|
|
- #pragma once
-
- #include "esphome/core/component.h"
- #include "esphome/components/ledc/ledc_output.h"
- #include "esphome/components/light/light_output.h"
- #include "esphome/components/gpio/output/gpio_binary_output.h"
-
-
- // What seems to be a bug in ESPHome transitioning: when turning on
- // the device, the brightness is scaled along with the state (which
- // runs from 0 to 1), but when turning off the device, the brightness
- // is kept the same while the state goes down from 1 to 0. As a result
- // when turning off the lamp with a transition time of 1s, the light
- // stays on for 1s and then turn itself off abruptly.
- //
- // Reported the issue + fix at:
- // https://github.com/esphome/esphome/pull/1643
- //
- // A work-around for this issue can be enabled using the following
- // define. Note that the code provides a forward-compatible fix, so
- // having this define active with a fixed ESPHome version should
- // not be a problem.
- #define TRANSITION_TO_OFF_BUGFIX
-
- namespace esphome
- {
- namespace rgbww
- {
- static const char *TAG = "yeelight_bs2.light";
-
- // Same range as supported by the original Yeelight firmware.
- static const int HOME_ASSISTANT_MIRED_MIN = 153;
- static const int HOME_ASSISTANT_MIRED_MAX = 588;
-
- // The PWM frequency as used by the original device
- // for driving the LED circuitry.
- const float PWM_FREQUENCY = 3000.0f;
-
- class YeelightBS2LightOutput : public Component, public light::LightOutput
- {
- public:
- void set_red(ledc::LEDCOutput *red) { red_ = red; red_->set_frequency(PWM_FREQUENCY); }
- void set_green(ledc::LEDCOutput *green) { green_ = green; green_->set_frequency(PWM_FREQUENCY); }
- void set_blue(ledc::LEDCOutput *blue) { blue_ = blue; blue_->set_frequency(PWM_FREQUENCY); }
- void set_white(ledc::LEDCOutput *white) { white_ = white; white_->set_frequency(PWM_FREQUENCY); }
- void set_master1(gpio::GPIOBinaryOutput *master1) { master1_ = master1; }
- void set_master2(gpio::GPIOBinaryOutput *master2) { master2_ = master2; }
-
- light::LightTraits get_traits() override
- {
- auto traits = light::LightTraits();
- traits.set_supports_rgb(true);
- traits.set_supports_color_temperature(true);
- traits.set_supports_brightness(true);
- traits.set_supports_rgb_white_value(false);
- traits.set_supports_color_interlock(true);
- traits.set_min_mireds(HOME_ASSISTANT_MIRED_MIN);
- traits.set_max_mireds(HOME_ASSISTANT_MIRED_MAX);
- return traits;
- }
-
- void write_state(light::LightState *state) override
- {
- auto values = state->current_values;
-
- ESP_LOGD(TAG, "B = State %f, RGB %f %f %f, BRI %f, TEMP %f",
- values.get_state(),
- values.get_red(), values.get_green(), values.get_blue(),
- values.get_brightness(), values.get_color_temperature());
-
- // Power down the light when its state is 'off'.
- if (values.get_state() == 0)
- {
- this->turn_off_();
- #ifdef TRANSITION_TO_OFF_BUGFIX
- previous_state_ = -1;
- previous_brightness_ = 0;
- #endif
- return;
- }
-
- auto brightness = values.get_brightness();
-
- #ifdef TRANSITION_TO_OFF_BUGFIX
- // Remember the brightness that is used when the light is fully ON.
- if (values.get_state() == 1) {
- previous_brightness_ = brightness;
- }
- // When transitioning towards zero brightness ...
- else if (values.get_state() < previous_state_) {
- // ... check if the prevous brightness is the same as the current
- // brightness. If yes, then the brightness isn't being scaled ...
- if (previous_brightness_ == brightness) {
- // ... and we need to do that ourselves.
- brightness = values.get_state() * brightness;
- }
- }
- previous_state_ = values.get_state();
- #endif
-
- // Leave it to the default tooling to figure out the basics.
- // Because of the color interlocking, there are two possible outcomes:
- // - red, green, blue zero -> the light is in color temperature mode
- // - cwhite, wwhite zero -> the light is in RGB mode
- float red, green, blue, cwhite, wwhite;
- state->current_values_as_rgbww(&red, &green, &blue, &cwhite, &wwhite, true, false);
-
- if (cwhite > 0 || wwhite > 0)
- {
- this->turn_on_in_color_temperature_mode_(
- values.get_color_temperature(), brightness);
- }
- else
- {
- // The RGB mode does not use the RGB values as determined by
- // current_values_as_rgbww(). The device has LED driving circuitry
- // that takes care of the required brightness curve while ramping up
- // the brightness. Therefore, the actual RGB values are passed here.
- this->turn_on_in_rgb_mode_(
- values.get_red(), values.get_green(), values.get_blue(),
- brightness, values.get_state());
- }
- }
-
- protected:
- ledc::LEDCOutput *red_;
- ledc::LEDCOutput *green_;
- ledc::LEDCOutput *blue_;
- ledc::LEDCOutput *white_;
- esphome::gpio::GPIOBinaryOutput *master1_;
- esphome::gpio::GPIOBinaryOutput *master2_;
- #ifdef TRANSITION_TO_OFF_BUGFIX
- float previous_state_ = 1;
- float previous_brightness_ = -1;
- #endif
-
- void turn_off_()
- {
- red_->set_level(1);
- green_->set_level(1);
- blue_->set_level(1);
- white_->turn_off();
- master2_->turn_off();
- master1_->turn_off();
- }
-
- void turn_on_in_rgb_mode_(float red, float green, float blue, float brightness, float state)
- {
- ESP_LOGD(TAG, "Activate RGB %f, %f, %f, BRIGHTNESS %f", red, green, blue, brightness);
-
- // The brightness must be at least 3/100 to light up the LEDs.
- // During transitions (where state is a fraction between 0 and 1,
- // indicating the transition progress) we don't apply this to
- // get smoother transitioning when turning on the light.
- if (state == 1 && brightness < 0.03f)
- brightness = 0.03f;
-
- // Apply proper color mixing around the RGB white point.
- // Overall, the RGB colors are very usable when simply scaling the
- // RGB channels with the brightness, but around the white point,
- // the color is a bit on the red side of the spectrum. The following
- // scaling was created to fix that.
- // RGBW 0.432451, 0.013149, 0.556678
- // R 0.57 g 1 b 0.45
- auto red_w = (0.07f + brightness*(0.57f - 0.07f)) * red;
- auto green_w = (0.13f + brightness*(1.00f - 0.13f)) * green;
- auto blue_w = (0.06f + brightness*(0.45f - 0.06f)) * blue;
-
- // For other colors, we can simply scale the RGB channels with the
- // requested brightness, resulting in a very usable color. Not 100%
- // the same as the original firmware, but sometimes even better IMO.
- auto red_c = red * brightness;
- auto green_c = green * brightness;
- auto blue_c = blue * brightness;
-
- // The actual RGB values are a weighed mix of the above two.
- // The closer to the white point, the more the white point
- // value applies.
- auto level_red = (red_w * ((green+blue)/2)) + (red_c * (1-(green+blue)/2));
- auto level_green = (green_w * ((red+blue)/2)) + (green_c * (1-(red+blue)/2));
- auto level_blue = (blue_w * ((red+green)/2)) + (blue_c * (1-(red+green)/2));
-
- // Invert the signal. The LEDs in the lamp's circuit are brighter
- // when the pwm levels on the GPIO pins are lower.
- level_red = 1.0f - level_red;
- level_green = 1.0f - level_green;
- level_blue = 1.0f - level_blue;
-
- ESP_LOGD(TAG, "New LED state : RGBW %f, %f, %f, off", level_red, level_green, level_blue);
-
- // Drive the LEDs.
- master2_->turn_on();
- master1_->turn_on();
- red_->set_level(level_red);
- green_->set_level(level_green);
- blue_->set_level(level_blue);
- white_->turn_off();
- }
-
- void turn_on_in_color_temperature_mode_(float temperature, float brightness)
- {
- ESP_LOGD(TAG, "Activate TEMPERATURE %f, BRIGHTNESS %f", temperature, brightness);
-
- // Empirically determined during programming the temperature GPIO output
- // code from below, by checking how far my outputs were off from the
- // original lamp firmeware's outputs. This scaler is used for correcting
- // my output towards the original output.
- float scaler;
-
- float red = 1.0;
- float green = 1.0;
- float blue = 1.0;
- float white = 1.0;
-
- // Temperature band 370 - 588
- if (temperature <= HOME_ASSISTANT_MIRED_MAX && temperature >= 371)
- {
- scaler = 3.23f;
-
- float start = 371;
- float end = 588;
- float band = end - start;
-
- float red_volt = 2.86f * (1.0f - brightness);
- red = red_volt / scaler;
-
- float green_1 = 2.90f + (temperature - start) * (2.97f - 2.90f) / band;
- float green_100 = 0.45f + (temperature - start) * (1.13f - 0.45f) / band;
- float green_volt = green_1 + brightness * (green_100 - green_1);
- green = green_volt / scaler;
-
- float white_1 = 0.28f - (temperature - start) * (0.28f - 0.19f) / band;
- float white_100 = 1.07f - (temperature - start) * (1.07f - 0.22f) / band;
- float white_volt = white_1 + brightness * (white_100 - white_1);
- white = white_volt / scaler;
- }
- // Temperature band 334 - 370
- else if (temperature >= 334)
- {
- scaler = 3.23f;
-
- float red_volt = (1.0f - brightness) * 2.86f;
- red = red_volt / scaler;
-
- float green_volt = 2.9f - brightness * (2.9f - 0.45f);
- green = green_volt / scaler;
-
- float white_volt = 0.28f + brightness * (1.07f - 0.28f);
- white = white_volt / scaler;
- }
- // Temperature band 313 - 333
- //
- // The light becomes noticably brighter when moving from temperature 334 to
- // temperature 333. There's a little jump in the lighting output here.
- // Possibly this is a switch from warm to cold lighting as imposed by the
- // LED circuitry, making this unavoidable. However, it would be interesting
- // to see if we can smoothen this out.
- // BTW: This behavior is in sync with the original firmware.
- else if (temperature >= 313)
- {
- scaler = 3.23f;
-
- float red_volt = 2.89f - brightness * (2.89f - 0.32f);
- red = red_volt / scaler;
-
- float green_volt = 2.96f - brightness * (2.96f - 1.03f);
- green = green_volt / scaler;
-
- float white_volt = 0.42f + brightness * (2.43f - 0.42f);
- float scaler_white = 3.45f;
- white = white_volt / scaler_white;
- }
- // Temperature band 251 - 312
- else if (temperature >= 251)
- {
- scaler = 3.48f;
-
- float white_correction = 1.061;
- float white_volt = 0.5f + brightness * (3.28f * white_correction - 0.5f);
- white = white_volt / scaler;
- }
- // Temperature band 223 - 250
- else if (temperature >= 223)
- {
- scaler = 3.25f;
-
- float green_volt = 2.94f - brightness * (2.94f - 0.88f);
- green = green_volt / scaler;
-
- float blue_volt = 3.02f - brightness * (3.02f - 1.59f);
- blue = blue_volt / scaler;
-
- float white_correction = 1.024f;
- float white_volt = 0.42f + brightness * (2.51f * white_correction - 0.42f);
- float scaler_white = 3.36f;
- white = white_volt / scaler_white;
- }
- // Temperature band 153 - 222
- else if (temperature >= HOME_ASSISTANT_MIRED_MIN)
- {
- float start = 153;
- float end = 222;
- float band = end - start;
-
- scaler = 3.23f;
-
- float green_volt = 2.86f - brightness * 2.86f;
- green = green_volt / scaler;
-
- float blue_1 = 2.92f + (temperature - start) * (2.97f - 2.92f) / band;
- float blue_100 = 0.62f + (temperature - start) * (1.17f - 0.62f) / band;
- float blue_volt = blue_1 - brightness * (blue_1 - blue_100);
- blue = blue_volt / scaler;
-
- float white_1 = 0.28f + (temperature - start) * (0.37f - 0.28f) / band;
- float white_100 = 1.1f + (temperature - start) * (2.0f - 1.1f) / band;
- float white_volt = white_1 + brightness * (white_100 - white_1);
- float scaler_white = 3.27f;
- white = white_volt / scaler_white;
- }
-
- ESP_LOGD(TAG, "New LED state : RGBW %f, %f, %f, %f", red, green, blue, white);
-
- master2_->turn_on();
- master1_->turn_on();
- red_->set_level(red);
- green_->set_level(green);
- blue_->set_level(blue);
- white_->set_level(white);
- }
- };
-
- } // namespace rgbww
- } // namespace esphome
|