/* Copyright 2021 OpenAnnePro community * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include "hal.h" #include "annepro2.h" #include "ap2_led.h" #include "protocol.h" ap2_led_t led_mask[KEY_COUNT]; ap2_led_t led_colors[KEY_COUNT]; ap2_led_status_t ap2_led_status; uint8_t rgb_row_changed[NUM_ROW]; void led_command_callback(const message_t *msg) { switch (msg->command) { case CMD_LED_STATUS: ap2_led_status.amount_of_profiles = msg->payload[0]; ap2_led_status.current_profile = msg->payload[1]; ap2_led_status.matrix_enabled = msg->payload[2]; ap2_led_status.is_reactive = msg->payload[3]; ap2_led_status.led_intensity = msg->payload[4]; ap2_led_status.errors = msg->payload[5]; break; #ifdef CONSOLE_ENABLE case CMD_LED_DEBUG: /* TODO: Don't use printf. */ printf("LED:"); for (int i = 0; i < msg->payload_size; i++) { printf("%02x ", msg->payload[i]); } for (int i = 0; i < msg->payload_size; i++) { printf("%c", msg->payload[i]); } printf("\n"); break; #endif } } void ap2_set_IAP(void) { proto_tx(CMD_LED_IAP, NULL, 0, 3); } void ap2_led_disable(void) { proto_tx(CMD_LED_OFF, NULL, 0, 3); } void ap2_led_enable(void) { proto_tx(CMD_LED_ON, NULL, 0, 3); } void ap2_led_set_profile(uint8_t prof) { proto_tx(CMD_LED_SET_PROFILE, &prof, sizeof(prof), 3); } void ap2_led_get_status() { proto_tx(CMD_LED_GET_STATUS, NULL, 0, 3); } void ap2_led_next_profile() { proto_tx(CMD_LED_NEXT_PROFILE, NULL, 0, 3); } void ap2_led_next_intensity() { proto_tx(CMD_LED_NEXT_INTENSITY, NULL, 0, 3); } void ap2_led_next_animation_speed() { proto_tx(CMD_LED_NEXT_ANIMATION_SPEED, NULL, 0, 3); } void ap2_led_prev_profile() { proto_tx(CMD_LED_PREV_PROFILE, NULL, 0, 3); } void ap2_led_mask_set_key(uint8_t row, uint8_t col, ap2_led_t color) { uint8_t payload[] = {row, col, color.p.blue, color.p.green, color.p.red, color.p.alpha}; proto_tx(CMD_LED_MASK_SET_KEY, payload, sizeof(payload), 1); } /* Push a whole local row to the shine */ void ap2_led_mask_set_row(uint8_t row) { uint8_t payload[NUM_COLUMN * sizeof(ap2_led_t) + 1]; payload[0] = row; memcpy(payload + 1, &led_mask[ROWCOL2IDX(row, 0)], sizeof(*led_mask) * NUM_COLUMN); proto_tx(CMD_LED_MASK_SET_ROW, payload, sizeof(payload), 1); } /* Synchronize all rows */ void ap2_led_mask_set_all(void) { for (int row = 0; row < 5; row++) ap2_led_mask_set_row(row); } /* Set all keys to a given color */ void ap2_led_mask_set_mono(const ap2_led_t color) { proto_tx(CMD_LED_MASK_SET_MONO, (uint8_t *)&color, sizeof(color), 1); } void ap2_led_colors_set_key(uint8_t row, uint8_t col, ap2_led_t color) { uint8_t payload[] = {row, col, color.p.blue, color.p.green, color.p.red, color.p.alpha}; proto_tx(CMD_LED_COLOR_SET_KEY, payload, sizeof(payload), 1); } /* Push a whole local row to the shine */ void ap2_led_colors_set_row(uint8_t row) { uint8_t payload[NUM_COLUMN * sizeof(ap2_led_t) + 1]; payload[0] = row; memcpy(payload + 1, &led_colors[ROWCOL2IDX(row, 0)], sizeof(*led_colors) * NUM_COLUMN); proto_tx(CMD_LED_COLOR_SET_ROW, payload, sizeof(payload), 1); } /* Synchronize all rows */ void ap2_led_colors_set_all(void) { for (int row = 0; row < 5; row++) ap2_led_colors_set_row(row); } /* Set all keys to a given color */ void ap2_led_colors_set_mono(const ap2_led_t color) { proto_tx(CMD_LED_COLOR_SET_MONO, (uint8_t *)&color, sizeof(color), 1); } void ap2_led_set_manual_control(uint8_t manual) { uint8_t payload[] = {manual}; proto_tx(CMD_LED_SET_MANUAL, payload, sizeof(payload), 1); } void ap2_led_blink(uint8_t row, uint8_t col, ap2_led_t color, uint8_t count, uint8_t hundredths) { uint8_t payload[] = {row, col, color.p.blue, color.p.green, color.p.red, color.p.alpha, count, hundredths}; proto_tx(CMD_LED_KEY_BLINK, payload, sizeof(payload), 1); } void ap2_led_set_foreground_color(uint8_t red, uint8_t green, uint8_t blue) { ap2_led_t color = {.p.red = red, .p.green = green, .p.blue = blue, .p.alpha = 0xff}; ap2_led_mask_set_mono(color); } void ap2_led_reset_foreground_color() { ap2_led_t color = { .p.red = 0, .p.green = 0, .p.blue = 0, .p.alpha = 0, }; ap2_led_mask_set_mono(color); } /* * Currently keypresses are unified with other messages, still with single 1 * byte payload. Transfer is normally fast enough for that to not be a problem - * especially with asynchronous message reading. * * * Previous description: * If enabled, this data is sent to LED MCU on every keypress. * In order to improve performance, both row and column values * are packed into a single byte. * Row range is [0, 4] and requires only 3 bits. * Column range is [0, 13] and requires 4 bits. * * In order to differentiate this command from regular commands, * the leftmost bit is set to 1 (0b10000000). * Following it are 3 bits of row and 4 bits of col. * 1 + 3 + 4 = 8 bits - only a single byte is sent for every keypress. */ void ap2_led_forward_keypress(uint8_t row, uint8_t col) { const uint8_t payload = row << 4 | col; proto_tx(CMD_LED_KEY_DOWN, &payload, 1, 1); }