Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1188 lines
35 KiB

6 years ago
  1. /*
  2. RELAY MODULE
  3. Copyright (C) 2016-2019 by Xose Pérez <xose dot perez at gmail dot com>
  4. */
  5. #include <EEPROM_Rotate.h>
  6. #include <Ticker.h>
  7. #include <ArduinoJson.h>
  8. #include <vector>
  9. #include <functional>
  10. typedef struct {
  11. // Configuration variables
  12. unsigned char pin; // GPIO pin for the relay
  13. unsigned char type; // RELAY_TYPE_NORMAL, RELAY_TYPE_INVERSE, RELAY_TYPE_LATCHED or RELAY_TYPE_LATCHED_INVERSE
  14. unsigned char reset_pin; // GPIO to reset the relay if RELAY_TYPE_LATCHED
  15. unsigned long delay_on; // Delay to turn relay ON
  16. unsigned long delay_off; // Delay to turn relay OFF
  17. unsigned char pulse; // RELAY_PULSE_NONE, RELAY_PULSE_OFF or RELAY_PULSE_ON
  18. unsigned long pulse_ms; // Pulse length in millis
  19. // Status variables
  20. bool current_status; // Holds the current (physical) status of the relay
  21. bool target_status; // Holds the target status
  22. unsigned char lock; // Holds the value of target status, that cannot be changed afterwards. (0 for false, 1 for true, 2 to disable)
  23. unsigned long fw_start; // Flood window start time
  24. unsigned char fw_count; // Number of changes within the current flood window
  25. unsigned long change_time; // Scheduled time to change
  26. bool report; // Whether to report to own topic
  27. bool group_report; // Whether to report to group topic
  28. // Helping objects
  29. Ticker pulseTicker; // Holds the pulse back timer
  30. } relay_t;
  31. std::vector<relay_t> _relays;
  32. bool _relayRecursive = false;
  33. Ticker _relaySaveTicker;
  34. #if MQTT_SUPPORT
  35. String _relay_mqtt_payload_on;
  36. String _relay_mqtt_payload_off;
  37. #endif // MQTT_SUPPORT
  38. // -----------------------------------------------------------------------------
  39. // RELAY PROVIDERS
  40. // -----------------------------------------------------------------------------
  41. void _relayProviderStatus(unsigned char id, bool status) {
  42. // Check relay ID
  43. if (id >= _relays.size()) return;
  44. // Store new current status
  45. _relays[id].current_status = status;
  46. #if RELAY_PROVIDER == RELAY_PROVIDER_RFBRIDGE
  47. rfbStatus(id, status);
  48. #endif
  49. #if RELAY_PROVIDER == RELAY_PROVIDER_DUAL
  50. // Calculate mask
  51. unsigned char mask=0;
  52. for (unsigned char i=0; i<_relays.size(); i++) {
  53. if (_relays[i].current_status) mask = mask + (1 << i);
  54. }
  55. DEBUG_MSG_P(PSTR("[RELAY] [DUAL] Sending relay mask: %d\n"), mask);
  56. // Send it to F330
  57. Serial.flush();
  58. Serial.write(0xA0);
  59. Serial.write(0x04);
  60. Serial.write(mask);
  61. Serial.write(0xA1);
  62. Serial.flush();
  63. #endif
  64. #if RELAY_PROVIDER == RELAY_PROVIDER_STM
  65. Serial.flush();
  66. Serial.write(0xA0);
  67. Serial.write(id + 1);
  68. Serial.write(status);
  69. Serial.write(0xA1 + status + id);
  70. // The serial init are not full recognized by relais board.
  71. // References: https://github.com/xoseperez/espurna/issues/1519 , https://github.com/xoseperez/espurna/issues/1130
  72. delay(100);
  73. Serial.flush();
  74. #endif
  75. #if RELAY_PROVIDER == RELAY_PROVIDER_LIGHT
  76. // Real relays
  77. uint8_t physical = _relays.size() - DUMMY_RELAY_COUNT;
  78. // Support for a mixed of dummy and real relays
  79. // Reference: https://github.com/xoseperez/espurna/issues/1305
  80. if (id >= physical) {
  81. // If the number of dummy relays matches the number of light channels
  82. // assume each relay controls one channel.
  83. // If the number of dummy relays is the number of channels plus 1
  84. // assume the first one controls all the channels and
  85. // the rest one channel each.
  86. // Otherwise every dummy relay controls all channels.
  87. if (DUMMY_RELAY_COUNT == lightChannels()) {
  88. lightState(id-physical, status);
  89. lightState(true);
  90. } else if (DUMMY_RELAY_COUNT == (lightChannels() + 1u)) {
  91. if (id == physical) {
  92. lightState(status);
  93. } else {
  94. lightState(id-1-physical, status);
  95. }
  96. } else {
  97. lightState(status);
  98. }
  99. lightUpdate(true, true);
  100. return;
  101. }
  102. #endif
  103. #if (RELAY_PROVIDER == RELAY_PROVIDER_RELAY) || (RELAY_PROVIDER == RELAY_PROVIDER_LIGHT)
  104. // If this is a light, all dummy relays have already been processed above
  105. // we reach here if the user has toggled a physical relay
  106. if (_relays[id].type == RELAY_TYPE_NORMAL) {
  107. digitalWrite(_relays[id].pin, status);
  108. } else if (_relays[id].type == RELAY_TYPE_INVERSE) {
  109. digitalWrite(_relays[id].pin, !status);
  110. } else if (_relays[id].type == RELAY_TYPE_LATCHED || _relays[id].type == RELAY_TYPE_LATCHED_INVERSE) {
  111. bool pulse = RELAY_TYPE_LATCHED ? HIGH : LOW;
  112. digitalWrite(_relays[id].pin, !pulse);
  113. if (GPIO_NONE != _relays[id].reset_pin) digitalWrite(_relays[id].reset_pin, !pulse);
  114. if (status || (GPIO_NONE == _relays[id].reset_pin)) {
  115. digitalWrite(_relays[id].pin, pulse);
  116. } else {
  117. digitalWrite(_relays[id].reset_pin, pulse);
  118. }
  119. nice_delay(RELAY_LATCHING_PULSE);
  120. digitalWrite(_relays[id].pin, !pulse);
  121. if (GPIO_NONE != _relays[id].reset_pin) digitalWrite(_relays[id].reset_pin, !pulse);
  122. }
  123. #endif
  124. }
  125. /**
  126. * Walks the relay vector processing only those relays
  127. * that have to change to the requested mode
  128. * @bool mode Requested mode
  129. */
  130. void _relayProcess(bool mode) {
  131. unsigned long current_time = millis();
  132. for (unsigned char id = 0; id < _relays.size(); id++) {
  133. bool target = _relays[id].target_status;
  134. // Only process the relays we have to change
  135. if (target == _relays[id].current_status) continue;
  136. // Only process the relays we have to change to the requested mode
  137. if (target != mode) continue;
  138. // Only process the relays that can be changed
  139. switch (_relays[id].lock) {
  140. case RELAY_LOCK_ON:
  141. case RELAY_LOCK_OFF:
  142. {
  143. bool lock = _relays[id].lock == 1;
  144. if (lock != _relays[id].target_status) {
  145. _relays[id].target_status = lock;
  146. continue;
  147. }
  148. break;
  149. }
  150. case RELAY_LOCK_DISABLED:
  151. default:
  152. break;
  153. }
  154. // Only process if the change_time has arrived
  155. if (current_time < _relays[id].change_time) continue;
  156. DEBUG_MSG_P(PSTR("[RELAY] #%d set to %s\n"), id, target ? "ON" : "OFF");
  157. // Call the provider to perform the action
  158. _relayProviderStatus(id, target);
  159. // Send to Broker
  160. #if BROKER_SUPPORT
  161. brokerPublish(BROKER_MSG_TYPE_STATUS, MQTT_TOPIC_RELAY, id, target ? "1" : "0");
  162. #endif
  163. // Send MQTT
  164. #if MQTT_SUPPORT
  165. relayMQTT(id);
  166. #endif
  167. if (!_relayRecursive) {
  168. relayPulse(id);
  169. // We will trigger a eeprom save only if
  170. // we care about current relay status on boot
  171. unsigned char boot_mode = getSetting("relayBoot", id, RELAY_BOOT_MODE).toInt();
  172. bool save_eeprom = ((RELAY_BOOT_SAME == boot_mode) || (RELAY_BOOT_TOGGLE == boot_mode));
  173. _relaySaveTicker.once_ms(RELAY_SAVE_DELAY, relaySave, save_eeprom);
  174. #if WEB_SUPPORT
  175. wsPost(_relayWebSocketUpdate);
  176. #endif
  177. }
  178. _relays[id].report = false;
  179. _relays[id].group_report = false;
  180. }
  181. }
  182. #if defined(ITEAD_SONOFF_IFAN02)
  183. unsigned char _relay_ifan02_speeds[] = {0, 1, 3, 5};
  184. unsigned char getSpeed() {
  185. unsigned char speed =
  186. (_relays[1].target_status ? 1 : 0) +
  187. (_relays[2].target_status ? 2 : 0) +
  188. (_relays[3].target_status ? 4 : 0);
  189. for (unsigned char i=0; i<4; i++) {
  190. if (_relay_ifan02_speeds[i] == speed) return i;
  191. }
  192. return 0;
  193. }
  194. void setSpeed(unsigned char speed) {
  195. if ((0 <= speed) & (speed <= 3)) {
  196. if (getSpeed() == speed) return;
  197. unsigned char states = _relay_ifan02_speeds[speed];
  198. for (unsigned char i=0; i<3; i++) {
  199. relayStatus(i+1, states & 1 == 1);
  200. states >>= 1;
  201. }
  202. }
  203. }
  204. #endif
  205. // -----------------------------------------------------------------------------
  206. // RELAY
  207. // -----------------------------------------------------------------------------
  208. void _relayMaskRtcmem(uint32_t mask) {
  209. Rtcmem->relay = mask;
  210. }
  211. uint32_t _relayMaskRtcmem() {
  212. return Rtcmem->relay;
  213. }
  214. void relayPulse(unsigned char id) {
  215. _relays[id].pulseTicker.detach();
  216. byte mode = _relays[id].pulse;
  217. if (mode == RELAY_PULSE_NONE) return;
  218. unsigned long ms = _relays[id].pulse_ms;
  219. if (ms == 0) return;
  220. bool status = relayStatus(id);
  221. bool pulseStatus = (mode == RELAY_PULSE_ON);
  222. if (pulseStatus != status) {
  223. DEBUG_MSG_P(PSTR("[RELAY] Scheduling relay #%d back in %lums (pulse)\n"), id, ms);
  224. _relays[id].pulseTicker.once_ms(ms, relayToggle, id);
  225. // Reconfigure after dynamic pulse
  226. _relays[id].pulse = getSetting("relayPulse", id, RELAY_PULSE_MODE).toInt();
  227. _relays[id].pulse_ms = 1000 * getSetting("relayTime", id, RELAY_PULSE_MODE).toFloat();
  228. }
  229. }
  230. bool relayStatus(unsigned char id, bool status, bool report, bool group_report) {
  231. if (id >= _relays.size()) return false;
  232. bool changed = false;
  233. if (_relays[id].current_status == status) {
  234. if (_relays[id].target_status != status) {
  235. DEBUG_MSG_P(PSTR("[RELAY] #%d scheduled change cancelled\n"), id);
  236. _relays[id].target_status = status;
  237. _relays[id].report = false;
  238. _relays[id].group_report = false;
  239. changed = true;
  240. }
  241. // For RFBridge, keep sending the message even if the status is already the required
  242. #if RELAY_PROVIDER == RELAY_PROVIDER_RFBRIDGE
  243. rfbStatus(id, status);
  244. #endif
  245. // Update the pulse counter if the relay is already in the non-normal state (#454)
  246. relayPulse(id);
  247. } else {
  248. unsigned long current_time = millis();
  249. unsigned long fw_end = _relays[id].fw_start + 1000 * RELAY_FLOOD_WINDOW;
  250. unsigned long delay = status ? _relays[id].delay_on : _relays[id].delay_off;
  251. _relays[id].fw_count++;
  252. _relays[id].change_time = current_time + delay;
  253. // If current_time is off-limits the floodWindow...
  254. if (current_time < _relays[id].fw_start || fw_end <= current_time) {
  255. // We reset the floodWindow
  256. _relays[id].fw_start = current_time;
  257. _relays[id].fw_count = 1;
  258. // If current_time is in the floodWindow and there have been too many requests...
  259. } else if (_relays[id].fw_count >= RELAY_FLOOD_CHANGES) {
  260. // We schedule the changes to the end of the floodWindow
  261. // unless it's already delayed beyond that point
  262. if (fw_end - delay > current_time) {
  263. _relays[id].change_time = fw_end;
  264. }
  265. }
  266. _relays[id].target_status = status;
  267. if (report) _relays[id].report = true;
  268. if (group_report) _relays[id].group_report = true;
  269. relaySync(id);
  270. DEBUG_MSG_P(PSTR("[RELAY] #%d scheduled %s in %u ms\n"),
  271. id, status ? "ON" : "OFF",
  272. (_relays[id].change_time - current_time));
  273. changed = true;
  274. }
  275. return changed;
  276. }
  277. bool relayStatus(unsigned char id, bool status) {
  278. return relayStatus(id, status, mqttForward(), true);
  279. }
  280. bool relayStatus(unsigned char id) {
  281. // Check relay ID
  282. if (id >= _relays.size()) return false;
  283. // Get status from storage
  284. return _relays[id].current_status;
  285. }
  286. void relaySync(unsigned char id) {
  287. // No sync if none or only one relay
  288. if (_relays.size() < 2) return;
  289. // Do not go on if we are comming from a previous sync
  290. if (_relayRecursive) return;
  291. // Flag sync mode
  292. _relayRecursive = true;
  293. byte relaySync = getSetting("relaySync", RELAY_SYNC).toInt();
  294. bool status = _relays[id].target_status;
  295. // If RELAY_SYNC_SAME all relays should have the same state
  296. if (relaySync == RELAY_SYNC_SAME) {
  297. for (unsigned short i=0; i<_relays.size(); i++) {
  298. if (i != id) relayStatus(i, status);
  299. }
  300. // If RELAY_SYNC_FIRST all relays should have the same state as first if first changes
  301. } else if (relaySync == RELAY_SYNC_FIRST) {
  302. if (id == 0) {
  303. for (unsigned short i=1; i<_relays.size(); i++) {
  304. relayStatus(i, status);
  305. }
  306. }
  307. // If NONE_OR_ONE or ONE and setting ON we should set OFF all the others
  308. } else if (status) {
  309. if (relaySync != RELAY_SYNC_ANY) {
  310. for (unsigned short i=0; i<_relays.size(); i++) {
  311. if (i != id) relayStatus(i, false);
  312. }
  313. }
  314. // If ONLY_ONE and setting OFF we should set ON the other one
  315. } else {
  316. if (relaySync == RELAY_SYNC_ONE) {
  317. unsigned char i = (id + 1) % _relays.size();
  318. relayStatus(i, true);
  319. }
  320. }
  321. // Unflag sync mode
  322. _relayRecursive = false;
  323. }
  324. void relaySave(bool eeprom) {
  325. auto mask = std::bitset<RELAY_SAVE_MASK_MAX>(0);
  326. unsigned char count = relayCount();
  327. if (count > RELAY_SAVE_MASK_MAX) count = RELAY_SAVE_MASK_MAX;
  328. for (unsigned int i=0; i < count; ++i) {
  329. mask.set(i, relayStatus(i));
  330. }
  331. const uint32_t mask_value = mask.to_ulong();
  332. DEBUG_MSG_P(PSTR("[RELAY] Setting relay mask: %u\n"), mask_value);
  333. // Persist only to rtcmem, unless requested to save to the eeprom
  334. _relayMaskRtcmem(mask_value);
  335. // The 'eeprom' flag controls wether we are commiting this change or not.
  336. // It is useful to set it to 'false' if the relay change triggering the
  337. // save involves a relay whose boot mode is independent from current mode,
  338. // thus storing the last relay value is not absolutely necessary.
  339. // Nevertheless, we store the value in the EEPROM buffer so it will be written
  340. // on the next commit.
  341. if (eeprom) {
  342. EEPROMr.write(EEPROM_RELAY_STATUS, mask_value);
  343. // We are actually enqueuing the commit so it will be
  344. // executed on the main loop, in case this is called from a system context callback
  345. eepromCommit();
  346. }
  347. }
  348. void relaySave() {
  349. relaySave(false);
  350. }
  351. void relayToggle(unsigned char id, bool report, bool group_report) {
  352. if (id >= _relays.size()) return;
  353. relayStatus(id, !relayStatus(id), report, group_report);
  354. }
  355. void relayToggle(unsigned char id) {
  356. relayToggle(id, mqttForward(), true);
  357. }
  358. unsigned char relayCount() {
  359. return _relays.size();
  360. }
  361. unsigned char relayParsePayload(const char * payload) {
  362. // Payload could be "OFF", "ON", "TOGGLE"
  363. // or its number equivalents: 0, 1 or 2
  364. if (payload[0] == '0') return 0;
  365. if (payload[0] == '1') return 1;
  366. if (payload[0] == '2') return 2;
  367. // trim payload
  368. char * p = ltrim((char *)payload);
  369. // to lower
  370. unsigned int l = strlen(p);
  371. if (l>6) l=6;
  372. for (unsigned char i=0; i<l; i++) {
  373. p[i] = tolower(p[i]);
  374. }
  375. unsigned int value = 0xFF;
  376. if (strcmp(p, "off") == 0) {
  377. value = 0;
  378. } else if (strcmp(p, "on") == 0) {
  379. value = 1;
  380. } else if (strcmp(p, "toggle") == 0) {
  381. value = 2;
  382. } else if (strcmp(p, "query") == 0) {
  383. value = 3;
  384. }
  385. return value;
  386. }
  387. // BACKWARDS COMPATIBILITY
  388. void _relayBackwards() {
  389. for (unsigned int i=0; i<_relays.size(); i++) {
  390. if (!hasSetting("mqttGroupInv", i)) continue;
  391. setSetting("mqttGroupSync", i, getSetting("mqttGroupInv", i));
  392. delSetting("mqttGroupInv", i);
  393. }
  394. }
  395. void _relayBoot() {
  396. _relayRecursive = true;
  397. bool trigger_save = false;
  398. uint32_t stored_mask = 0;
  399. if (rtcmemStatus()) {
  400. stored_mask = _relayMaskRtcmem();
  401. } else {
  402. stored_mask = EEPROMr.read(EEPROM_RELAY_STATUS);
  403. }
  404. DEBUG_MSG_P(PSTR("[RELAY] Retrieving mask: %u\n"), stored_mask);
  405. auto mask = std::bitset<RELAY_SAVE_MASK_MAX>(stored_mask);
  406. // Walk the relays
  407. unsigned char lock;
  408. bool status;
  409. for (unsigned char i=0; i<relayCount(); ++i) {
  410. unsigned char boot_mode = getSetting("relayBoot", i, RELAY_BOOT_MODE).toInt();
  411. DEBUG_MSG_P(PSTR("[RELAY] Relay #%u boot mode %u\n"), i, boot_mode);
  412. status = false;
  413. lock = RELAY_LOCK_DISABLED;
  414. switch (boot_mode) {
  415. case RELAY_BOOT_SAME:
  416. if (i < 8) {
  417. status = mask.test(i);
  418. }
  419. break;
  420. case RELAY_BOOT_TOGGLE:
  421. if (i < 8) {
  422. status = !mask[i];
  423. mask.flip(i);
  424. trigger_save = true;
  425. }
  426. break;
  427. case RELAY_BOOT_LOCKED_ON:
  428. status = true;
  429. lock = RELAY_LOCK_ON;
  430. break;
  431. case RELAY_BOOT_LOCKED_OFF:
  432. lock = RELAY_LOCK_OFF;
  433. break;
  434. case RELAY_BOOT_ON:
  435. status = true;
  436. break;
  437. case RELAY_BOOT_OFF:
  438. default:
  439. break;
  440. }
  441. _relays[i].current_status = !status;
  442. _relays[i].target_status = status;
  443. #if RELAY_PROVIDER == RELAY_PROVIDER_STM
  444. _relays[i].change_time = millis() + 3000 + 1000 * i;
  445. #else
  446. _relays[i].change_time = millis();
  447. #endif
  448. _relays[i].lock = lock;
  449. }
  450. // Save if there is any relay in the RELAY_BOOT_TOGGLE mode
  451. if (trigger_save) {
  452. _relayMaskRtcmem(mask.to_ulong());
  453. EEPROMr.write(EEPROM_RELAY_STATUS, mask.to_ulong());
  454. eepromCommit();
  455. }
  456. _relayRecursive = false;
  457. }
  458. void _relayConfigure() {
  459. for (unsigned int i=0; i<_relays.size(); i++) {
  460. _relays[i].pulse = getSetting("relayPulse", i, RELAY_PULSE_MODE).toInt();
  461. _relays[i].pulse_ms = 1000 * getSetting("relayTime", i, RELAY_PULSE_MODE).toFloat();
  462. if (GPIO_NONE == _relays[i].pin) continue;
  463. pinMode(_relays[i].pin, OUTPUT);
  464. if (GPIO_NONE != _relays[i].reset_pin) {
  465. pinMode(_relays[i].reset_pin, OUTPUT);
  466. }
  467. if (_relays[i].type == RELAY_TYPE_INVERSE) {
  468. //set to high to block short opening of relay
  469. digitalWrite(_relays[i].pin, HIGH);
  470. }
  471. }
  472. #if MQTT_SUPPORT
  473. settingsProcessConfig({
  474. {_relay_mqtt_payload_on, "relayPayloadON", RELAY_MQTT_ON},
  475. {_relay_mqtt_payload_off, "relayPayloadOFF", RELAY_MQTT_OFF}
  476. });
  477. #endif // MQTT_SUPPORT
  478. }
  479. //------------------------------------------------------------------------------
  480. // WEBSOCKETS
  481. //------------------------------------------------------------------------------
  482. #if WEB_SUPPORT
  483. bool _relayWebSocketOnKeyCheck(const char * key, JsonVariant& value) {
  484. return (strncmp(key, "relay", 5) == 0);
  485. }
  486. void _relayWebSocketUpdate(JsonObject& root) {
  487. JsonObject& state = root.createNestedObject("relayState");
  488. state["size"] = relayCount();
  489. JsonArray& status = state.createNestedArray("status");
  490. JsonArray& lock = state.createNestedArray("lock");
  491. for (unsigned char i=0; i<relayCount(); i++) {
  492. status.add<uint8_t>(_relays[i].target_status);
  493. lock.add(_relays[i].lock);
  494. }
  495. }
  496. String _relayFriendlyName(unsigned char i) {
  497. String res = String("GPIO") + String(_relays[i].pin);
  498. if (GPIO_NONE == _relays[i].pin) {
  499. #if (RELAY_PROVIDER == RELAY_PROVIDER_LIGHT)
  500. uint8_t physical = _relays.size() - DUMMY_RELAY_COUNT;
  501. if (i >= physical) {
  502. if (DUMMY_RELAY_COUNT == lightChannels()) {
  503. res = String("CH") + String(i-physical);
  504. } else if (DUMMY_RELAY_COUNT == (lightChannels() + 1u)) {
  505. if (physical == i) {
  506. res = String("Light");
  507. } else {
  508. res = String("CH") + String(i-1-physical);
  509. }
  510. } else {
  511. res = String("Light");
  512. }
  513. } else {
  514. res = String("?");
  515. }
  516. #else
  517. res = String("SW") + String(i);
  518. #endif
  519. }
  520. return res;
  521. }
  522. void _relayWebSocketSendRelays(JsonObject& root) {
  523. JsonObject& relays = root.createNestedObject("relayConfig");
  524. relays["size"] = relayCount();
  525. relays["start"] = 0;
  526. JsonArray& gpio = relays.createNestedArray("gpio");
  527. JsonArray& type = relays.createNestedArray("type");
  528. JsonArray& reset = relays.createNestedArray("reset");
  529. JsonArray& boot = relays.createNestedArray("boot");
  530. JsonArray& pulse = relays.createNestedArray("pulse");
  531. JsonArray& pulse_time = relays.createNestedArray("pulse_time");
  532. #if MQTT_SUPPORT
  533. JsonArray& group = relays.createNestedArray("group");
  534. JsonArray& group_sync = relays.createNestedArray("group_sync");
  535. JsonArray& on_disconnect = relays.createNestedArray("on_disc");
  536. #endif
  537. for (unsigned char i=0; i<relayCount(); i++) {
  538. gpio.add(_relayFriendlyName(i));
  539. type.add(_relays[i].type);
  540. reset.add(_relays[i].reset_pin);
  541. boot.add(getSetting("relayBoot", i, RELAY_BOOT_MODE).toInt());
  542. pulse.add(_relays[i].pulse);
  543. pulse_time.add(_relays[i].pulse_ms / 1000.0);
  544. #if MQTT_SUPPORT
  545. group.add(getSetting("mqttGroup", i, ""));
  546. group_sync.add(getSetting("mqttGroupSync", i, 0).toInt());
  547. on_disconnect.add(getSetting("relayOnDisc", i, 0).toInt());
  548. #endif
  549. }
  550. }
  551. void _relayWebSocketOnVisible(JsonObject& root) {
  552. if (relayCount() == 0) return;
  553. if (relayCount() > 1) {
  554. root["multirelayVisible"] = 1;
  555. root["relaySync"] = getSetting("relaySync", RELAY_SYNC);
  556. }
  557. root["relayVisible"] = 1;
  558. }
  559. void _relayWebSocketOnConnected(JsonObject& root) {
  560. if (relayCount() == 0) return;
  561. // Per-relay configuration
  562. _relayWebSocketSendRelays(root);
  563. }
  564. void _relayWebSocketOnAction(uint32_t client_id, const char * action, JsonObject& data) {
  565. if (strcmp(action, "relay") != 0) return;
  566. if (data.containsKey("status")) {
  567. unsigned char value = relayParsePayload(data["status"]);
  568. if (value == 3) {
  569. wsPost(_relayWebSocketUpdate);
  570. } else if (value < 3) {
  571. unsigned int relayID = 0;
  572. if (data.containsKey("id")) {
  573. String value = data["id"];
  574. relayID = value.toInt();
  575. }
  576. // Action to perform
  577. if (value == 0) {
  578. relayStatus(relayID, false);
  579. } else if (value == 1) {
  580. relayStatus(relayID, true);
  581. } else if (value == 2) {
  582. relayToggle(relayID);
  583. }
  584. }
  585. }
  586. }
  587. void relaySetupWS() {
  588. wsRegister()
  589. .onVisible(_relayWebSocketOnVisible)
  590. .onConnected(_relayWebSocketOnConnected)
  591. .onData(_relayWebSocketUpdate)
  592. .onAction(_relayWebSocketOnAction)
  593. .onKeyCheck(_relayWebSocketOnKeyCheck);
  594. }
  595. #endif // WEB_SUPPORT
  596. //------------------------------------------------------------------------------
  597. // REST API
  598. //------------------------------------------------------------------------------
  599. #if API_SUPPORT
  600. void relaySetupAPI() {
  601. char key[20];
  602. // API entry points (protected with apikey)
  603. for (unsigned int relayID=0; relayID<relayCount(); relayID++) {
  604. snprintf_P(key, sizeof(key), PSTR("%s/%d"), MQTT_TOPIC_RELAY, relayID);
  605. apiRegister(key,
  606. [relayID](char * buffer, size_t len) {
  607. snprintf_P(buffer, len, PSTR("%d"), _relays[relayID].target_status ? 1 : 0);
  608. },
  609. [relayID](const char * payload) {
  610. unsigned char value = relayParsePayload(payload);
  611. if (value == 0xFF) {
  612. DEBUG_MSG_P(PSTR("[RELAY] Wrong payload (%s)\n"), payload);
  613. return;
  614. }
  615. if (value == 0) {
  616. relayStatus(relayID, false);
  617. } else if (value == 1) {
  618. relayStatus(relayID, true);
  619. } else if (value == 2) {
  620. relayToggle(relayID);
  621. }
  622. }
  623. );
  624. snprintf_P(key, sizeof(key), PSTR("%s/%d"), MQTT_TOPIC_PULSE, relayID);
  625. apiRegister(key,
  626. [relayID](char * buffer, size_t len) {
  627. dtostrf((double) _relays[relayID].pulse_ms / 1000, 1, 3, buffer);
  628. },
  629. [relayID](const char * payload) {
  630. unsigned long pulse = 1000 * atof(payload);
  631. if (0 == pulse) return;
  632. if (RELAY_PULSE_NONE != _relays[relayID].pulse) {
  633. DEBUG_MSG_P(PSTR("[RELAY] Overriding relay #%d pulse settings\n"), relayID);
  634. }
  635. _relays[relayID].pulse_ms = pulse;
  636. _relays[relayID].pulse = relayStatus(relayID) ? RELAY_PULSE_ON : RELAY_PULSE_OFF;
  637. relayToggle(relayID, true, false);
  638. }
  639. );
  640. #if defined(ITEAD_SONOFF_IFAN02)
  641. apiRegister(MQTT_TOPIC_SPEED,
  642. [relayID](char * buffer, size_t len) {
  643. snprintf(buffer, len, "%u", getSpeed());
  644. },
  645. [relayID](const char * payload) {
  646. setSpeed(atoi(payload));
  647. }
  648. );
  649. #endif
  650. }
  651. }
  652. #endif // API_SUPPORT
  653. //------------------------------------------------------------------------------
  654. // MQTT
  655. //------------------------------------------------------------------------------
  656. #if MQTT_SUPPORT
  657. const String& relayPayloadOn() {
  658. return _relay_mqtt_payload_on;
  659. }
  660. const String& relayPayloadOff() {
  661. return _relay_mqtt_payload_off;
  662. }
  663. const char* relayPayload(bool status) {
  664. return status ? _relay_mqtt_payload_on.c_str() : _relay_mqtt_payload_off.c_str();
  665. }
  666. void _relayMQTTGroup(unsigned char id) {
  667. String topic = getSetting("mqttGroup", id, "");
  668. if (!topic.length()) return;
  669. unsigned char mode = getSetting("mqttGroupSync", id, RELAY_GROUP_SYNC_NORMAL).toInt();
  670. if (mode == RELAY_GROUP_SYNC_RECEIVEONLY) return;
  671. bool status = relayStatus(id);
  672. if (mode == RELAY_GROUP_SYNC_INVERSE) status = !status;
  673. mqttSendRaw(topic.c_str(), relayPayload(status));
  674. }
  675. void relayMQTT(unsigned char id) {
  676. if (id >= _relays.size()) return;
  677. // Send state topic
  678. if (_relays[id].report) {
  679. _relays[id].report = false;
  680. mqttSend(MQTT_TOPIC_RELAY, id, relayPayload(_relays[id].current_status));
  681. }
  682. // Check group topic
  683. if (_relays[id].group_report) {
  684. _relays[id].group_report = false;
  685. _relayMQTTGroup(id);
  686. }
  687. // Send speed for IFAN02
  688. #if defined (ITEAD_SONOFF_IFAN02)
  689. char buffer[5];
  690. snprintf(buffer, sizeof(buffer), "%u", getSpeed());
  691. mqttSend(MQTT_TOPIC_SPEED, buffer);
  692. #endif
  693. }
  694. void relayMQTT() {
  695. for (unsigned int id=0; id < _relays.size(); id++) {
  696. mqttSend(MQTT_TOPIC_RELAY, id, relayPayload(_relays[id].current_status));
  697. }
  698. }
  699. void relayStatusWrap(unsigned char id, unsigned char value, bool is_group_topic) {
  700. switch (value) {
  701. case 0:
  702. relayStatus(id, false, mqttForward(), !is_group_topic);
  703. break;
  704. case 1:
  705. relayStatus(id, true, mqttForward(), !is_group_topic);
  706. break;
  707. case 2:
  708. relayToggle(id, true, true);
  709. break;
  710. default:
  711. _relays[id].report = true;
  712. relayMQTT(id);
  713. break;
  714. }
  715. }
  716. void relayMQTTCallback(unsigned int type, const char * topic, const char * payload) {
  717. if (type == MQTT_CONNECT_EVENT) {
  718. // Send status on connect
  719. #if (HEARTBEAT_MODE == HEARTBEAT_NONE) or (not HEARTBEAT_REPORT_RELAY)
  720. relayMQTT();
  721. #endif
  722. // Subscribe to own /set topic
  723. char relay_topic[strlen(MQTT_TOPIC_RELAY) + 3];
  724. snprintf_P(relay_topic, sizeof(relay_topic), PSTR("%s/+"), MQTT_TOPIC_RELAY);
  725. mqttSubscribe(relay_topic);
  726. // Subscribe to pulse topic
  727. char pulse_topic[strlen(MQTT_TOPIC_PULSE) + 3];
  728. snprintf_P(pulse_topic, sizeof(pulse_topic), PSTR("%s/+"), MQTT_TOPIC_PULSE);
  729. mqttSubscribe(pulse_topic);
  730. #if defined(ITEAD_SONOFF_IFAN02)
  731. mqttSubscribe(MQTT_TOPIC_SPEED);
  732. #endif
  733. // Subscribe to group topics
  734. for (unsigned int i=0; i < _relays.size(); i++) {
  735. String t = getSetting("mqttGroup", i, "");
  736. if (t.length() > 0) mqttSubscribeRaw(t.c_str());
  737. }
  738. }
  739. if (type == MQTT_MESSAGE_EVENT) {
  740. String t = mqttMagnitude((char *) topic);
  741. // magnitude is relay/#/pulse
  742. if (t.startsWith(MQTT_TOPIC_PULSE)) {
  743. unsigned int id = t.substring(strlen(MQTT_TOPIC_PULSE)+1).toInt();
  744. if (id >= relayCount()) {
  745. DEBUG_MSG_P(PSTR("[RELAY] Wrong relayID (%d)\n"), id);
  746. return;
  747. }
  748. unsigned long pulse = 1000 * atof(payload);
  749. if (0 == pulse) return;
  750. if (RELAY_PULSE_NONE != _relays[id].pulse) {
  751. DEBUG_MSG_P(PSTR("[RELAY] Overriding relay #%d pulse settings\n"), id);
  752. }
  753. _relays[id].pulse_ms = pulse;
  754. _relays[id].pulse = relayStatus(id) ? RELAY_PULSE_ON : RELAY_PULSE_OFF;
  755. relayToggle(id, true, false);
  756. return;
  757. }
  758. // magnitude is relay/#
  759. if (t.startsWith(MQTT_TOPIC_RELAY)) {
  760. // Get relay ID
  761. unsigned int id = t.substring(strlen(MQTT_TOPIC_RELAY)+1).toInt();
  762. if (id >= relayCount()) {
  763. DEBUG_MSG_P(PSTR("[RELAY] Wrong relayID (%d)\n"), id);
  764. return;
  765. }
  766. // Get value
  767. unsigned char value = relayParsePayload(payload);
  768. if (value == 0xFF) return;
  769. relayStatusWrap(id, value, false);
  770. return;
  771. }
  772. // Check group topics
  773. for (unsigned int i=0; i < _relays.size(); i++) {
  774. String t = getSetting("mqttGroup", i, "");
  775. if ((t.length() > 0) && t.equals(topic)) {
  776. unsigned char value = relayParsePayload(payload);
  777. if (value == 0xFF) return;
  778. if (value < 2) {
  779. if (getSetting("mqttGroupSync", i, RELAY_GROUP_SYNC_NORMAL).toInt() == RELAY_GROUP_SYNC_INVERSE) {
  780. value = 1 - value;
  781. }
  782. }
  783. DEBUG_MSG_P(PSTR("[RELAY] Matched group topic for relayID %d\n"), i);
  784. relayStatusWrap(i, value, true);
  785. }
  786. }
  787. // Itead Sonoff IFAN02
  788. #if defined (ITEAD_SONOFF_IFAN02)
  789. if (t.startsWith(MQTT_TOPIC_SPEED)) {
  790. setSpeed(atoi(payload));
  791. }
  792. #endif
  793. }
  794. if (type == MQTT_DISCONNECT_EVENT) {
  795. for (unsigned int i=0; i < _relays.size(); i++){
  796. int reaction = getSetting("relayOnDisc", i, 0).toInt();
  797. if (1 == reaction) { // switch relay OFF
  798. DEBUG_MSG_P(PSTR("[RELAY] Reset relay (%d) due to MQTT disconnection\n"), i);
  799. relayStatusWrap(i, false, false);
  800. } else if(2 == reaction) { // switch relay ON
  801. DEBUG_MSG_P(PSTR("[RELAY] Set relay (%d) due to MQTT disconnection\n"), i);
  802. relayStatusWrap(i, true, false);
  803. }
  804. }
  805. }
  806. }
  807. void relaySetupMQTT() {
  808. mqttRegister(relayMQTTCallback);
  809. }
  810. #endif
  811. //------------------------------------------------------------------------------
  812. // Settings
  813. //------------------------------------------------------------------------------
  814. #if TERMINAL_SUPPORT
  815. void _relayInitCommands() {
  816. terminalRegisterCommand(F("RELAY"), [](Embedis* e) {
  817. if (e->argc < 2) {
  818. terminalError(F("Wrong arguments"));
  819. return;
  820. }
  821. int id = String(e->argv[1]).toInt();
  822. if (id >= relayCount()) {
  823. DEBUG_MSG_P(PSTR("-ERROR: Wrong relayID (%d)\n"), id);
  824. return;
  825. }
  826. if (e->argc > 2) {
  827. int value = String(e->argv[2]).toInt();
  828. if (value == 2) {
  829. relayToggle(id);
  830. } else {
  831. relayStatus(id, value == 1);
  832. }
  833. }
  834. DEBUG_MSG_P(PSTR("Status: %s\n"), _relays[id].target_status ? "true" : "false");
  835. if (_relays[id].pulse != RELAY_PULSE_NONE) {
  836. DEBUG_MSG_P(PSTR("Pulse: %s\n"), (_relays[id].pulse == RELAY_PULSE_ON) ? "ON" : "OFF");
  837. DEBUG_MSG_P(PSTR("Pulse time: %d\n"), _relays[id].pulse_ms);
  838. }
  839. terminalOK();
  840. });
  841. }
  842. #endif // TERMINAL_SUPPORT
  843. //------------------------------------------------------------------------------
  844. // Setup
  845. //------------------------------------------------------------------------------
  846. void _relayLoop() {
  847. _relayProcess(false);
  848. _relayProcess(true);
  849. }
  850. void relaySetup() {
  851. // Ad-hoc relays
  852. #if RELAY1_PIN != GPIO_NONE
  853. _relays.push_back((relay_t) { RELAY1_PIN, RELAY1_TYPE, RELAY1_RESET_PIN, RELAY1_DELAY_ON, RELAY1_DELAY_OFF });
  854. #endif
  855. #if RELAY2_PIN != GPIO_NONE
  856. _relays.push_back((relay_t) { RELAY2_PIN, RELAY2_TYPE, RELAY2_RESET_PIN, RELAY2_DELAY_ON, RELAY2_DELAY_OFF });
  857. #endif
  858. #if RELAY3_PIN != GPIO_NONE
  859. _relays.push_back((relay_t) { RELAY3_PIN, RELAY3_TYPE, RELAY3_RESET_PIN, RELAY3_DELAY_ON, RELAY3_DELAY_OFF });
  860. #endif
  861. #if RELAY4_PIN != GPIO_NONE
  862. _relays.push_back((relay_t) { RELAY4_PIN, RELAY4_TYPE, RELAY4_RESET_PIN, RELAY4_DELAY_ON, RELAY4_DELAY_OFF });
  863. #endif
  864. #if RELAY5_PIN != GPIO_NONE
  865. _relays.push_back((relay_t) { RELAY5_PIN, RELAY5_TYPE, RELAY5_RESET_PIN, RELAY5_DELAY_ON, RELAY5_DELAY_OFF });
  866. #endif
  867. #if RELAY6_PIN != GPIO_NONE
  868. _relays.push_back((relay_t) { RELAY6_PIN, RELAY6_TYPE, RELAY6_RESET_PIN, RELAY6_DELAY_ON, RELAY6_DELAY_OFF });
  869. #endif
  870. #if RELAY7_PIN != GPIO_NONE
  871. _relays.push_back((relay_t) { RELAY7_PIN, RELAY7_TYPE, RELAY7_RESET_PIN, RELAY7_DELAY_ON, RELAY7_DELAY_OFF });
  872. #endif
  873. #if RELAY8_PIN != GPIO_NONE
  874. _relays.push_back((relay_t) { RELAY8_PIN, RELAY8_TYPE, RELAY8_RESET_PIN, RELAY8_DELAY_ON, RELAY8_DELAY_OFF });
  875. #endif
  876. // Dummy relays for AI Light, Magic Home LED Controller, H801, Sonoff Dual and Sonoff RF Bridge
  877. // No delay_on or off for these devices to easily allow having more than
  878. // 8 channels. This behaviour will be recovered with v2.
  879. for (unsigned char i=0; i < DUMMY_RELAY_COUNT; i++) {
  880. _relays.push_back((relay_t) {GPIO_NONE, RELAY_TYPE_NORMAL, 0, 0, 0});
  881. }
  882. _relayBackwards();
  883. _relayConfigure();
  884. _relayBoot();
  885. _relayLoop();
  886. #if WEB_SUPPORT
  887. relaySetupWS();
  888. #endif
  889. #if API_SUPPORT
  890. relaySetupAPI();
  891. #endif
  892. #if MQTT_SUPPORT
  893. relaySetupMQTT();
  894. #endif
  895. #if TERMINAL_SUPPORT
  896. _relayInitCommands();
  897. #endif
  898. // Main callbacks
  899. espurnaRegisterLoop(_relayLoop);
  900. espurnaRegisterReload(_relayConfigure);
  901. DEBUG_MSG_P(PSTR("[RELAY] Number of relays: %d\n"), _relays.size());
  902. }