_idx] |= bit; return false; } #endif // STENO_ENABLE_GEMINI #ifdef STENO_ENABLE_BOLT # define TXB_GRP0 0b00000000 # define TXB_GRP1 0b01000000 # define TXB_GRP2 0b10000000 # define TXB_GRP3 0b11000000 # define TXB_GRPMASK 0b11000000 # define TXB_GET_GROUP(code) ((code & TXB_GRPMASK) >> 6) static const uint8_t boltmap[64] PROGMEM = {TXB_NUL, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_S_L, TXB_S_L, TXB_T_L, TXB_K_L, TXB_P_L, TXB_W_L, TXB_H_L, TXB_R_L, TXB_A_L, TXB_O_L, TXB_STR, TXB_STR, TXB_NUL, TXB_NUL, TXB_NUL, TXB_STR, TXB_STR, TXB_E_R, TXB_U_R, TXB_F_R, TXB_R_R, TXB_P_R, TXB_B_R, TXB_L_R, TXB_G_R, TXB_T_R, TXB_S_R, TXB_D_R, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_Z_R}; # ifdef VIRTSER_ENABLE static void send_steno_chord_bolt(void) { for (uint8_t i = 0; i < BOLT_STROKE_SIZE; ++i) { // TX Bolt uses variable length packets where each byte corresponds to a bit array of certain keys. // If a user chorded the keys of the first group with keys of the last group, for example, there // would be bytes of 0x00 in `chord` for the middle groups which we mustn't send. if (chord[i]) { virtser_send(chord[i]); } } // Sending a null packet is not always necessary, but it is simpler and more reliable // to unconditionally send it every time instead of keeping track of more states and // creating more branches in the execution of the program. virtser_send(0); } # else # pragma message "VIRTSER_ENABLE = yes is required for TX Bolt to work properly out of the box!" # endif // VIRTSER_ENABLE /** * @precondition: `key` is pressed */ static bool add_bolt_key_to_chord(uint8_t key) { uint8_t boltcode = pgm_read_byte(boltmap + key); chord[TXB_GET_GROUP(boltcode)] |= boltcode; return false; } #endif // STENO_ENABLE_BOLT #ifdef STENO_COMBINEDMAP /* Used to look up when pressing the middle row key to combine two consonant or vowel keys */ static const uint16_t combinedmap_first[] PROGMEM = {STN_S1, STN_TL, STN_PL, STN_HL, STN_FR, STN_PR, STN_LR, STN_TR, STN_DR, STN_A, STN_E}; static const uint16_t combinedmap_second[] PROGMEM = {STN_S2, STN_KL, STN_WL, STN_RL, STN_RR, STN_BR, STN_GR, STN_SR, STN_ZR, STN_O, STN_U}; #endif #ifdef STENO_ENABLE_ALL void steno_init() { if (!eeconfig_is_enabled()) { eeconfig_init(); } mode = eeprom_read_byte(EECONFIG_STENOMODE); } void steno_set_mode(steno_mode_t new_mode) { steno_clear_chord(); mode = new_mode; eeprom_update_byte(EECONFIG_STENOMODE, mode); } #endif // STENO_ENABLE_ALL /* override to intercept chords right before they get sent. * return zero to suppress normal sending behavior. */ __attribute__((weak)) bool send_steno_chord_user(steno_mode_t mode, uint8_t chord[MAX_STROKE_SIZE]) { return true; } __attribute__((weak)) bool postprocess_steno_user(uint16_t keycode, keyrecord_t *record, steno_mode_t mode, uint8_t chord[MAX_STROKE_SIZE], int8_t n_pressed_keys) { return true; } __attribute__((weak)) bool process_steno_user(uint16_t keycode, keyrecord_t *record) { return true; } bool process_steno(uint16_t keycode, keyrecord_t *record) { if (keycode < QK_STENO || keycode > QK_STENO_MAX) { return true; // Not a steno key, pass it further along the chain /* * Clearing or sending the chord state is not necessary as we intentionally ignore whatever * normal keyboard keys the user may have tapped while chording steno keys. */ } if (IS_NOEVENT(record->event)) { return true; } if (!process_steno_user(keycode, record)) { return false; // User fully processed the steno key themselves } switch (keycode) { #ifdef STENO_ENABLE_ALL case QK_STENO_BOLT: if (IS_PRESSED(record->event)) { steno_set_mode(STENO_MODE_BOLT); } return false; case QK_STENO_GEMINI: if (IS_PRESSED(record->event)) { steno_set_mode(STENO_MODE_GEMINI); } return false; #endif // STENO_ENABLE_ALL #ifdef STENO_COMBINEDMAP case QK_STENO_COMB ... QK_STENO_COMB_MAX: { bool first_result = process_steno(combinedmap_first[keycode - QK_STENO_COMB], record); bool second_result = process_steno(combinedmap_second[keycode - QK_STENO_COMB], record); return first_result && second_result; } #endif // STENO_COMBINEDMAP case STN__MIN ... STN__MAX: if (IS_PRESSED(record->event)) { n_pressed_keys++; switch (mode) { #ifdef STENO_ENABLE_BOLT case STENO_MODE_BOLT: add_bolt_key_to_chord(keycode - QK_STENO); break; #endif // STENO_ENABLE_BOLT #ifdef STENO_ENABLE_GEMINI case STENO_MODE_GEMINI: add_gemini_key_to_chord(keycode - QK_STENO); break; #endif // STENO_ENABLE_GEMINI default: return false; } if (!postprocess_steno_user(keycode, record, mode, chord, n_pressed_keys)) { return false; } } else { // is released n_pressed_keys--; if (!postprocess_steno_user(keycode, record, mode, chord, n_pressed_keys)) { return false; } if (n_pressed_keys > 0) { // User hasn't released all keys yet, // so the chord cannot be sent return false; } n_pressed_keys = 0; if (!send_steno_chord_user(mode, chord)) { steno_clear_chord(); return false; } switch (mode) { #if defined(STENO_ENABLE_BOLT) && defined(VIRTSER_ENABLE) case STENO_MODE_BOLT: send_steno_chord_bolt(); break; #endif // STENO_ENABLE_BOLT && VIRTSER_ENABLE #if defined(STENO_ENABLE_GEMINI) && defined(VIRTSER_ENABLE) case STENO_MODE_GEMINI: send_steno_chord_gemini(); break; #endif // STENO_ENABLE_GEMINI && VIRTSER_ENABLE default: break; } steno_clear_chord(); } break; } return false; }