|
@ -22,313 +22,222 @@ |
|
|
// not be a problem. |
|
|
// not be a problem. |
|
|
#define TRANSITION_TO_OFF_BUGFIX |
|
|
#define TRANSITION_TO_OFF_BUGFIX |
|
|
|
|
|
|
|
|
namespace esphome |
|
|
|
|
|
{ |
|
|
|
|
|
namespace rgbww |
|
|
|
|
|
{ |
|
|
|
|
|
static const char *TAG = "yeelight_bs2.light"; |
|
|
|
|
|
|
|
|
namespace esphome { |
|
|
|
|
|
namespace rgbww { |
|
|
|
|
|
|
|
|
// Same range as supported by the original Yeelight firmware. |
|
|
|
|
|
static const int HOME_ASSISTANT_MIRED_MIN = 153; |
|
|
|
|
|
static const int HOME_ASSISTANT_MIRED_MAX = 588; |
|
|
|
|
|
|
|
|
|
|
|
// The PWM frequency as used by the original device |
|
|
|
|
|
// for driving the LED circuitry. |
|
|
|
|
|
const float PWM_FREQUENCY = 3000.0f; |
|
|
|
|
|
|
|
|
static const char *TAG = "yeelight_bs2.light"; |
|
|
|
|
|
|
|
|
class YeelightBS2LightOutput : public Component, public light::LightOutput |
|
|
|
|
|
{ |
|
|
|
|
|
public: |
|
|
|
|
|
void set_red(ledc::LEDCOutput *red) { red_ = red; red_->set_frequency(PWM_FREQUENCY); } |
|
|
|
|
|
void set_green(ledc::LEDCOutput *green) { green_ = green; green_->set_frequency(PWM_FREQUENCY); } |
|
|
|
|
|
void set_blue(ledc::LEDCOutput *blue) { blue_ = blue; blue_->set_frequency(PWM_FREQUENCY); } |
|
|
|
|
|
void set_white(ledc::LEDCOutput *white) { white_ = white; white_->set_frequency(PWM_FREQUENCY); } |
|
|
|
|
|
void set_master1(gpio::GPIOBinaryOutput *master1) { master1_ = master1; } |
|
|
|
|
|
void set_master2(gpio::GPIOBinaryOutput *master2) { master2_ = master2; } |
|
|
|
|
|
|
|
|
|
|
|
light::LightTraits get_traits() override |
|
|
|
|
|
{ |
|
|
|
|
|
auto traits = light::LightTraits(); |
|
|
|
|
|
traits.set_supports_rgb(true); |
|
|
|
|
|
traits.set_supports_color_temperature(true); |
|
|
|
|
|
traits.set_supports_brightness(true); |
|
|
|
|
|
traits.set_supports_rgb_white_value(false); |
|
|
|
|
|
traits.set_supports_color_interlock(true); |
|
|
|
|
|
traits.set_min_mireds(HOME_ASSISTANT_MIRED_MIN); |
|
|
|
|
|
traits.set_max_mireds(HOME_ASSISTANT_MIRED_MAX); |
|
|
|
|
|
return traits; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
// Same range as supported by the original Yeelight firmware. |
|
|
|
|
|
static const int HOME_ASSISTANT_MIRED_MIN = 153; |
|
|
|
|
|
static const int HOME_ASSISTANT_MIRED_MAX = 588; |
|
|
|
|
|
|
|
|
|
|
|
// The PWM frequencies as used by the original device |
|
|
|
|
|
// for driving the LED circuitry. |
|
|
|
|
|
const float RGB_PWM_FREQUENCY = 3000.0f; |
|
|
|
|
|
const float WHITE_PWM_FREQUENCY = 10000.0f; |
|
|
|
|
|
|
|
|
void write_state(light::LightState *state) override |
|
|
|
|
|
{ |
|
|
|
|
|
auto values = state->current_values; |
|
|
|
|
|
|
|
|
class YeelightBS2LightOutput : public Component, public light::LightOutput |
|
|
|
|
|
{ |
|
|
|
|
|
public: |
|
|
|
|
|
light::LightTraits get_traits() override |
|
|
|
|
|
{ |
|
|
|
|
|
auto traits = light::LightTraits(); |
|
|
|
|
|
traits.set_supports_rgb(true); |
|
|
|
|
|
traits.set_supports_color_temperature(true); |
|
|
|
|
|
traits.set_supports_brightness(true); |
|
|
|
|
|
traits.set_supports_rgb_white_value(false); |
|
|
|
|
|
traits.set_supports_color_interlock(true); |
|
|
|
|
|
traits.set_min_mireds(HOME_ASSISTANT_MIRED_MIN); |
|
|
|
|
|
traits.set_max_mireds(HOME_ASSISTANT_MIRED_MAX); |
|
|
|
|
|
return traits; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void set_red_output(ledc::LEDCOutput *red) { |
|
|
|
|
|
red_ = red; |
|
|
|
|
|
red_->set_frequency(RGB_PWM_FREQUENCY); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void set_green_output(ledc::LEDCOutput *green) { |
|
|
|
|
|
green_ = green; |
|
|
|
|
|
green_->set_frequency(RGB_PWM_FREQUENCY); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void set_blue_output(ledc::LEDCOutput *blue) { |
|
|
|
|
|
blue_ = blue; |
|
|
|
|
|
blue_->set_frequency(RGB_PWM_FREQUENCY); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void set_white_output(ledc::LEDCOutput *white) { |
|
|
|
|
|
white_ = white; |
|
|
|
|
|
white_->set_frequency(WHITE_PWM_FREQUENCY); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void set_master1_output(gpio::GPIOBinaryOutput *master1) { |
|
|
|
|
|
master1_ = master1; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void set_master2_output(gpio::GPIOBinaryOutput *master2) { |
|
|
|
|
|
master2_ = master2; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void write_state(light::LightState *state) override |
|
|
|
|
|
{ |
|
|
|
|
|
auto values = state->current_values; |
|
|
|
|
|
|
|
|
ESP_LOGD(TAG, "B = State %f, RGB %f %f %f, BRI %f, TEMP %f", |
|
|
|
|
|
values.get_state(), |
|
|
|
|
|
values.get_red(), values.get_green(), values.get_blue(), |
|
|
|
|
|
values.get_brightness(), values.get_color_temperature()); |
|
|
|
|
|
|
|
|
ESP_LOGD(TAG, "B = State %f, RGB %f %f %f, BRI %f, TEMP %f", |
|
|
|
|
|
values.get_state(), |
|
|
|
|
|
values.get_red(), values.get_green(), values.get_blue(), |
|
|
|
|
|
values.get_brightness(), values.get_color_temperature()); |
|
|
|
|
|
|
|
|
// Power down the light when its state is 'off'. |
|
|
|
|
|
if (values.get_state() == 0) |
|
|
|
|
|
{ |
|
|
|
|
|
this->turn_off_(); |
|
|
|
|
|
|
|
|
// Power down the light when its state is 'off'. |
|
|
|
|
|
if (values.get_state() == 0) |
|
|
|
|
|
{ |
|
|
|
|
|
this->turn_off_(); |
|
|
#ifdef TRANSITION_TO_OFF_BUGFIX |
|
|
#ifdef TRANSITION_TO_OFF_BUGFIX |
|
|
previous_state_ = -1; |
|
|
|
|
|
previous_brightness_ = 0; |
|
|
|
|
|
|
|
|
previous_state_ = -1; |
|
|
|
|
|
previous_brightness_ = 0; |
|
|
#endif |
|
|
#endif |
|
|
return; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
return; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
auto brightness = values.get_brightness(); |
|
|
|
|
|
|
|
|
auto brightness = values.get_brightness(); |
|
|
|
|
|
|
|
|
#ifdef TRANSITION_TO_OFF_BUGFIX |
|
|
#ifdef TRANSITION_TO_OFF_BUGFIX |
|
|
// Remember the brightness that is used when the light is fully ON. |
|
|
|
|
|
if (values.get_state() == 1) { |
|
|
|
|
|
previous_brightness_ = brightness; |
|
|
|
|
|
} |
|
|
|
|
|
// When transitioning towards zero brightness ... |
|
|
|
|
|
else if (values.get_state() < previous_state_) { |
|
|
|
|
|
// ... check if the prevous brightness is the same as the current |
|
|
|
|
|
// brightness. If yes, then the brightness isn't being scaled ... |
|
|
|
|
|
if (previous_brightness_ == brightness) { |
|
|
|
|
|
// ... and we need to do that ourselves. |
|
|
|
|
|
brightness = values.get_state() * brightness; |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
previous_state_ = values.get_state(); |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
// Leave it to the default tooling to figure out the basics. |
|
|
|
|
|
// Because of the color interlocking, there are two possible outcomes: |
|
|
|
|
|
// - red, green, blue zero -> the light is in color temperature mode |
|
|
|
|
|
// - cwhite, wwhite zero -> the light is in RGB mode |
|
|
|
|
|
float red, green, blue, cwhite, wwhite; |
|
|
|
|
|
state->current_values_as_rgbww(&red, &green, &blue, &cwhite, &wwhite, true, false); |
|
|
|
|
|
|
|
|
|
|
|
if (cwhite > 0 || wwhite > 0) |
|
|
|
|
|
{ |
|
|
|
|
|
this->turn_on_in_color_temperature_mode_( |
|
|
|
|
|
values.get_color_temperature(), brightness); |
|
|
|
|
|
} |
|
|
|
|
|
else |
|
|
|
|
|
{ |
|
|
|
|
|
// The RGB mode does not use the RGB values as determined by |
|
|
|
|
|
// current_values_as_rgbww(). The device has LED driving circuitry |
|
|
|
|
|
// that takes care of the required brightness curve while ramping up |
|
|
|
|
|
// the brightness. Therefore, the actual RGB values are passed here. |
|
|
|
|
|
this->turn_on_in_rgb_mode_( |
|
|
|
|
|
values.get_red(), values.get_green(), values.get_blue(), |
|
|
|
|
|
brightness, values.get_state()); |
|
|
|
|
|
|
|
|
// Remember the brightness that is used when the light is fully ON. |
|
|
|
|
|
if (values.get_state() == 1) { |
|
|
|
|
|
previous_brightness_ = brightness; |
|
|
|
|
|
} |
|
|
|
|
|
// When transitioning towards zero brightness ... |
|
|
|
|
|
else if (values.get_state() < previous_state_) { |
|
|
|
|
|
// ... check if the prevous brightness is the same as the current |
|
|
|
|
|
// brightness. If yes, then the brightness isn't being scaled ... |
|
|
|
|
|
if (previous_brightness_ == brightness) { |
|
|
|
|
|
// ... and we need to do that ourselves. |
|
|
|
|
|
brightness = values.get_state() * brightness; |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
protected: |
|
|
|
|
|
ledc::LEDCOutput *red_; |
|
|
|
|
|
ledc::LEDCOutput *green_; |
|
|
|
|
|
ledc::LEDCOutput *blue_; |
|
|
|
|
|
ledc::LEDCOutput *white_; |
|
|
|
|
|
esphome::gpio::GPIOBinaryOutput *master1_; |
|
|
|
|
|
esphome::gpio::GPIOBinaryOutput *master2_; |
|
|
|
|
|
#ifdef TRANSITION_TO_OFF_BUGFIX |
|
|
|
|
|
float previous_state_ = 1; |
|
|
|
|
|
float previous_brightness_ = -1; |
|
|
|
|
|
|
|
|
previous_state_ = values.get_state(); |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
void turn_off_() |
|
|
|
|
|
{ |
|
|
|
|
|
red_->set_level(1); |
|
|
|
|
|
green_->set_level(1); |
|
|
|
|
|
blue_->set_level(1); |
|
|
|
|
|
white_->turn_off(); |
|
|
|
|
|
master2_->turn_off(); |
|
|
|
|
|
master1_->turn_off(); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
// Leave it to the default tooling to figure out the basics. |
|
|
|
|
|
// Because of the color interlocking, there are two possible outcomes: |
|
|
|
|
|
// - red, green, blue zero -> the light is in color temperature mode |
|
|
|
|
|
// - cwhite, wwhite zero -> the light is in RGB mode |
|
|
|
|
|
float red, green, blue, cwhite, wwhite; |
|
|
|
|
|
state->current_values_as_rgbww(&red, &green, &blue, &cwhite, &wwhite, true, false); |
|
|
|
|
|
|
|
|
void turn_on_in_rgb_mode_(float red, float green, float blue, float brightness, float state) |
|
|
|
|
|
|
|
|
if (cwhite > 0 || wwhite > 0) |
|
|
{ |
|
|
{ |
|
|
ESP_LOGD(TAG, "Activate RGB %f, %f, %f, BRIGHTNESS %f", red, green, blue, brightness); |
|
|
|
|
|
|
|
|
|
|
|
// The brightness must be at least 3/100 to light up the LEDs. |
|
|
|
|
|
// During transitions (where state is a fraction between 0 and 1, |
|
|
|
|
|
// indicating the transition progress) we don't apply this to |
|
|
|
|
|
// get smoother transitioning when turning on the light. |
|
|
|
|
|
if (state == 1 && brightness < 0.03f) |
|
|
|
|
|
brightness = 0.03f; |
|
|
|
|
|
|
|
|
|
|
|
// Apply proper color mixing around the RGB white point. |
|
|
|
|
|
// Overall, the RGB colors are very usable when simply scaling the |
|
|
|
|
|
// RGB channels with the brightness, but around the white point, |
|
|
|
|
|
// the color is a bit on the red side of the spectrum. The following |
|
|
|
|
|
// scaling was created to fix that. |
|
|
|
|
|
// RGBW 0.432451, 0.013149, 0.556678 |
|
|
|
|
|
// R 0.57 g 1 b 0.45 |
|
|
|
|
|
auto red_w = (0.07f + brightness*(0.57f - 0.07f)) * red; |
|
|
|
|
|
auto green_w = (0.13f + brightness*(1.00f - 0.13f)) * green; |
|
|
|
|
|
auto blue_w = (0.06f + brightness*(0.45f - 0.06f)) * blue; |
|
|
|
|
|
|
|
|
|
|
|
// For other colors, we can simply scale the RGB channels with the |
|
|
|
|
|
// requested brightness, resulting in a very usable color. Not 100% |
|
|
|
|
|
// the same as the original firmware, but sometimes even better IMO. |
|
|
|
|
|
auto red_c = red * brightness; |
|
|
|
|
|
auto green_c = green * brightness; |
|
|
|
|
|
auto blue_c = blue * brightness; |
|
|
|
|
|
|
|
|
|
|
|
// The actual RGB values are a weighed mix of the above two. |
|
|
|
|
|
// The closer to the white point, the more the white point |
|
|
|
|
|
// value applies. |
|
|
|
|
|
auto level_red = (red_w * ((green+blue)/2)) + (red_c * (1-(green+blue)/2)); |
|
|
|
|
|
auto level_green = (green_w * ((red+blue)/2)) + (green_c * (1-(red+blue)/2)); |
|
|
|
|
|
auto level_blue = (blue_w * ((red+green)/2)) + (blue_c * (1-(red+green)/2)); |
|
|
|
|
|
|
|
|
|
|
|
// Invert the signal. The LEDs in the lamp's circuit are brighter |
|
|
|
|
|
// when the pwm levels on the GPIO pins are lower. |
|
|
|
|
|
level_red = 1.0f - level_red; |
|
|
|
|
|
level_green = 1.0f - level_green; |
|
|
|
|
|
level_blue = 1.0f - level_blue; |
|
|
|
|
|
|
|
|
|
|
|
ESP_LOGD(TAG, "New LED state : RGBW %f, %f, %f, off", level_red, level_green, level_blue); |
|
|
|
|
|
|
|
|
|
|
|
// Drive the LEDs. |
|
|
|
|
|
master2_->turn_on(); |
|
|
|
|
|
master1_->turn_on(); |
|
|
|
|
|
red_->set_level(level_red); |
|
|
|
|
|
green_->set_level(level_green); |
|
|
|
|
|
blue_->set_level(level_blue); |
|
|
|
|
|
white_->turn_off(); |
|
|
|
|
|
|
|
|
turn_on_in_white_mode_(values.get_color_temperature(), brightness); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
void turn_on_in_color_temperature_mode_(float temperature, float brightness) |
|
|
|
|
|
|
|
|
else |
|
|
{ |
|
|
{ |
|
|
ESP_LOGD(TAG, "Activate TEMPERATURE %f, BRIGHTNESS %f", temperature, brightness); |
|
|
|
|
|
|
|
|
|
|
|
// Empirically determined during programming the temperature GPIO output |
|
|
|
|
|
// code from below, by checking how far my outputs were off from the |
|
|
|
|
|
// original lamp firmeware's outputs. This scaler is used for correcting |
|
|
|
|
|
// my output towards the original output. |
|
|
|
|
|
float scaler; |
|
|
|
|
|
|
|
|
|
|
|
float red = 1.0; |
|
|
|
|
|
float green = 1.0; |
|
|
|
|
|
float blue = 1.0; |
|
|
|
|
|
float white = 1.0; |
|
|
|
|
|
|
|
|
|
|
|
// Temperature band 370 - 588 |
|
|
|
|
|
if (temperature <= HOME_ASSISTANT_MIRED_MAX && temperature >= 371) |
|
|
|
|
|
{ |
|
|
|
|
|
scaler = 3.23f; |
|
|
|
|
|
|
|
|
|
|
|
float start = 371; |
|
|
|
|
|
float end = 588; |
|
|
|
|
|
float band = end - start; |
|
|
|
|
|
|
|
|
|
|
|
float red_volt = 2.86f * (1.0f - brightness); |
|
|
|
|
|
red = red_volt / scaler; |
|
|
|
|
|
|
|
|
|
|
|
float green_1 = 2.90f + (temperature - start) * (2.97f - 2.90f) / band; |
|
|
|
|
|
float green_100 = 0.45f + (temperature - start) * (1.13f - 0.45f) / band; |
|
|
|
|
|
float green_volt = green_1 + brightness * (green_100 - green_1); |
|
|
|
|
|
green = green_volt / scaler; |
|
|
|
|
|
|
|
|
|
|
|
float white_1 = 0.28f - (temperature - start) * (0.28f - 0.19f) / band; |
|
|
|
|
|
float white_100 = 1.07f - (temperature - start) * (1.07f - 0.22f) / band; |
|
|
|
|
|
float white_volt = white_1 + brightness * (white_100 - white_1); |
|
|
|
|
|
white = white_volt / scaler; |
|
|
|
|
|
} |
|
|
|
|
|
// Temperature band 334 - 370 |
|
|
|
|
|
else if (temperature >= 334) |
|
|
|
|
|
{ |
|
|
|
|
|
scaler = 3.23f; |
|
|
|
|
|
|
|
|
|
|
|
float red_volt = (1.0f - brightness) * 2.86f; |
|
|
|
|
|
red = red_volt / scaler; |
|
|
|
|
|
|
|
|
|
|
|
float green_volt = 2.9f - brightness * (2.9f - 0.45f); |
|
|
|
|
|
green = green_volt / scaler; |
|
|
|
|
|
|
|
|
|
|
|
float white_volt = 0.28f + brightness * (1.07f - 0.28f); |
|
|
|
|
|
white = white_volt / scaler; |
|
|
|
|
|
} |
|
|
|
|
|
// Temperature band 313 - 333 |
|
|
|
|
|
// |
|
|
|
|
|
// The light becomes noticably brighter when moving from temperature 334 to |
|
|
|
|
|
// temperature 333. There's a little jump in the lighting output here. |
|
|
|
|
|
// Possibly this is a switch from warm to cold lighting as imposed by the |
|
|
|
|
|
// LED circuitry, making this unavoidable. However, it would be interesting |
|
|
|
|
|
// to see if we can smoothen this out. |
|
|
|
|
|
// BTW: This behavior is in sync with the original firmware. |
|
|
|
|
|
else if (temperature >= 313) |
|
|
|
|
|
{ |
|
|
|
|
|
scaler = 3.23f; |
|
|
|
|
|
|
|
|
|
|
|
float red_volt = 2.89f - brightness * (2.89f - 0.32f); |
|
|
|
|
|
red = red_volt / scaler; |
|
|
|
|
|
|
|
|
|
|
|
float green_volt = 2.96f - brightness * (2.96f - 1.03f); |
|
|
|
|
|
green = green_volt / scaler; |
|
|
|
|
|
|
|
|
|
|
|
float white_volt = 0.42f + brightness * (2.43f - 0.42f); |
|
|
|
|
|
float scaler_white = 3.45f; |
|
|
|
|
|
white = white_volt / scaler_white; |
|
|
|
|
|
} |
|
|
|
|
|
// Temperature band 251 - 312 |
|
|
|
|
|
else if (temperature >= 251) |
|
|
|
|
|
{ |
|
|
|
|
|
scaler = 3.48f; |
|
|
|
|
|
|
|
|
|
|
|
float white_correction = 1.061; |
|
|
|
|
|
float white_volt = 0.5f + brightness * (3.28f * white_correction - 0.5f); |
|
|
|
|
|
white = white_volt / scaler; |
|
|
|
|
|
} |
|
|
|
|
|
// Temperature band 223 - 250 |
|
|
|
|
|
else if (temperature >= 223) |
|
|
|
|
|
{ |
|
|
|
|
|
scaler = 3.25f; |
|
|
|
|
|
|
|
|
|
|
|
float green_volt = 2.94f - brightness * (2.94f - 0.88f); |
|
|
|
|
|
green = green_volt / scaler; |
|
|
|
|
|
|
|
|
|
|
|
float blue_volt = 3.02f - brightness * (3.02f - 1.59f); |
|
|
|
|
|
blue = blue_volt / scaler; |
|
|
|
|
|
|
|
|
|
|
|
float white_correction = 1.024f; |
|
|
|
|
|
float white_volt = 0.42f + brightness * (2.51f * white_correction - 0.42f); |
|
|
|
|
|
float scaler_white = 3.36f; |
|
|
|
|
|
white = white_volt / scaler_white; |
|
|
|
|
|
} |
|
|
|
|
|
// Temperature band 153 - 222 |
|
|
|
|
|
else if (temperature >= HOME_ASSISTANT_MIRED_MIN) |
|
|
|
|
|
{ |
|
|
|
|
|
float start = 153; |
|
|
|
|
|
float end = 222; |
|
|
|
|
|
float band = end - start; |
|
|
|
|
|
|
|
|
|
|
|
scaler = 3.23f; |
|
|
|
|
|
|
|
|
|
|
|
float green_volt = 2.86f - brightness * 2.86f; |
|
|
|
|
|
green = green_volt / scaler; |
|
|
|
|
|
|
|
|
|
|
|
float blue_1 = 2.92f + (temperature - start) * (2.97f - 2.92f) / band; |
|
|
|
|
|
float blue_100 = 0.62f + (temperature - start) * (1.17f - 0.62f) / band; |
|
|
|
|
|
float blue_volt = blue_1 - brightness * (blue_1 - blue_100); |
|
|
|
|
|
blue = blue_volt / scaler; |
|
|
|
|
|
|
|
|
|
|
|
float white_1 = 0.28f + (temperature - start) * (0.37f - 0.28f) / band; |
|
|
|
|
|
float white_100 = 1.1f + (temperature - start) * (2.0f - 1.1f) / band; |
|
|
|
|
|
float white_volt = white_1 + brightness * (white_100 - white_1); |
|
|
|
|
|
float scaler_white = 3.27f; |
|
|
|
|
|
white = white_volt / scaler_white; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
ESP_LOGD(TAG, "New LED state : RGBW %f, %f, %f, %f", red, green, blue, white); |
|
|
|
|
|
|
|
|
|
|
|
master2_->turn_on(); |
|
|
|
|
|
master1_->turn_on(); |
|
|
|
|
|
red_->set_level(red); |
|
|
|
|
|
green_->set_level(green); |
|
|
|
|
|
blue_->set_level(blue); |
|
|
|
|
|
white_->set_level(white); |
|
|
|
|
|
|
|
|
// The RGB mode does not use the RGB values as determined by |
|
|
|
|
|
// current_values_as_rgbww(). The device has LED driving circuitry |
|
|
|
|
|
// that takes care of the required brightness curve while ramping up |
|
|
|
|
|
// the brightness. Therefore, the actual RGB values are passed here. |
|
|
|
|
|
turn_on_in_rgb_mode_( |
|
|
|
|
|
values.get_red(), values.get_green(), values.get_blue(), |
|
|
|
|
|
brightness, values.get_state()); |
|
|
} |
|
|
} |
|
|
}; |
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
protected: |
|
|
|
|
|
ledc::LEDCOutput *red_; |
|
|
|
|
|
ledc::LEDCOutput *green_; |
|
|
|
|
|
ledc::LEDCOutput *blue_; |
|
|
|
|
|
ledc::LEDCOutput *white_; |
|
|
|
|
|
esphome::gpio::GPIOBinaryOutput *master1_; |
|
|
|
|
|
esphome::gpio::GPIOBinaryOutput *master2_; |
|
|
|
|
|
esphome::rgbww::yeelight_bs2::WhiteLight white_light_; |
|
|
|
|
|
#ifdef TRANSITION_TO_OFF_BUGFIX |
|
|
|
|
|
float previous_state_ = 1; |
|
|
|
|
|
float previous_brightness_ = -1; |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
} // namespace rgbww |
|
|
|
|
|
|
|
|
void turn_off_() |
|
|
|
|
|
{ |
|
|
|
|
|
red_->set_level(1); |
|
|
|
|
|
green_->set_level(1); |
|
|
|
|
|
blue_->set_level(1); |
|
|
|
|
|
white_->turn_off(); |
|
|
|
|
|
master2_->turn_off(); |
|
|
|
|
|
master1_->turn_off(); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void turn_on_in_rgb_mode_(float red, float green, float blue, float brightness, float state) |
|
|
|
|
|
{ |
|
|
|
|
|
ESP_LOGD(TAG, "Activate RGB %f, %f, %f, BRIGHTNESS %f", red, green, blue, brightness); |
|
|
|
|
|
|
|
|
|
|
|
// The brightness must be at least 3/100 to light up the LEDs. |
|
|
|
|
|
// During transitions (where state is a fraction between 0 and 1, |
|
|
|
|
|
// indicating the transition progress) we don't apply this to |
|
|
|
|
|
// get smoother transitioning when turning on the light. |
|
|
|
|
|
if (state == 1 && brightness < 0.03f) |
|
|
|
|
|
brightness = 0.03f; |
|
|
|
|
|
|
|
|
|
|
|
// Apply proper color mixing around the RGB white point. |
|
|
|
|
|
// Overall, the RGB colors are very usable when simply scaling the |
|
|
|
|
|
// RGB channels with the brightness, but around the white point, |
|
|
|
|
|
// the color is a bit on the red side of the spectrum. The following |
|
|
|
|
|
// scaling was created to fix that. |
|
|
|
|
|
// RGBW 0.432451, 0.013149, 0.556678 |
|
|
|
|
|
// R 0.57 g 1 b 0.45 |
|
|
|
|
|
auto red_w = (0.07f + brightness*(0.57f - 0.07f)) * red; |
|
|
|
|
|
auto green_w = (0.13f + brightness*(1.00f - 0.13f)) * green; |
|
|
|
|
|
auto blue_w = (0.06f + brightness*(0.45f - 0.06f)) * blue; |
|
|
|
|
|
|
|
|
|
|
|
// For other colors, we can simply scale the RGB channels with the |
|
|
|
|
|
// requested brightness, resulting in a very usable color. Not 100% |
|
|
|
|
|
// the same as the original firmware, but sometimes even better IMO. |
|
|
|
|
|
auto red_c = red * brightness; |
|
|
|
|
|
auto green_c = green * brightness; |
|
|
|
|
|
auto blue_c = blue * brightness; |
|
|
|
|
|
|
|
|
|
|
|
// The actual RGB values are a weighed mix of the above two. |
|
|
|
|
|
// The closer to the white point, the more the white point |
|
|
|
|
|
// value applies. |
|
|
|
|
|
auto level_red = (red_w * ((green+blue)/2)) + (red_c * (1-(green+blue)/2)); |
|
|
|
|
|
auto level_green = (green_w * ((red+blue)/2)) + (green_c * (1-(red+blue)/2)); |
|
|
|
|
|
auto level_blue = (blue_w * ((red+green)/2)) + (blue_c * (1-(red+green)/2)); |
|
|
|
|
|
|
|
|
|
|
|
// Invert the signal. The LEDs in the lamp's circuit are brighter |
|
|
|
|
|
// when the pwm levels on the GPIO pins are lower. |
|
|
|
|
|
level_red = 1.0f - level_red; |
|
|
|
|
|
level_green = 1.0f - level_green; |
|
|
|
|
|
level_blue = 1.0f - level_blue; |
|
|
|
|
|
|
|
|
|
|
|
ESP_LOGD(TAG, "New LED state : RGBW %f, %f, %f, off", level_red, level_green, level_blue); |
|
|
|
|
|
|
|
|
|
|
|
// Drive the LEDs. |
|
|
|
|
|
master2_->turn_on(); |
|
|
|
|
|
master1_->turn_on(); |
|
|
|
|
|
red_->set_level(level_red); |
|
|
|
|
|
green_->set_level(level_green); |
|
|
|
|
|
blue_->set_level(level_blue); |
|
|
|
|
|
white_->turn_off(); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void turn_on_in_white_mode_(float temperature, float brightness) |
|
|
|
|
|
{ |
|
|
|
|
|
ESP_LOGD(TAG, "Activate TEMPERATURE %f, BRIGHTNESS %f", |
|
|
|
|
|
temperature, brightness); |
|
|
|
|
|
|
|
|
|
|
|
white_light_.set_color(temperature, brightness); |
|
|
|
|
|
|
|
|
|
|
|
ESP_LOGD(TAG, "New LED state : RGBW %f, %f, %f, %f", |
|
|
|
|
|
white_light_.red, white_light_.green, white_light_.blue, |
|
|
|
|
|
white_light_.white); |
|
|
|
|
|
|
|
|
|
|
|
master2_->turn_on(); |
|
|
|
|
|
master1_->turn_on(); |
|
|
|
|
|
red_->set_level(white_light_.red); |
|
|
|
|
|
green_->set_level(white_light_.green); |
|
|
|
|
|
blue_->set_level(white_light_.blue); |
|
|
|
|
|
white_->turn_on(); |
|
|
|
|
|
white_->set_level(white_light_.white); |
|
|
|
|
|
} |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
} // namespace rgbww |
|
|
} // namespace esphome |
|
|
} // namespace esphome |