/* * Copyright 2018 Jack Humbert * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "encoder.h" #ifdef SPLIT_KEYBOARD # include "split_util.h" #endif // for memcpy #include #ifndef ENCODER_MAP_KEY_DELAY # define ENCODER_MAP_KEY_DELAY 2 #endif #if !defined(ENCODER_RESOLUTIONS) && !defined(ENCODER_RESOLUTION) # define ENCODER_RESOLUTION 4 #endif #if !defined(ENCODERS_PAD_A) || !defined(ENCODERS_PAD_B) # error "No encoder pads defined by ENCODERS_PAD_A and ENCODERS_PAD_B" #endif extern volatile bool isLeftHand; static pin_t encoders_pad_a[NUM_ENCODERS_MAX_PER_SIDE] = ENCODERS_PAD_A; static pin_t encoders_pad_b[NUM_ENCODERS_MAX_PER_SIDE] = ENCODERS_PAD_B; #ifdef ENCODER_RESOLUTIONS static uint8_t encoder_resolutions[NUM_ENCODERS] = ENCODER_RESOLUTIONS; #endif #ifndef ENCODER_DIRECTION_FLIP # define ENCODER_CLOCKWISE true # define ENCODER_COUNTER_CLOCKWISE false #else # define ENCODER_CLOCKWISE false # define ENCODER_COUNTER_CLOCKWISE true #endif static int8_t encoder_LUT[] = {0, -1, 1, 0, 1, 0, 0, -1, -1, 0, 0, 1, 0, 1, -1, 0}; static uint8_t encoder_state[NUM_ENCODERS] = {0}; static int8_t encoder_pulses[NUM_ENCODERS] = {0}; // encoder counts static uint8_t thisCount; #ifdef SPLIT_KEYBOARD // encoder offsets for each hand static uint8_t thisHand, thatHand; // encoder counts for each hand static uint8_t thatCount; #endif static uint8_t encoder_value[NUM_ENCODERS] = {0}; __attribute__((weak)) void encoder_wait_pullup_charge(void) { wait_us(100); } __attribute__((weak)) bool encoder_update_user(uint8_t index, bool clockwise) { return true; } __attribute__((weak)) bool encoder_update_kb(uint8_t index, bool clockwise) { return encoder_update_user(index, clockwise); } __attribute__((weak)) uint8_t encoder_read_state(uint8_t index) { return (readPin(encoders_pad_a[index]) << 0) | (readPin(encoders_pad_b[index]) << 1); } __attribute__((weak)) void encoder_init_state(uint8_t index) { setPinInputHigh(encoders_pad_a[index]); setPinInputHigh(encoders_pad_b[index]); } void encoder_init(void) { #ifdef SPLIT_KEYBOARD thisHand = isLeftHand ? 0 : NUM_ENCODERS_LEFT; thatHand = NUM_ENCODERS_LEFT - thisHand; thisCount = isLeftHand ? NUM_ENCODERS_LEFT : NUM_ENCODERS_RIGHT; thatCount = isLeftHand ? NUM_ENCODERS_RIGHT : NUM_ENCODERS_LEFT; #else // SPLIT_KEYBOARD thisCount = NUM_ENCODERS; #endif #ifdef ENCODER_TESTS // Annoying that we have to clear out values during initialisation here, but // because all the arrays are static locals, rerunning tests in the same // executable doesn't reset any of these. Kinda crappy having test-only code // here, but it's the simplest solution. memset(encoder_value, 0, sizeof(encoder_value)); memset(encoder_state, 0, sizeof(encoder_state)); memset(encoder_pulses, 0, sizeof(encoder_pulses)); static const pin_t encoders_pad_a_left[] = ENCODERS_PAD_A; static const pin_t encoders_pad_b_left[] = ENCODERS_PAD_B; for (uint8_t i = 0; i < thisCount; i++) { encoders_pad_a[i] = encoders_pad_a_left[i]; encoders_pad_b[i] = encoders_pad_b_left[i]; } #endif #if defined(SPLIT_KEYBOARD) && defined(ENCODERS_PAD_A_RIGHT) && defined(ENCODERS_PAD_B_RIGHT) // Re-initialise the pads if it's the right-hand side if (!isLeftHand) { static const pin_t encoders_pad_a_right[] = ENCODERS_PAD_A_RIGHT; static const pin_t encoders_pad_b_right[] = ENCODERS_PAD_B_RIGHT; for (uint8_t i = 0; i < thisCount; i++) { encoders_pad_a[i] = encoders_pad_a_right[i]; encoders_pad_b[i] = encoders_pad_b_right[i]; } } #endif // defined(SPLIT_KEYBOARD) && defined(ENCODERS_PAD_A_RIGHT) && defined(ENCODERS_PAD_B_RIGHT) // Encoder resolutions is handled purely master-side, so concatenate the two arrays #if defined(SPLIT_KEYBOARD) && defined(ENCODER_RESOLUTIONS) # if defined(ENCODER_RESOLUTIONS_RIGHT) static const uint8_t encoder_resolutions_right[NUM_ENCODERS_RIGHT] = ENCODER_RESOLUTIONS_RIGHT; # else // defined(ENCODER_RESOLUTIONS_RIGHT) static const uint8_t encoder_resolutions_right[NUM_ENCODERS_RIGHT] = ENCODER_RESOLUTIONS; # endif // defined(ENCODER_RESOLUTIONS_RIGHT) for (uint8_t i = 0; i < NUM_ENCODERS_RIGHT; i++) { encoder_resolutions[NUM_ENCODERS_LEFT + i] = encoder_resolutions_right[i]; } #endif // defined(SPLIT_KEYBOARD) && defined(ENCODER_RESOLUTIONS) for (uint8_t i = 0; i < thisCount; i++) { encoder_init_state(i); } encoder_wait_pullup_charge(); for (uint8_t i = 0; i < thisCount; i++) { encoder_state[i] = encoder_read_state(i); } } #ifdef ENCODER_MAP_ENABLE static void encoder_exec_mapping(uint8_t index, bool clockwise) { // The delays below cater for Windows and its wonderful requirements. action_exec(clockwise ? ENCODER_CW_EVENT(index, true) : ENCODER_CCW_EVENT(index, true)); wait_ms(ENCODER_MAP_KEY_DELAY); action_exec(clockwise ? ENCODER_CW_EVENT(index, false) : ENCODER_CCW_EVENT(index, false)); wait_ms(ENCODER_MAP_KEY_DELAY); } #endif // ENCODER_MAP_ENABLE static bool encoder_update(uint8_t index, uint8_t state) { bool changed = false; uint8_t i = index; #ifdef ENCODER_RESOLUTIONS const uint8_t resolution = encoder_resolutions[i]; #else const uint8_t resolution = ENCODER_RESOLUTION; #endif #ifdef SPLIT_KEYBOARD index += thisHand; #endif encoder_pulses[i] += encoder_LUT[state & 0xF]; if (encoder_pulses[i] >= resolution) { encoder_value[index]++; changed = true; #ifdef ENCODER_MAP_ENABLE encoder_exec_mapping(index, ENCODER_COUNTER_CLOCKWISE); #else // ENCODER_MAP_ENABLE encoder_update_kb(index, ENCODER_COUNTER_CLOCKWISE); #endif // ENCODER_MAP_ENABLE } if (encoder_pulses[i] <= -resolution) { // direction is arbitrary here, but this clockwise encoder_value[index]--; changed = true; #ifdef ENCODER_MAP_ENABLE encoder_exec_mapping(index, ENCODER_CLOCKWISE); #else // ENCODER_MAP_ENABLE encoder_update_kb(index, ENCODER_CLOCKWISE); #endif // ENCODER_MAP_ENABLE } encoder_pulses[i] %= resolution; #ifdef ENCODER_DEFAULT_POS if ((state & 0x3) == ENCODER_DEFAULT_POS) { encoder_pulses[i] = 0; } #endif return changed; } bool encoder_read(void) { bool changed = false; for (uint8_t i = 0; i < thisCount; i++) { uint8_t new_status = encoder_read_state(i); if ((encoder_state[i] & 0x3) != new_status) { encoder_state[i] <<= 2; encoder_state[i] |= new_status; changed |= encoder_update(i, encoder_state[i]); } } return changed; } #ifdef SPLIT_KEYBOARD void last_encoder_activity_trigger(void); void encoder_state_raw(uint8_t *slave_state) { memcpy(slave_state, &encoder_value[thisHand], sizeof(uint8_t) * thisCount); } void encoder_update_raw(uint8_t *slave_state) { bool changed = false; for (uint8_t i = 0; i < thatCount; i++) { // Note inverted logic -- we want the opposite side const uint8_t index = i + thatHand; int8_t delta = slave_state[i] - encoder_value[index]; while (delta > 0) { delta--; encoder_value[index]++; changed = true; # ifdef ENCODER_MAP_ENABLE encoder_exec_mapping(index, ENCODER_COUNTER_CLOCKWISE); # else // ENCODER_MAP_ENABLE encoder_update_kb(index, ENCODER_COUNTER_CLOCKWISE); # endif // ENCODER_MAP_ENABLE } while (delta < 0) { delta++; encoder_value[index]--; changed = true; # ifdef ENCODER_MAP_ENABLE encoder_exec_mapping(index, ENCODER_CLOCKWISE); # else // ENCODER_MAP_ENABLE encoder_update_kb(index, ENCODER_CLOCKWISE); # endif // ENCODER_MAP_ENABLE } } // Update the last encoder input time -- handled external to encoder_read() when we're running a split if (changed) last_encoder_activity_trigger(); } #endif