Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

613 lines
17 KiB

7 years ago
7 years ago
7 years ago
7 years ago
  1. /*
  2. LIGHT MODULE
  3. Copyright (C) 2016-2017 by Xose Pérez <xose dot perez at gmail dot com>
  4. */
  5. #if LIGHT_PROVIDER != LIGHT_PROVIDER_NONE
  6. #ifndef LIGHT_PROVIDER_EXPERIMENTAL_RGB_ONLY_HSV_IR
  7. #include <Ticker.h>
  8. #include <ArduinoJson.h>
  9. #include <vector>
  10. Ticker colorTicker;
  11. typedef struct {
  12. unsigned char pin;
  13. bool reverse;
  14. unsigned char value;
  15. unsigned char shadow;
  16. } channel_t;
  17. std::vector<channel_t> _channels;
  18. bool _lightState = false;
  19. unsigned int _brightness = LIGHT_MAX_BRIGHTNESS;
  20. #if LIGHT_PROVIDER == LIGHT_PROVIDER_MY9192
  21. #include <my9291.h>
  22. my9291 * _my9291;
  23. #endif
  24. // Gamma Correction lookup table for gamma=2.8 and 12 bit (4095) full scale
  25. // TODO: move to PROGMEM
  26. const unsigned short gamma_table[LIGHT_MAX_VALUE+1] = {
  27. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
  28. 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
  29. 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
  30. 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
  31. 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
  32. 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
  33. 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
  34. 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
  35. 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
  36. 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998,1016,1034,1053,1072,1091,
  37. 1110,1130,1150,1170,1190,1210,1231,1252,1273,1294,1316,1338,1360,1382,1404,1427,
  38. 1450,1473,1497,1520,1544,1568,1593,1617,1642,1667,1693,1718,1744,1770,1797,1823,
  39. 1850,1877,1905,1932,1960,1988,2017,2045,2074,2103,2133,2162,2192,2223,2253,2284,
  40. 2315,2346,2378,2410,2442,2474,2507,2540,2573,2606,2640,2674,2708,2743,2778,2813,
  41. 2849,2884,2920,2957,2993,3030,3067,3105,3143,3181,3219,3258,3297,3336,3376,3416,
  42. 3456,3496,3537,3578,3619,3661,3703,3745,3788,3831,3874,3918,3962,4006,4050,4095 };
  43. // -----------------------------------------------------------------------------
  44. // UTILS
  45. // -----------------------------------------------------------------------------
  46. void _fromLong(unsigned long value, bool brightness) {
  47. if (brightness) {
  48. _channels[0].value = (value >> 24) & 0xFF;
  49. _channels[1].value = (value >> 16) & 0xFF;
  50. _channels[2].value = (value >> 8) & 0xFF;
  51. _brightness = (value & 0xFF) * LIGHT_MAX_BRIGHTNESS / 255;
  52. } else {
  53. _channels[0].value = (value >> 16) & 0xFF;
  54. _channels[1].value = (value >> 8) & 0xFF;
  55. _channels[2].value = (value) & 0xFF;
  56. }
  57. }
  58. void _fromRGB(const char * rgb) {
  59. char * p = (char *) rgb;
  60. if (strlen(p) == 0) return;
  61. // if color begins with a # then assume HEX RGB
  62. if (p[0] == '#') {
  63. if (lightHasColor()) {
  64. ++p;
  65. unsigned long value = strtoul(p, NULL, 16);
  66. // RGBA values are interpreted like RGB + brightness
  67. _fromLong(value, strlen(p) > 7);
  68. }
  69. // it's a temperature in mireds
  70. } else if (p[0] == 'M') {
  71. if (lightHasColor()) {
  72. unsigned long mireds = atol(p + 1);
  73. _fromMireds(mireds);
  74. }
  75. // it's a temperature in kelvin
  76. } else if (p[0] == 'K') {
  77. if (lightHasColor()) {
  78. unsigned long kelvin = atol(p + 1);
  79. _fromKelvin(kelvin);
  80. }
  81. // otherwise assume decimal values separated by commas
  82. } else {
  83. char * tok;
  84. unsigned char count = 0;
  85. unsigned char channels = _channels.size();
  86. tok = strtok(p, ",");
  87. while (tok != NULL) {
  88. _channels[count].value = atoi(tok);
  89. if (++count == channels) break;
  90. tok = strtok(NULL, ",");
  91. }
  92. // RGB but less than 3 values received
  93. if (lightHasColor() && (count < 3)) {
  94. _channels[1].value = _channels[0].value;
  95. _channels[2].value = _channels[0].value;
  96. }
  97. }
  98. }
  99. void _toRGB(char * rgb, size_t len, bool applyBrightness) {
  100. if (!lightHasColor()) return;
  101. float b = applyBrightness ? (float) _brightness / LIGHT_MAX_BRIGHTNESS : 1;
  102. unsigned long value = 0;
  103. value += _channels[0].value * b;
  104. value <<= 8;
  105. value += _channels[1].value * b;
  106. value <<= 8;
  107. value += _channels[2].value * b;
  108. snprintf_P(rgb, len, PSTR("#%06X"), value);
  109. }
  110. void _toRGB(char * rgb, size_t len) {
  111. _toRGB(rgb, len, false);
  112. }
  113. // Thanks to Sacha Telgenhof for sharing this code in his AiLight library
  114. // https://github.com/stelgenhof/AiLight
  115. void _fromKelvin(unsigned long kelvin) {
  116. // Check we have RGB channels
  117. if (!lightHasColor()) return;
  118. // Calculate colors
  119. unsigned int red = (kelvin <= 66)
  120. ? LIGHT_MAX_VALUE
  121. : 329.698727446 * pow((kelvin - 60), -0.1332047592);
  122. unsigned int green = (kelvin <= 66)
  123. ? 99.4708025861 * log(kelvin) - 161.1195681661
  124. : 288.1221695283 * pow(kelvin, -0.0755148492);
  125. unsigned int blue = (kelvin >= 66)
  126. ? LIGHT_MAX_VALUE
  127. : ((kelvin <= 19)
  128. ? 0
  129. : 138.5177312231 * log(kelvin - 10) - 305.0447927307);
  130. // Save values
  131. _channels[0].value = constrain(red, 0, LIGHT_MAX_VALUE);
  132. _channels[1].value = constrain(green, 0, LIGHT_MAX_VALUE);
  133. _channels[2].value = constrain(blue, 0, LIGHT_MAX_VALUE);
  134. }
  135. // Color temperature is measured in mireds (kelvin = 1e6/mired)
  136. void _fromMireds(unsigned long mireds) {
  137. if (mireds == 0) mireds = 1;
  138. unsigned long kelvin = constrain(1000000UL / mireds, 1000, 40000) / 100;
  139. _fromKelvin(kelvin);
  140. }
  141. unsigned int _toPWM(unsigned long value, bool bright, bool gamma, bool reverse) {
  142. value = constrain(value, 0, LIGHT_MAX_VALUE);
  143. if (bright) value *= ((float) _brightness / LIGHT_MAX_BRIGHTNESS);
  144. unsigned int pwm = gamma ? gamma_table[value] : map(value, 0, LIGHT_MAX_VALUE, 0, LIGHT_MAX_PWM);
  145. if (reverse) pwm = LIGHT_MAX_PWM - pwm;
  146. return pwm;
  147. }
  148. // Returns a PWM valule for the given channel ID
  149. unsigned int _toPWM(unsigned char id) {
  150. if (id < _channels.size()) {
  151. bool isColor = (lightHasColor() && id < 3);
  152. bool bright = isColor;
  153. bool gamma = isColor & (getSetting("useGamma", LIGHT_USE_GAMMA).toInt() == 1);
  154. return _toPWM(_channels[id].shadow, bright, gamma, _channels[id].reverse);
  155. }
  156. return 0;
  157. }
  158. // -----------------------------------------------------------------------------
  159. // PROVIDER
  160. // -----------------------------------------------------------------------------
  161. void _shadow() {
  162. for (unsigned int i=0; i < _channels.size(); i++) {
  163. _channels[i].shadow = _lightState ? _channels[i].value : 0;
  164. }
  165. if (lightHasColor()) {
  166. bool useWhite = getSetting("useWhite", LIGHT_USE_WHITE).toInt() == 1;
  167. if (_lightState && useWhite && _channels.size() > 3) {
  168. if (_channels[0].shadow == _channels[1].shadow && _channels[1].shadow == _channels[2].shadow ) {
  169. _channels[3].shadow = _channels[0].shadow * ((float) _brightness / LIGHT_MAX_BRIGHTNESS);
  170. _channels[2].shadow = 0;
  171. _channels[1].shadow = 0;
  172. _channels[0].shadow = 0;
  173. }
  174. }
  175. }
  176. }
  177. void _lightProviderUpdate() {
  178. _shadow();
  179. #if LIGHT_PROVIDER == LIGHT_PROVIDER_MY9192
  180. if (_lightState) {
  181. float ratio = (float) LIGHT_MAX_VALUE / LIGHT_MAX_PWM;
  182. unsigned int red = _toPWM(0) * ratio;
  183. unsigned int green = _toPWM(1) * ratio;
  184. unsigned int blue = _toPWM(2) * ratio;
  185. unsigned int white = _toPWM(3) * ratio;
  186. unsigned int warm = _toPWM(4) * ratio;
  187. _my9291->setColor((my9291_color_t) { red, green, blue, white, warm });
  188. _my9291->setState(true);
  189. } else {
  190. _my9291->setState(false);
  191. }
  192. #endif
  193. #if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
  194. for (unsigned int i=0; i < _channels.size(); i++) {
  195. analogWrite(_channels[i].pin, _toPWM(i));
  196. }
  197. #endif
  198. }
  199. // -----------------------------------------------------------------------------
  200. // PERSISTANCE
  201. // -----------------------------------------------------------------------------
  202. void _lightColorSave() {
  203. for (unsigned int i=0; i < _channels.size(); i++) {
  204. setSetting("ch", i, _channels[i].value);
  205. }
  206. setSetting("brightness", _brightness);
  207. saveSettings();
  208. }
  209. void _lightColorRestore() {
  210. for (unsigned int i=0; i < _channels.size(); i++) {
  211. _channels[i].value = getSetting("ch", i, i==0 ? 255 : 0).toInt();
  212. }
  213. _brightness = getSetting("brightness", LIGHT_MAX_BRIGHTNESS).toInt();
  214. lightUpdate(false, false);
  215. }
  216. // -----------------------------------------------------------------------------
  217. // MQTT
  218. // -----------------------------------------------------------------------------
  219. void _lightMQTTCallback(unsigned int type, const char * topic, const char * payload) {
  220. if (type == MQTT_CONNECT_EVENT) {
  221. if (lightHasColor()) {
  222. mqttSubscribe(MQTT_TOPIC_BRIGHTNESS);
  223. mqttSubscribe(MQTT_TOPIC_MIRED);
  224. mqttSubscribe(MQTT_TOPIC_KELVIN);
  225. mqttSubscribe(MQTT_TOPIC_COLOR);
  226. }
  227. char buffer[strlen(MQTT_TOPIC_CHANNEL) + 3];
  228. snprintf_P(buffer, sizeof(buffer), PSTR("%s/+"), MQTT_TOPIC_CHANNEL);
  229. mqttSubscribe(buffer);
  230. }
  231. if (type == MQTT_MESSAGE_EVENT) {
  232. // Match topic
  233. String t = mqttSubtopic((char *) topic);
  234. // Color temperature in mireds
  235. if (t.equals(MQTT_TOPIC_MIRED)) {
  236. _fromMireds(atol(payload));
  237. lightUpdate(true, mqttForward());
  238. }
  239. // Color temperature in kelvins
  240. if (t.equals(MQTT_TOPIC_KELVIN)) {
  241. _fromKelvin(atol(payload));
  242. lightUpdate(true, mqttForward());
  243. }
  244. // Color
  245. if (t.equals(MQTT_TOPIC_COLOR)) {
  246. lightColor(payload);
  247. lightUpdate(true, mqttForward());
  248. }
  249. // Brightness
  250. if (t.equals(MQTT_TOPIC_BRIGHTNESS)) {
  251. _brightness = constrain(atoi(payload), 0, LIGHT_MAX_BRIGHTNESS);
  252. lightUpdate(true, mqttForward());
  253. }
  254. // Channel
  255. if (t.startsWith(MQTT_TOPIC_CHANNEL)) {
  256. unsigned int channelID = t.substring(strlen(MQTT_TOPIC_CHANNEL)+1).toInt();
  257. if (channelID >= _channels.size()) {
  258. DEBUG_MSG_P(PSTR("[LIGHT] Wrong channelID (%d)\n"), channelID);
  259. return;
  260. }
  261. lightChannel(channelID, atoi(payload));
  262. lightUpdate(true, mqttForward());
  263. }
  264. }
  265. }
  266. // -----------------------------------------------------------------------------
  267. // API
  268. // -----------------------------------------------------------------------------
  269. unsigned char lightChannels() {
  270. return _channels.size();
  271. }
  272. bool lightHasColor() {
  273. bool useColor = getSetting("useColor", LIGHT_USE_COLOR).toInt() == 1;
  274. return useColor && (_channels.size() > 2);
  275. }
  276. unsigned char lightWhiteChannels() {
  277. return _channels.size() % 3;
  278. }
  279. void lightMQTT() {
  280. char buffer[8];
  281. if (lightHasColor()) {
  282. // Color
  283. _toRGB(buffer, 8, false);
  284. mqttSend(MQTT_TOPIC_COLOR, buffer);
  285. // Brightness
  286. snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _brightness);
  287. mqttSend(MQTT_TOPIC_BRIGHTNESS, buffer);
  288. }
  289. // Channels
  290. for (unsigned int i=0; i < _channels.size(); i++) {
  291. snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _channels[i].value);
  292. mqttSend(MQTT_TOPIC_CHANNEL, i, buffer);
  293. }
  294. }
  295. void lightUpdate(bool save, bool forward) {
  296. _lightProviderUpdate();
  297. // Report color & brightness to MQTT broker
  298. if (forward) lightMQTT();
  299. // Report color to WS clients (using current brightness setting)
  300. #if WEB_SUPPORT
  301. {
  302. DynamicJsonBuffer jsonBuffer;
  303. JsonObject& root = jsonBuffer.createObject();
  304. root["colorVisible"] = 1;
  305. root["useColor"] = getSetting("useColor", LIGHT_USE_COLOR).toInt() == 1;
  306. root["useWhite"] = getSetting("useWhite", LIGHT_USE_WHITE).toInt() == 1;
  307. root["useGamma"] = getSetting("useGamma", LIGHT_USE_GAMMA).toInt() == 1;
  308. if (lightHasColor()) {
  309. root["color"] = lightColor();
  310. root["brightness"] = lightBrightness();
  311. }
  312. JsonArray& channels = root.createNestedArray("channels");
  313. for (unsigned char id=0; id < lightChannels(); id++) {
  314. channels.add(lightChannel(id));
  315. }
  316. String output;
  317. root.printTo(output);
  318. wsSend(output.c_str());
  319. }
  320. #endif
  321. #if LIGHT_SAVE_ENABLED
  322. // Delay saving to EEPROM 5 seconds to avoid wearing it out unnecessarily
  323. if (save) colorTicker.once(LIGHT_SAVE_DELAY, _lightColorSave);
  324. #endif
  325. };
  326. #if LIGHT_SAVE_ENABLED == 0
  327. void lightSave() {
  328. _lightColorSave();
  329. }
  330. #endif
  331. void lightState(bool state) {
  332. _lightState = state;
  333. }
  334. bool lightState() {
  335. return _lightState;
  336. }
  337. void lightColor(const char * color) {
  338. _fromRGB(color);
  339. }
  340. void lightColor(unsigned long color) {
  341. _fromLong(color, false);
  342. }
  343. String lightColor() {
  344. char rgb[8];
  345. _toRGB(rgb, 8, false);
  346. return String(rgb);
  347. }
  348. unsigned int lightChannel(unsigned char id) {
  349. if (id <= _channels.size()) {
  350. return _channels[id].value;
  351. }
  352. return 0;
  353. }
  354. void lightChannel(unsigned char id, unsigned int value) {
  355. if (id <= _channels.size()) {
  356. _channels[id].value = constrain(value, 0, LIGHT_MAX_VALUE);
  357. }
  358. }
  359. unsigned int lightBrightness() {
  360. return _brightness;
  361. }
  362. void lightBrightness(unsigned int b) {
  363. _brightness = constrain(b, 0, LIGHT_MAX_BRIGHTNESS);
  364. }
  365. void lightBrightnessStep(int steps) {
  366. lightBrightness(_brightness + steps * LIGHT_STEP);
  367. }
  368. // -----------------------------------------------------------------------------
  369. // SETUP
  370. // -----------------------------------------------------------------------------
  371. void _lightAPISetup() {
  372. #if WEB_SUPPORT
  373. // API entry points (protected with apikey)
  374. if (lightHasColor()) {
  375. apiRegister(MQTT_TOPIC_COLOR, MQTT_TOPIC_COLOR,
  376. [](char * buffer, size_t len) {
  377. _toRGB(buffer, len, false);
  378. },
  379. [](const char * payload) {
  380. lightColor(payload);
  381. lightUpdate(true, true);
  382. }
  383. );
  384. apiRegister(MQTT_TOPIC_BRIGHTNESS, MQTT_TOPIC_BRIGHTNESS,
  385. [](char * buffer, size_t len) {
  386. snprintf_P(buffer, len, PSTR("%d"), _brightness);
  387. },
  388. [](const char * payload) {
  389. lightBrightness(atoi(payload));
  390. lightUpdate(true, true);
  391. }
  392. );
  393. apiRegister(MQTT_TOPIC_KELVIN, MQTT_TOPIC_KELVIN,
  394. [](char * buffer, size_t len) {},
  395. [](const char * payload) {
  396. _fromKelvin(atol(payload));
  397. lightUpdate(true, true);
  398. }
  399. );
  400. apiRegister(MQTT_TOPIC_MIRED, MQTT_TOPIC_MIRED,
  401. [](char * buffer, size_t len) {},
  402. [](const char * payload) {
  403. _fromMireds(atol(payload));
  404. lightUpdate(true, true);
  405. }
  406. );
  407. }
  408. for (unsigned int id=0; id<lightChannels(); id++) {
  409. char url[15];
  410. snprintf_P(url, sizeof(url), PSTR("%s/%d"), MQTT_TOPIC_CHANNEL, id);
  411. char key[10];
  412. snprintf_P(key, sizeof(key), PSTR("%s%d"), MQTT_TOPIC_CHANNEL, id);
  413. apiRegister(url, key,
  414. [id](char * buffer, size_t len) {
  415. snprintf_P(buffer, len, PSTR("%d"), lightChannel(id));
  416. },
  417. [id](const char * payload) {
  418. lightChannel(id, atoi(payload));
  419. lightUpdate(true, true);
  420. }
  421. );
  422. }
  423. #endif // WEB_SUPPORT
  424. }
  425. void lightSetup() {
  426. #if LIGHT_PROVIDER == LIGHT_PROVIDER_MY9192
  427. _my9291 = new my9291(MY9291_DI_PIN, MY9291_DCKI_PIN, MY9291_COMMAND, MY9291_CHANNELS);
  428. for (unsigned char i=0; i<MY9291_CHANNELS; i++) {
  429. _channels.push_back((channel_t) {0, false, 0});
  430. }
  431. #endif
  432. #if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
  433. #ifdef LIGHT_CH1_PIN
  434. _channels.push_back((channel_t) {LIGHT_CH1_PIN, LIGHT_CH1_INVERSE, 0});
  435. #endif
  436. #ifdef LIGHT_CH2_PIN
  437. _channels.push_back((channel_t) {LIGHT_CH2_PIN, LIGHT_CH2_INVERSE, 0});
  438. #endif
  439. #ifdef LIGHT_CH3_PIN
  440. _channels.push_back((channel_t) {LIGHT_CH3_PIN, LIGHT_CH3_INVERSE, 0});
  441. #endif
  442. #ifdef LIGHT_CH4_PIN
  443. _channels.push_back((channel_t) {LIGHT_CH4_PIN, LIGHT_CH4_INVERSE, 0});
  444. #endif
  445. #ifdef LIGHT_CH5_PIN
  446. _channels.push_back((channel_t) {LIGHT_CH5_PIN, LIGHT_CH5_INVERSE, 0});
  447. #endif
  448. analogWriteRange(LIGHT_MAX_PWM+1);
  449. analogWriteFreq(LIGHT_PWM_FREQUENCY);
  450. for (unsigned int i=0; i < _channels.size(); i++) {
  451. pinMode(_channels[i].pin, OUTPUT);
  452. }
  453. #endif
  454. DEBUG_MSG_P(PSTR("[LIGHT] LIGHT_PROVIDER = %d\n"), LIGHT_PROVIDER);
  455. DEBUG_MSG_P(PSTR("[LIGHT] Number of channels: %d\n"), _channels.size());
  456. _lightColorRestore();
  457. _lightAPISetup();
  458. mqttRegister(_lightMQTTCallback);
  459. }
  460. void lightLoop(){
  461. }
  462. #endif // LIGHT_PROVIDER_EXPERIMENTAL_RGB_ONLY_HSV_IR
  463. #endif // LIGHT_PROVIDER != LIGHT_PROVIDER_NONE