You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

336 lines
12 KiB

#pragma once
// What seems to be a bug in ESPHome transitioning: when turning on
// the device, the brightness is scaled along with the state (which
// runs from 0 to 1), but when turning off the device, the brightness
// is kept the same while the state goes down from 1 to 0. As a result
// when turning off the lamp with a transition time of 1s, the light
// stays on for 1s and then turn itself off abruptly.
//
// Reported the issue + fix at:
// https://github.com/esphome/esphome/pull/1643
//
// A work-around for this issue can be enabled using the following
// define. Note that the code provides a forward-compatible fix, so
// having this define active with a fixed ESPHome version should
// not be a problem.
#define TRANSITION_TO_OFF_BUGFIX
namespace esphome {
namespace yeelight {
namespace bs2 {
/// This is an interface definition that is used to extend the
/// YeelightBS2LightOutput class with methods to access properties
/// of an active LightTranformer from the YeelightBS2LightOutput
/// class.
/// The transformer is protected in the light output class, making
/// it impossible to access these properties directly from the
/// light output class.
class LightStateDataExposer {
public:
virtual bool has_active_transformer() = 0;
virtual bool transformer_is_transition() = 0;
virtual light::LightColorValues get_transformer_values() = 0;
virtual light::LightColorValues get_transformer_end_values() = 0;
virtual float get_transformer_progress() = 0;
};
/// This class is used to handle color transition requirements.
///
/// When using the default ESPHome logic, transitioning is done by
/// transitioning all light properties linearly from the original
/// values to the new values, and letting the light output object
/// translate these properties into light outputs on every step of the
/// way. While this does work, it does not work nicely.
///
/// This class will take care of transitioning LEDC light outputs
/// instead, which is what the original firmware in the device does as
/// well. This makes transitions a lot cleaner.
class TransitionHandler {
public:
TransitionHandler(LightStateDataExposer *exposer) : exposer_(exposer) {}
bool handle() {
if (!do_handle_()) {
active_ = false;
return false;
}
if (is_fresh_transition_()) {
auto start = exposer_->get_transformer_values();
auto end = exposer_->get_transformer_end_values();
active_ = true;
}
return true;
}
protected:
LightStateDataExposer *exposer_;
bool active_ = false;
DutyCycles start_;
DutyCycles end_;
/// Checks if this class will handle the light output logic.
/// This is the case when a transformer is active and this
/// transformer does implement a transitioning effect.
bool do_handle_() {
if (!exposer_->has_active_transformer())
return false;
if (!exposer_->transformer_is_transition())
return false;
return true;
}
/// Checks if a fresh transitioning is started.
/// A transitioning is fresh when either no transition is known to
/// be in progress or when a new end state is found during an
/// ongoing transition.
bool is_fresh_transition_() {
bool is_fresh = false;
if (active_ == false) {
is_fresh = true;
}
return is_fresh;
}
};
/// An implementation of the LightOutput interface for the Yeelight
/// Bedside Lamp 2.
class YeelightBS2LightOutput : public Component, public light::LightOutput {
public:
light::LightTraits get_traits() override
{
auto traits = light::LightTraits();
traits.set_supports_rgb(true);
traits.set_supports_color_temperature(true);
traits.set_supports_brightness(true);
traits.set_supports_rgb_white_value(false);
traits.set_supports_color_interlock(true);
traits.set_min_mireds(MIRED_MIN);
traits.set_max_mireds(MIRED_MAX);
return traits;
}
/// Set the LEDC output for the red LED circuitry channel.
void set_red_output(ledc::LEDCOutput *red) {
red_ = red;
}
/// Set the LEDC output for the green LED circuitry channel.
void set_green_output(ledc::LEDCOutput *green) {
green_ = green;
}
/// Set the LEDC output for the blue LED circuitry channel.
void set_blue_output(ledc::LEDCOutput *blue) {
blue_ = blue;
}
/// Set the LEDC output for the white LED circuitry channel.
void set_white_output(ledc::LEDCOutput *white) {
white_ = white;
}
/// Set the first GPIO binary output, used as internal master
/// switch for the LED light circuitry.
void set_master1_output(gpio::GPIOBinaryOutput *master1) {
master1_ = master1;
}
/// Set the second GPIO binary output, used as internal master
/// switch for the LED light circuitry.
void set_master2_output(gpio::GPIOBinaryOutput *master2) {
master2_ = master2;
}
void write_state(light::LightState *state)
{
if (transition_->handle()) {
ESP_LOGD(TAG, "HANDLE transition!");
}
auto values = state->current_values;
// Power down the light when its state is 'off'.
if (values.get_state() == 0)
{
turn_off_();
#ifdef TRANSITION_TO_OFF_BUGFIX
previous_state_ = -1;
previous_brightness_ = 0;
#endif
return;
}
auto brightness = values.get_brightness();
#ifdef TRANSITION_TO_OFF_BUGFIX
// Remember the brightness that is used when the light is fully ON.
if (values.get_state() == 1) {
previous_brightness_ = brightness;
}
// When transitioning towards zero brightness ...
else if (values.get_state() < previous_state_) {
// ... check if the prevous brightness is the same as the current
// brightness. If yes, then the brightness isn't being scaled ...
if (previous_brightness_ == brightness) {
// ... and we need to do that ourselves.
brightness = values.get_state() * brightness;
}
}
previous_state_ = values.get_state();
#endif
// At the lowest brightness setting, switch to night light mode.
// In the Yeelight integration in Home Assistant, this feature is
// exposed trough a separate switch. I have found that the switch
// is both confusing and made me run into issues when automating
// the lights.
// I don't simply check for a brightness at or below 0.01 (1%),
// because the lowest brightness setting from Home Assistant
// turns up as 0.011765 in here (which is 3/255).
if (brightness < 0.012f && values.get_state() == 1) {
turn_on_in_night_light_mode_();
return;
}
// Leave it to the default tooling to figure out the basics.
// Because of color interlocking, there are two possible outcomes:
// - red, green, blue zero -> white light color temperature mode
// - cwhite, wwhite zero -> RGB mode
float red, green, blue, cwhite, wwhite;
state->current_values_as_rgbww(
&red, &green, &blue, &cwhite, &wwhite, true, false);
if (cwhite > 0 || wwhite > 0) {
turn_on_in_white_mode_(
values.get_color_temperature(), brightness);
}
else {
turn_on_in_rgb_mode_(
values.get_red(), values.get_green(), values.get_blue(),
brightness, values.get_state());
}
}
protected:
ledc::LEDCOutput *red_;
ledc::LEDCOutput *green_;
ledc::LEDCOutput *blue_;
ledc::LEDCOutput *white_;
esphome::gpio::GPIOBinaryOutput *master1_;
esphome::gpio::GPIOBinaryOutput *master2_;
ColorWhiteLight white_light_;
ColorRGBLight rgb_light_;
ColorNightLight night_light_;
TransitionHandler *transition_;
#ifdef TRANSITION_TO_OFF_BUGFIX
float previous_state_ = 1;
float previous_brightness_ = -1;
#endif
friend class YeelightBS2LightState;
/// Called by the YeelightBS2LightState class, to set the object that
/// can be used to access protected data from the light state object.
void set_light_state_data_exposer(LightStateDataExposer *exposer) {
transition_ = new TransitionHandler(exposer);
}
void turn_off_()
{
red_->set_level(1);
green_->set_level(1);
blue_->set_level(1);
white_->set_level(0);
master2_->turn_off();
master1_->turn_off();
}
void turn_on_in_night_light_mode_()
{
ESP_LOGD(TAG, "Activate Night light feature");
night_light_.set_color(1, 1, 1, 0.01, 1);
ESP_LOGD(TAG, "New LED state : RGBW %f, %f, %f, %f", night_light_.red, night_light_.green, night_light_.blue, night_light_.white);
// Drive the LEDs.
master2_->turn_on();
master1_->turn_on();
red_->set_level(night_light_.red);
green_->set_level(night_light_.green);
blue_->set_level(night_light_.blue);
white_->set_level(night_light_.white);
}
void turn_on_in_rgb_mode_(float red, float green, float blue, float brightness, float state)
{
ESP_LOGD(TAG, "Activate RGB %f, %f, %f, BRIGHTNESS %f", red, green, blue, brightness);
rgb_light_.set_color(red, green, blue, brightness, state);
ESP_LOGD(TAG, "New LED state : RGBW %f, %f, %f, off", rgb_light_.red, rgb_light_.green, rgb_light_.blue);
// Drive the LEDs.
master2_->turn_on();
master1_->turn_on();
red_->set_level(rgb_light_.red);
green_->set_level(rgb_light_.green);
blue_->set_level(rgb_light_.blue);
white_->turn_off();
}
void turn_on_in_white_mode_(float temperature, float brightness)
{
ESP_LOGD(TAG, "Activate TEMPERATURE %f, BRIGHTNESS %f",
temperature, brightness);
white_light_.set_color(temperature, brightness);
ESP_LOGD(TAG, "New LED state : RGBW %f, %f, %f, %f",
white_light_.red, white_light_.green, white_light_.blue,
white_light_.white);
master2_->turn_on();
master1_->turn_on();
red_->set_level(white_light_.red);
green_->set_level(white_light_.green);
blue_->set_level(white_light_.blue);
white_->set_level(white_light_.white);
}
};
class YeelightBS2LightState : public light::LightState, public LightStateDataExposer
{
public:
YeelightBS2LightState(const std::string &name, YeelightBS2LightOutput *output) : light::LightState(name, output) {
output->set_light_state_data_exposer(this);
}
bool has_active_transformer() {
return this->transformer_ != nullptr;
}
bool transformer_is_transition() {
return this->transformer_->is_transition();
}
light::LightColorValues get_transformer_values() {
return this->transformer_->get_values();
}
light::LightColorValues get_transformer_end_values() {
return this->transformer_->get_end_values();
}
float get_transformer_progress() {
return this->transformer_->get_progress();
}
};
} // namespace bs2
} // namespace yeelight
} // namespace esphome