/*
|
|
|
|
LIGHT MODULE
|
|
|
|
Copyright (C) 2016-2019 by Xose Pérez <xose dot perez at gmail dot com>
|
|
|
|
*/
|
|
|
|
#include "light.h"
|
|
|
|
#if LIGHT_PROVIDER != LIGHT_PROVIDER_NONE
|
|
|
|
#include "api.h"
|
|
#include "broker.h"
|
|
#include "mqtt.h"
|
|
#include "relay.h"
|
|
#include "rpc.h"
|
|
#include "rtcmem.h"
|
|
#include "ws.h"
|
|
#include "libs/OnceFlag.h"
|
|
|
|
#include "light_config.h"
|
|
|
|
#include <Ticker.h>
|
|
#include <Schedule.h>
|
|
#include <ArduinoJson.h>
|
|
|
|
#include <array>
|
|
#include <vector>
|
|
|
|
extern "C" {
|
|
#include "libs/fs_math.h"
|
|
}
|
|
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
|
|
|
|
// default is 8, we only need up to 5
|
|
#define PWM_CHANNEL_NUM_MAX Light::ChannelsMax
|
|
extern "C" {
|
|
#include "libs/pwm.h"
|
|
}
|
|
|
|
#endif
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
#if RELAY_SUPPORT
|
|
|
|
// Setup virtual relays contolling the light's state
|
|
// TODO: only do per-channel setup optionally
|
|
|
|
class LightChannelProvider : public RelayProviderBase {
|
|
public:
|
|
LightChannelProvider() = delete;
|
|
explicit LightChannelProvider(unsigned char id) :
|
|
_id(id)
|
|
{}
|
|
|
|
const char* id() const {
|
|
return "light_channel";
|
|
}
|
|
|
|
void change(bool status) override {
|
|
lightState(_id, status);
|
|
lightState(true);
|
|
lightUpdate();
|
|
}
|
|
|
|
private:
|
|
unsigned char _id { RELAY_NONE };
|
|
};
|
|
|
|
class LightGlobalProvider : public RelayProviderBase {
|
|
public:
|
|
const char* id() const {
|
|
return "light_global";
|
|
}
|
|
|
|
void change(bool status) override {
|
|
lightState(status);
|
|
lightUpdate();
|
|
}
|
|
};
|
|
|
|
#endif
|
|
|
|
struct channel_t {
|
|
channel_t() = default;
|
|
explicit channel_t(unsigned char pin_, bool inverse_) :
|
|
pin(pin_),
|
|
inverse(inverse_)
|
|
{
|
|
pinMode(pin, OUTPUT);
|
|
}
|
|
|
|
unsigned char pin { GPIO_NONE }; // real GPIO pin
|
|
bool inverse { false }; // whether we should invert the value before using it
|
|
|
|
bool state { true }; // is the channel ON
|
|
|
|
unsigned char inputValue { Light::ValueMin }; // raw value, without the brightness
|
|
unsigned char value { Light::ValueMin }; // normalized value, including brightness
|
|
unsigned char target { Light::ValueMin }; // target value
|
|
float current { Light::ValueMin }; // transition value
|
|
};
|
|
|
|
std::vector<channel_t> _light_channels;
|
|
|
|
bool _light_save = LIGHT_SAVE_ENABLED;
|
|
unsigned long _light_save_delay = LIGHT_SAVE_DELAY;
|
|
Ticker _light_save_ticker;
|
|
|
|
unsigned long _light_report_delay = LIGHT_REPORT_DELAY;
|
|
Ticker _light_report_ticker;
|
|
LightReportListener _light_report;
|
|
|
|
bool _light_has_controls = false;
|
|
bool _light_has_color = false;
|
|
bool _light_use_white = false;
|
|
bool _light_use_cct = false;
|
|
bool _light_use_gamma = false;
|
|
|
|
bool _light_state = false;
|
|
long _light_brightness = Light::BrightnessMax;
|
|
|
|
// Default to the Philips Hue value that HA also use.
|
|
// https://developers.meethue.com/documentation/core-concepts
|
|
long _light_cold_mireds = Light::MiredsCold;
|
|
long _light_warm_mireds = Light::MiredsWarm;
|
|
|
|
long _light_cold_kelvin = (1000000L / _light_cold_mireds);
|
|
long _light_warm_kelvin = (1000000L / _light_warm_mireds);
|
|
|
|
long _light_mireds = (Light::MiredsCold + Light::MiredsWarm) / 2L;
|
|
|
|
namespace {
|
|
|
|
// In case we somehow forgot to initialize the brightness func, make sure to trigger an exception.
|
|
// Just using an `nullptr` may not always trigger an error
|
|
// (also, so we also don't have to check whether the pointer is not `nullptr`)
|
|
|
|
bool _lightApplyBrightnessStub() {
|
|
panic();
|
|
return false;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
using LightBrightnessFunc = bool(*)();
|
|
LightBrightnessFunc _light_brightness_func = _lightApplyBrightnessStub;
|
|
|
|
bool _light_state_changed = false;
|
|
LightStateListener _light_state_listener = nullptr;
|
|
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
|
|
#include <my92xx.h>
|
|
my92xx* _my92xx { nullptr };
|
|
#endif
|
|
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
|
|
std::unique_ptr<LightProvider> _light_provider;
|
|
#endif
|
|
|
|
// UI hint about channel distribution
|
|
const char _light_channel_desc[5][5] PROGMEM = {
|
|
{'W', 0, 0, 0, 0},
|
|
{'W', 'C', 0, 0, 0},
|
|
{'R', 'G', 'B', 0, 0},
|
|
{'R', 'G', 'B', 'W', 0},
|
|
{'R', 'G', 'B', 'W', 'C'}
|
|
};
|
|
static_assert((Light::Channels * Light::Channels) <= (sizeof(_light_channel_desc)), "Out-of-bounds array access");
|
|
|
|
// Gamma Correction lookup table (8 bit)
|
|
const unsigned char _light_gamma_table[] PROGMEM = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,
|
|
3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
|
|
6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11,
|
|
12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19,
|
|
19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28,
|
|
29, 30, 30, 31, 32, 33, 33, 34, 35, 35, 36, 37, 38, 39, 39, 40,
|
|
41, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54,
|
|
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71,
|
|
72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 89,
|
|
91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105, 106, 108, 109, 110,
|
|
112, 113, 115, 116, 118, 119, 121, 122, 123, 125, 126, 128, 130, 131, 133, 134,
|
|
136, 137, 139, 140, 142, 144, 145, 147, 149, 150, 152, 154, 155, 157, 159, 160,
|
|
162, 164, 166, 167, 169, 171, 173, 175, 176, 178, 180, 182, 184, 186, 187, 189,
|
|
191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221,
|
|
223, 225, 227, 229, 231, 233, 235, 238, 240, 242, 244, 246, 248, 251, 253, 255
|
|
};
|
|
static_assert(Light::ValueMax <= sizeof(_light_gamma_table), "Out-of-bounds array access");
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// UTILS
|
|
// -----------------------------------------------------------------------------
|
|
|
|
bool _setValue(unsigned char, unsigned int) __attribute__((warn_unused_result));
|
|
bool _setValue(unsigned char id, unsigned int value) {
|
|
if (_light_channels[id].value != value) {
|
|
_light_channels[id].value = value;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void _setInputValue(unsigned char id, unsigned int value) {
|
|
_light_channels[id].inputValue = value;
|
|
}
|
|
|
|
void _setRGBInputValue(unsigned char red, unsigned char green, unsigned char blue) {
|
|
_setInputValue(0, constrain(red, Light::ValueMin, Light::ValueMax));
|
|
_setInputValue(1, constrain(green, Light::ValueMin, Light::ValueMax));
|
|
_setInputValue(2, constrain(blue, Light::ValueMin, Light::ValueMax));
|
|
}
|
|
|
|
void _setCCTInputValue(unsigned char warm, unsigned char cold) {
|
|
_setInputValue(0, constrain(warm, Light::ValueMin, Light::ValueMax));
|
|
_setInputValue(1, constrain(cold, Light::ValueMin, Light::ValueMax));
|
|
}
|
|
|
|
bool _lightApplyBrightnessChannels(size_t channels) {
|
|
auto scale = static_cast<float>(_light_brightness) / static_cast<float>(Light::BrightnessMax);
|
|
|
|
channels = std::min(channels, lightChannels());
|
|
OnceFlag changed;
|
|
|
|
for (unsigned char channel = 0; channel < lightChannels(); ++channel) {
|
|
if (channel >= channels) {
|
|
scale = 1.0f;
|
|
}
|
|
changed = _setValue(channel, _light_channels[channel].inputValue * scale);
|
|
}
|
|
|
|
return changed.get();
|
|
}
|
|
|
|
bool _lightApplyBrightnessAll() {
|
|
return _lightApplyBrightnessChannels(lightChannels());
|
|
}
|
|
|
|
bool _lightApplyBrightnessRgb() {
|
|
return _lightApplyBrightnessChannels(3);
|
|
}
|
|
|
|
bool _lightApplyBrightnessColor() {
|
|
OnceFlag changed;
|
|
|
|
double brightness = static_cast<double>(_light_brightness) / static_cast<double>(Light::BrightnessMax);
|
|
|
|
// Substract the common part from RGB channels and add it to white channel. So [250,150,50] -> [200,100,0,50]
|
|
unsigned char white = std::min(_light_channels[0].inputValue, std::min(_light_channels[1].inputValue, _light_channels[2].inputValue));
|
|
for (unsigned int i=0; i < 3; i++) {
|
|
changed = _setValue(i, _light_channels[i].inputValue - white);
|
|
}
|
|
|
|
// Split the White Value across 2 White LED Strips.
|
|
if (_light_use_cct) {
|
|
|
|
// This change the range from 153-500 to 0-347 so we get a value between 0 and 1 in the end.
|
|
double miredFactor = ((double) _light_mireds - (double) _light_cold_mireds)/((double) _light_warm_mireds - (double) _light_cold_mireds);
|
|
|
|
// set cold white
|
|
_light_channels[3].inputValue = 0;
|
|
changed = _setValue(3, lround(((double) 1.0 - miredFactor) * white));
|
|
|
|
// set warm white
|
|
_light_channels[4].inputValue = 0;
|
|
changed = _setValue(4, lround(miredFactor * white));
|
|
} else {
|
|
_light_channels[3].inputValue = 0;
|
|
changed = _setValue(3, white);
|
|
}
|
|
|
|
// Scale up to equal input values. So [250,150,50] -> [200,100,0,50] -> [250, 125, 0, 63]
|
|
unsigned char max_in = std::max(_light_channels[0].inputValue, std::max(_light_channels[1].inputValue, _light_channels[2].inputValue));
|
|
unsigned char max_out = std::max(std::max(_light_channels[0].value, _light_channels[1].value), std::max(_light_channels[2].value, _light_channels[3].value));
|
|
unsigned char channelSize = _light_use_cct ? 5 : 4;
|
|
|
|
if (_light_use_cct) {
|
|
max_out = std::max(max_out, _light_channels[4].value);
|
|
}
|
|
|
|
double factor = (max_out > 0) ? (double) (max_in / max_out) : 0;
|
|
for (unsigned char i=0; i < channelSize; i++) {
|
|
changed = _setValue(i, lround((double) _light_channels[i].value * factor * brightness));
|
|
}
|
|
|
|
// Scale white channel to match brightness
|
|
for (unsigned char i=3; i < channelSize; i++) {
|
|
changed = _setValue(i, constrain(static_cast<unsigned int>(_light_channels[i].value * LIGHT_WHITE_FACTOR), Light::BrightnessMin, Light::BrightnessMax));
|
|
}
|
|
|
|
// For the rest of channels, don't apply brightness, it is already in the inputValue
|
|
// i should be 4 when RGBW and 5 when RGBWW
|
|
for (unsigned char i=channelSize; i < _light_channels.size(); i++) {
|
|
changed = _setValue(i, _light_channels[i].inputValue);
|
|
}
|
|
|
|
return changed.get();
|
|
}
|
|
|
|
String lightDesc(unsigned char id) {
|
|
if (id < _light_channels.size()) {
|
|
const char tag = pgm_read_byte(&_light_channel_desc[_light_channels.size() - 1][id]);
|
|
switch (tag) {
|
|
case 'W':
|
|
return F("WARM WHITE");
|
|
case 'C':
|
|
return F("COLD WHITE");
|
|
case 'R':
|
|
return F("RED");
|
|
case 'G':
|
|
return F("GREEN");
|
|
case 'B':
|
|
return F("BLUE");
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return F("UNKNOWN");
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Input Values
|
|
// -----------------------------------------------------------------------------
|
|
|
|
void _fromLong(unsigned long value, bool brightness) {
|
|
if (brightness) {
|
|
_setRGBInputValue((value >> 24) & 0xFF, (value >> 16) & 0xFF, (value >> 8) & 0xFF);
|
|
lightBrightness((value & 0xFF) * Light::BrightnessMax / 255);
|
|
} else {
|
|
_setRGBInputValue((value >> 16) & 0xFF, (value >> 8) & 0xFF, (value) & 0xFF);
|
|
}
|
|
}
|
|
|
|
void _fromRGB(const char * rgb) {
|
|
// 9 char #........ , 11 char ...,...,...
|
|
if (!_light_has_color) return;
|
|
if (!rgb || (strlen(rgb) == 0)) return;
|
|
|
|
// HEX value is always prefixed, like CSS
|
|
// values are interpreted like RGB + optional brightness
|
|
if (rgb[0] == '#') {
|
|
_fromLong(strtoul(rgb + 1, nullptr, 16), strlen(rgb + 1) > 7);
|
|
// With comma separated string, assume decimal values
|
|
} else {
|
|
const auto channels = _light_channels.size();
|
|
unsigned char count = 0;
|
|
|
|
char buf[16] = {0};
|
|
strncpy(buf, rgb, sizeof(buf) - 1);
|
|
char *tok = strtok(buf, ",");
|
|
while (tok != NULL) {
|
|
_setInputValue(count, atoi(tok));
|
|
if (++count == channels) break;
|
|
tok = strtok(NULL, ",");
|
|
}
|
|
|
|
// If less than 3 values received, set the rest to 0
|
|
if (count < 2) _setInputValue(1, 0);
|
|
if (count < 3) _setInputValue(2, 0);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// HSV string is expected to be "H,S,V", where:
|
|
// 0 <= H <= 360
|
|
// 0 <= S <= 100
|
|
// 0 <= V <= 100
|
|
void _fromHSV(const char * hsv) {
|
|
if (!_light_has_color) return;
|
|
if (strlen(hsv) == 0) return;
|
|
|
|
char buf[16] = {0};
|
|
strncpy(buf, hsv, sizeof(buf) - 1);
|
|
|
|
unsigned char count = 0;
|
|
unsigned int value[3] = {0};
|
|
|
|
char * tok = strtok(buf, ",");
|
|
while (tok != NULL) {
|
|
value[count] = atoi(tok);
|
|
if (++count == 3) break;
|
|
tok = strtok(NULL, ",");
|
|
}
|
|
if (count != 3) return;
|
|
|
|
// HSV to RGB transformation -----------------------------------------------
|
|
|
|
//INPUT: [0,100,57]
|
|
//IS: [145,0,0]
|
|
//SHOULD: [255,0,0]
|
|
|
|
const double h = (value[0] == 360) ? 0 : (double) value[0] / 60.0;
|
|
const double f = (h - floor(h));
|
|
const double s = (double) value[1] / 100.0;
|
|
|
|
_light_brightness = lround((double) value[2] * (static_cast<double>(Light::BrightnessMax) / 100.0)); // (default 255/100)
|
|
const unsigned char p = lround(Light::ValueMax * (1.0 - s));
|
|
const unsigned char q = lround(Light::ValueMax * (1.0 - s * f));
|
|
const unsigned char t = lround(Light::ValueMax * (1.0 - s * (1.0 - f)));
|
|
|
|
switch (int(h)) {
|
|
case 0:
|
|
_setRGBInputValue(Light::ValueMax, t, p);
|
|
break;
|
|
case 1:
|
|
_setRGBInputValue(q, Light::ValueMax, p);
|
|
break;
|
|
case 2:
|
|
_setRGBInputValue(p, Light::ValueMax, t);
|
|
break;
|
|
case 3:
|
|
_setRGBInputValue(p, q, Light::ValueMax);
|
|
break;
|
|
case 4:
|
|
_setRGBInputValue(t, p, Light::ValueMax);
|
|
break;
|
|
case 5:
|
|
_setRGBInputValue(Light::ValueMax, p, q);
|
|
break;
|
|
default:
|
|
_setRGBInputValue(Light::ValueMin, Light::ValueMin, Light::ValueMin);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Thanks to Sacha Telgenhof for sharing this code in his AiLight library
|
|
// https://github.com/stelgenhof/AiLight
|
|
// Color temperature is measured in mireds (kelvin = 1e6/mired)
|
|
long _toKelvin(const long mireds) {
|
|
return constrain(static_cast<long>(1000000L / mireds), _light_warm_kelvin, _light_cold_kelvin);
|
|
}
|
|
|
|
long _toMireds(const long kelvin) {
|
|
return constrain(static_cast<long>(lround(1000000L / kelvin)), _light_cold_mireds, _light_warm_mireds);
|
|
}
|
|
|
|
void _lightMireds(const long kelvin) {
|
|
_light_mireds = _toMireds(kelvin);
|
|
}
|
|
|
|
void _lightMiredsCCT(const long kelvin) {
|
|
_lightMireds(kelvin);
|
|
|
|
// This change the range from 153-500 to 0-347 so we get a value between 0 and 1 in the end.
|
|
const double factor = ((double) _light_mireds - (double) _light_cold_mireds)/((double) _light_warm_mireds - (double) _light_cold_mireds);
|
|
_setCCTInputValue(
|
|
lround(factor * Light::ValueMax),
|
|
lround(((double) 1.0 - factor) * Light::ValueMax)
|
|
);
|
|
}
|
|
|
|
void _fromKelvin(long kelvin) {
|
|
|
|
if (!_light_has_color) {
|
|
if (!_light_use_cct) return;
|
|
_lightMiredsCCT(kelvin);
|
|
return;
|
|
}
|
|
|
|
_lightMireds(kelvin);
|
|
|
|
if (_light_use_cct) {
|
|
_setRGBInputValue(Light::ValueMax, Light::ValueMax, Light::ValueMax);
|
|
return;
|
|
}
|
|
|
|
// Calculate colors
|
|
kelvin /= 100;
|
|
const unsigned int red = (kelvin <= 66)
|
|
? Light::ValueMax
|
|
: 329.698727446 * fs_pow((double) (kelvin - 60), -0.1332047592);
|
|
const unsigned int green = (kelvin <= 66)
|
|
? 99.4708025861 * fs_log(kelvin) - 161.1195681661
|
|
: 288.1221695283 * fs_pow((double) kelvin, -0.0755148492);
|
|
const unsigned int blue = (kelvin >= 66)
|
|
? Light::ValueMax
|
|
: ((kelvin <= 19)
|
|
? 0
|
|
: 138.5177312231 * fs_log(kelvin - 10) - 305.0447927307);
|
|
|
|
_setRGBInputValue(red, green, blue);
|
|
|
|
}
|
|
|
|
void _fromMireds(const long mireds) {
|
|
_fromKelvin(_toKelvin(mireds));
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Output Values
|
|
// -----------------------------------------------------------------------------
|
|
|
|
void _toRGB(char * rgb, size_t len, bool target = false) {
|
|
unsigned long value = 0;
|
|
|
|
value += target ? _light_channels[0].target : _light_channels[0].inputValue;
|
|
value <<= 8;
|
|
value += target ? _light_channels[1].target : _light_channels[1].inputValue;
|
|
value <<= 8;
|
|
value += target ? _light_channels[2].target : _light_channels[2].inputValue;
|
|
|
|
snprintf_P(rgb, len, PSTR("#%06X"), value);
|
|
}
|
|
|
|
String _toRGB(bool target) {
|
|
char buffer[64] { 0 };
|
|
_toRGB(buffer, sizeof(buffer), target);
|
|
return buffer;
|
|
}
|
|
|
|
void _toHSV(char * hsv, size_t len) {
|
|
double h {0.}, s {0.}, v {0.};
|
|
double r {0.}, g {0.}, b {0.};
|
|
double min {0.}, max {0.};
|
|
|
|
r = static_cast<double>(_light_channels[0].target) / Light::ValueMax;
|
|
g = static_cast<double>(_light_channels[1].target) / Light::ValueMax;
|
|
b = static_cast<double>(_light_channels[2].target) / Light::ValueMax;
|
|
|
|
min = std::min(r, std::min(g, b));
|
|
max = std::max(r, std::max(g, b));
|
|
|
|
v = 100.0 * max;
|
|
if (v == 0) {
|
|
h = s = 0;
|
|
} else {
|
|
s = 100.0 * (max - min) / max;
|
|
if (s == 0) {
|
|
h = 0;
|
|
} else {
|
|
if (max == r) {
|
|
if (g >= b) {
|
|
h = 0.0 + 60.0 * (g - b) / (max - min);
|
|
} else {
|
|
h = 360.0 + 60.0 * (g - b) / (max - min);
|
|
}
|
|
} else if (max == g) {
|
|
h = 120.0 + 60.0 * (b - r) / (max - min);
|
|
} else {
|
|
h = 240.0 + 60.0 * (r - g) / (max - min);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Convert to string. Using lround, since we can't (yet) printf floats
|
|
snprintf(hsv, len, "%d,%d,%d",
|
|
static_cast<int>(lround(h)),
|
|
static_cast<int>(lround(s)),
|
|
static_cast<int>(lround(v))
|
|
);
|
|
}
|
|
|
|
String _toHSV() {
|
|
char buffer[64] { 0 };
|
|
_toHSV(buffer, sizeof(buffer));
|
|
return buffer;
|
|
}
|
|
|
|
void _toLong(char * color, size_t len, bool target) {
|
|
|
|
if (!_light_has_color) return;
|
|
|
|
snprintf_P(color, len, PSTR("%u,%u,%u"),
|
|
(target ? _light_channels[0].target : _light_channels[0].inputValue),
|
|
(target ? _light_channels[1].target : _light_channels[1].inputValue),
|
|
(target ? _light_channels[2].target : _light_channels[2].inputValue)
|
|
);
|
|
|
|
}
|
|
|
|
void _toLong(char * color, size_t len) {
|
|
_toLong(color, len, false);
|
|
}
|
|
|
|
String _toLong(bool target = false) {
|
|
char buffer[64] { 0 };
|
|
_toLong(buffer, sizeof(buffer), target);
|
|
return buffer;
|
|
}
|
|
|
|
String _toCSV(bool target) {
|
|
const auto channels = lightChannels();
|
|
|
|
String result;
|
|
result.reserve(4 * channels);
|
|
|
|
for (auto& channel : _light_channels) {
|
|
if (result.length()) result += ',';
|
|
result += String(target ? channel.target : channel.inputValue);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
int _lightAdjustValue(const int& value, const String& operation) {
|
|
if (!operation.length()) return value;
|
|
|
|
// if prefixed with a sign, treat expression as numerical operation
|
|
// otherwise, use as the new value
|
|
int updated = operation.toInt();
|
|
if (operation[0] == '+' || operation[0] == '-') {
|
|
updated = value + updated;
|
|
}
|
|
|
|
return updated;
|
|
}
|
|
|
|
void _lightAdjustBrightness(const char* payload) {
|
|
lightBrightness(_lightAdjustValue(lightBrightness(), payload));
|
|
}
|
|
|
|
void _lightAdjustBrightness(const String& payload) {
|
|
_lightAdjustBrightness(payload.c_str());
|
|
}
|
|
|
|
void _lightAdjustChannel(unsigned char id, const char* payload) {
|
|
lightChannel(id, _lightAdjustValue(lightChannel(id), payload));
|
|
}
|
|
|
|
void _lightAdjustChannel(unsigned char id, const String& payload) {
|
|
_lightAdjustChannel(id, payload.c_str());
|
|
}
|
|
|
|
void _lightAdjustKelvin(const char* payload) {
|
|
_fromKelvin(_lightAdjustValue(_toKelvin(_light_mireds), payload));
|
|
}
|
|
|
|
void _lightAdjustKelvin(const String& payload) {
|
|
_lightAdjustKelvin(payload.c_str());
|
|
}
|
|
|
|
void _lightAdjustMireds(const char* payload) {
|
|
_fromMireds(_lightAdjustValue(_light_mireds, payload));
|
|
}
|
|
|
|
void _lightAdjustMireds(const String& payload) {
|
|
_lightAdjustMireds(payload.c_str());
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// PROVIDER
|
|
// -----------------------------------------------------------------------------
|
|
|
|
namespace {
|
|
|
|
class LightTransitionHandler {
|
|
public:
|
|
using Channels = std::vector<channel_t>;
|
|
|
|
struct Transition {
|
|
float& value;
|
|
unsigned char target;
|
|
float step;
|
|
size_t count;
|
|
|
|
void debug() const {
|
|
DEBUG_MSG_P(PSTR("[LIGHT] Transition from %s to %u (step %s, %u times)\n"),
|
|
String(value, 2).c_str(), target, String(step, 2).c_str(), count);
|
|
}
|
|
};
|
|
|
|
explicit LightTransitionHandler(Channels& channels, bool state, LightTransition transition) :
|
|
_state(state),
|
|
_time(transition.time),
|
|
_step(transition.step)
|
|
{
|
|
OnceFlag delayed;
|
|
for (auto& channel : channels) {
|
|
delayed = prepare(channel, state);
|
|
}
|
|
|
|
// if nothing to do, ignore transition step & time and just schedule as soon as possible
|
|
if (!delayed) {
|
|
reset();
|
|
return;
|
|
}
|
|
|
|
DEBUG_MSG_P(PSTR("[LIGHT] Scheduled transition for %u (ms) every %u (ms)\n"), _time, _step);
|
|
}
|
|
|
|
bool prepare(channel_t& channel, bool state) {
|
|
bool target_state = state && channel.state;
|
|
channel.target = target_state ? channel.value : Light::ValueMin;
|
|
|
|
float diff = static_cast<float>(channel.target) - channel.current;
|
|
if (isImmediateTransition(target_state, diff)) {
|
|
Transition transition { channel.current, channel.target, diff, 1};
|
|
_transitions.push_back(std::move(transition));
|
|
return false;
|
|
}
|
|
|
|
float step = (diff > 0.0) ? 1.0f : -1.0f;
|
|
float every = static_cast<double>(_time) / std::abs(diff);
|
|
if (every < _step) {
|
|
auto step_ref = static_cast<float>(_step);
|
|
step *= (step_ref / every);
|
|
every = step_ref;
|
|
}
|
|
size_t count = _time / every;
|
|
|
|
Transition transition { channel.current, channel.target, step, count };
|
|
transition.debug();
|
|
|
|
_transitions.push_back(std::move(transition));
|
|
|
|
return true;
|
|
}
|
|
|
|
void reset() {
|
|
_step = 10;
|
|
_time = 10;
|
|
}
|
|
|
|
template <typename StateFunc, typename ValueFunc, typename UpdateFunc>
|
|
bool run(StateFunc&& state, ValueFunc&& value, UpdateFunc&& update) {
|
|
bool next { false };
|
|
|
|
if (!_state_notified && _state) {
|
|
_state_notified = true;
|
|
state(_state);
|
|
}
|
|
|
|
for (unsigned char index = 0; index < _transitions.size(); ++index) {
|
|
auto& transition = _transitions[index];
|
|
if (!transition.count) {
|
|
continue;
|
|
}
|
|
|
|
if (--transition.count) {
|
|
transition.value += transition.step;
|
|
next = true;
|
|
} else {
|
|
transition.value = transition.target;
|
|
}
|
|
|
|
value(index, transition.value);
|
|
}
|
|
|
|
if (!_state_notified && !next && !_state) {
|
|
_state_notified = true;
|
|
state(_state);
|
|
}
|
|
|
|
update();
|
|
|
|
return next;
|
|
}
|
|
|
|
bool state() const {
|
|
return _state;
|
|
}
|
|
|
|
unsigned long step() const {
|
|
return _step;
|
|
}
|
|
|
|
unsigned long time() const {
|
|
return _time;
|
|
}
|
|
|
|
private:
|
|
bool isImmediateTransition(bool state, float diff) {
|
|
return (!_time || (_step >= _time) || (std::abs(diff) <= std::numeric_limits<float>::epsilon()));
|
|
}
|
|
|
|
std::vector<Transition> _transitions;
|
|
bool _state_notified { false };
|
|
|
|
bool _state;
|
|
unsigned long _time;
|
|
unsigned long _step;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
struct LightUpdateHandler {
|
|
LightUpdateHandler() = default;
|
|
|
|
explicit operator bool() {
|
|
return _run;
|
|
}
|
|
|
|
void lock() {
|
|
_lock = true;
|
|
}
|
|
|
|
void unlock() {
|
|
_lock = false;
|
|
}
|
|
|
|
void reset() {
|
|
_lock = false;
|
|
_run = false;
|
|
}
|
|
|
|
void set(bool save, LightTransition transition, int report) {
|
|
if (_lock) {
|
|
panic();
|
|
}
|
|
|
|
_run = true;
|
|
|
|
_save = save;
|
|
_transition = transition;
|
|
_report = report;
|
|
}
|
|
|
|
template <typename T>
|
|
void run(T&& callback) {
|
|
if (!_run) {
|
|
panic();
|
|
}
|
|
|
|
lock();
|
|
callback(_save, _transition, _report);
|
|
reset();
|
|
}
|
|
|
|
private:
|
|
bool _save;
|
|
LightTransition _transition;
|
|
int _report;
|
|
|
|
bool _run { false };
|
|
bool _lock { false };
|
|
};
|
|
|
|
LightUpdateHandler _light_update;
|
|
bool _light_provider_update = false;
|
|
|
|
std::unique_ptr<LightTransitionHandler> _light_transition;
|
|
|
|
Ticker _light_transition_ticker;
|
|
bool _light_use_transitions = false;
|
|
unsigned long _light_transition_time = LIGHT_TRANSITION_TIME;
|
|
unsigned long _light_transition_step = LIGHT_TRANSITION_STEP;
|
|
|
|
void _lightProviderSchedule(unsigned long ms);
|
|
|
|
#if (LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER) || (LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX)
|
|
|
|
// there is no PWM stop and it seems my92xx version is fine by just setting 0 values for channels
|
|
void _lightProviderHandleState(bool) {
|
|
}
|
|
|
|
// See cores/esp8266/WMath.cpp::map
|
|
inline bool _lightPwmMap(long value, long& result) {
|
|
constexpr auto divisor = (Light::ValueMax - Light::ValueMin);
|
|
if (divisor != 0l){
|
|
result = (value - Light::ValueMin) * (Light::PwmLimit - Light::PwmMin) / divisor + Light::PwmMin;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// both require original values to be scaled into a PWM frequency
|
|
void _lightProviderHandleValue(unsigned char channel, float value) {
|
|
// TODO: strict rule in the transition itself?
|
|
if (value < 0.0f) {
|
|
return;
|
|
}
|
|
|
|
// TODO: have 'red', 'green' or 'blue' tag instead of using hard-coded index offset?
|
|
auto gamma = _light_use_gamma && _light_has_color && (channel < 3);
|
|
auto inverse = _light_channels[channel].inverse;
|
|
|
|
auto rounded = std::lround(value);
|
|
if (gamma) {
|
|
rounded = pgm_read_byte(_light_gamma_table + rounded);
|
|
}
|
|
|
|
long pwm;
|
|
if (!_lightPwmMap(rounded, pwm)) {
|
|
return;
|
|
}
|
|
|
|
if (inverse) {
|
|
pwm = Light::PwmLimit + Light::PwmMin - pwm;
|
|
}
|
|
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
|
|
pwm_set_duty(pwm, channel);
|
|
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
|
|
_my92xx->setChannel(_lightMy92xxChannel(channel), pwm);
|
|
#endif
|
|
}
|
|
|
|
void _lightProviderHandleUpdate() {
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
|
|
pwm_start();
|
|
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
|
|
_my92xx->setState(true);
|
|
_my92xx->update();
|
|
#endif
|
|
}
|
|
|
|
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
|
|
|
|
void _lightProviderHandleState(bool state) {
|
|
_light_provider->state(state);
|
|
}
|
|
|
|
void _lightProviderHandleValue(unsigned char channel, float value) {
|
|
_light_provider->channel(channel, value);
|
|
}
|
|
|
|
void _lightProviderHandleUpdate() {
|
|
_light_provider->update();
|
|
}
|
|
|
|
#endif
|
|
|
|
void _lightProviderUpdate() {
|
|
if (!_light_provider_update) {
|
|
return;
|
|
}
|
|
|
|
if (!_light_transition) {
|
|
_light_provider_update = false;
|
|
return;
|
|
}
|
|
|
|
auto next = _light_transition->run(
|
|
_lightProviderHandleState,
|
|
_lightProviderHandleValue,
|
|
_lightProviderHandleUpdate);
|
|
|
|
if (next) {
|
|
_lightProviderSchedule(_light_transition->step());
|
|
} else {
|
|
_light_transition.reset(nullptr);
|
|
}
|
|
|
|
_light_provider_update = false;
|
|
}
|
|
|
|
void _lightProviderSchedule(unsigned long ms) {
|
|
_light_transition_ticker.once_ms(ms, []() {
|
|
_light_provider_update = true;
|
|
});
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// PERSISTANCE
|
|
// -----------------------------------------------------------------------------
|
|
|
|
struct LightRtcmem {
|
|
// 1 2 3 4 5 6 7 8
|
|
// [ c c c c c b m m ]
|
|
// ^ ^ ^ ^ ^ ~ ~ ~ channels
|
|
// ^ ~ ~ brightness
|
|
// ^ ^ mireds
|
|
explicit LightRtcmem(uint64_t value) {
|
|
_channels[0] = static_cast<uint8_t>((value >> (8ull * 7ull)));
|
|
_channels[1] = static_cast<uint8_t>((value >> (8ull * 6ull)));
|
|
_channels[2] = static_cast<uint8_t>((value >> (8ull * 5ull)));
|
|
_channels[3] = static_cast<uint8_t>((value >> (8ull * 4ull)));
|
|
_channels[4] = static_cast<uint8_t>((value >> (8ull * 3ull)));
|
|
|
|
_brightness = (value >> (8ull * 2ull)) & 0xffull;
|
|
_mireds = (value & 0xffffull);
|
|
}
|
|
|
|
|
|
using Channels = std::array<uint8_t, Light::ChannelsMax>;
|
|
static_assert(Light::ChannelsMax == 5, "");
|
|
|
|
LightRtcmem() {
|
|
_channels.fill(Light::ValueMin);
|
|
}
|
|
|
|
LightRtcmem(const Channels& channels, long brightness, long mireds) :
|
|
_channels(channels),
|
|
_brightness(brightness),
|
|
_mireds(mireds)
|
|
{}
|
|
|
|
uint64_t serialize() const {
|
|
return (static_cast<uint64_t>(_channels[0]) << (8ull * 7ull))
|
|
| (static_cast<uint64_t>(_channels[1]) << (8ull * 6ull))
|
|
| (static_cast<uint64_t>(_channels[2]) << (8ull * 5ull))
|
|
| (static_cast<uint64_t>(_channels[3]) << (8ull * 4ull))
|
|
| (static_cast<uint64_t>(_channels[4]) << (8ull * 3ull))
|
|
| (static_cast<uint64_t>(_brightness) << (8ull * 2ull))
|
|
| (static_cast<uint64_t>(_mireds) & 0xffffull);
|
|
}
|
|
|
|
static Channels defaultChannels() {
|
|
Channels out;
|
|
out.fill(Light::ValueMin);
|
|
return out;
|
|
}
|
|
|
|
const Channels& channels() const {
|
|
return _channels;
|
|
}
|
|
|
|
long brightness() const {
|
|
return _brightness;
|
|
}
|
|
|
|
long mireds() const {
|
|
return _mireds;
|
|
}
|
|
|
|
private:
|
|
Channels _channels;
|
|
long _brightness { Light::BrightnessMax };
|
|
long _mireds { (Light::MiredsWarm + Light::MiredsCold) / 2L };
|
|
};
|
|
|
|
bool lightSave() {
|
|
return _light_save;
|
|
}
|
|
|
|
void lightSave(bool save) {
|
|
_light_save = save;
|
|
}
|
|
|
|
void _lightSaveRtcmem() {
|
|
auto channels = LightRtcmem::defaultChannels();
|
|
for (unsigned char channel = 0; channel < lightChannels(); ++channel) {
|
|
channels[channel] = _light_channels[channel].inputValue;
|
|
}
|
|
|
|
LightRtcmem light(channels, _light_brightness, _light_mireds);
|
|
Rtcmem->light = light.serialize();
|
|
}
|
|
|
|
void _lightRestoreRtcmem() {
|
|
uint64_t value = Rtcmem->light;
|
|
LightRtcmem light(value);
|
|
|
|
auto& channels = light.channels();
|
|
for (unsigned char channel = 0; channel < lightChannels(); ++channel) {
|
|
_light_channels[channel].inputValue = channels[channel];
|
|
}
|
|
|
|
_light_brightness = light.brightness();
|
|
_light_mireds = light.mireds();
|
|
}
|
|
|
|
void _lightSaveSettings() {
|
|
if (!_light_save) {
|
|
return;
|
|
}
|
|
|
|
for (unsigned char channel = 0; channel < lightChannels(); ++channel) {
|
|
setSetting({"ch", channel}, _light_channels[channel].inputValue);
|
|
}
|
|
|
|
setSetting("brightness", _light_brightness);
|
|
setSetting("mireds", _light_mireds);
|
|
|
|
saveSettings();
|
|
}
|
|
|
|
void _lightRestoreSettings() {
|
|
for (unsigned char channel = 0; channel < lightChannels(); ++channel) {
|
|
auto value = getSetting({"ch", channel}, (channel == 0) ? Light::ValueMax : Light::ValueMin);
|
|
_light_channels[channel].inputValue = value;
|
|
}
|
|
|
|
_light_brightness = getSetting("brightness", Light::BrightnessMax);
|
|
_light_mireds = getSetting("mireds", _light_mireds);
|
|
}
|
|
|
|
bool _lightParsePayload(const char* payload) {
|
|
switch (rpcParsePayload(payload)) {
|
|
case PayloadStatus::On:
|
|
lightState(true);
|
|
break;
|
|
case PayloadStatus::Off:
|
|
lightState(false);
|
|
break;
|
|
case PayloadStatus::Toggle:
|
|
lightState(!_light_state);
|
|
break;
|
|
case PayloadStatus::Unknown:
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool _lightParsePayload(const String& payload) {
|
|
return _lightParsePayload(payload.c_str());
|
|
}
|
|
|
|
bool _lightTryParseChannel(const char* p, unsigned char& id) {
|
|
char* endp { nullptr };
|
|
const unsigned long result { strtoul(p, &endp, 10) };
|
|
if ((endp == p) || (*endp != '\0') || (result >= lightChannels())) {
|
|
DEBUG_MSG_P(PSTR("[LIGHT] Invalid channelID (%s)\n"), p);
|
|
return false;
|
|
}
|
|
|
|
id = result;
|
|
return true;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// MQTT
|
|
// -----------------------------------------------------------------------------
|
|
|
|
int _lightMqttReportMask() {
|
|
return Light::DefaultReport & ~(static_cast<int>(mqttForward() ? Light::Report::None : Light::Report::Mqtt));
|
|
}
|
|
|
|
int _lightMqttReportGroupMask() {
|
|
return _lightMqttReportMask() & ~static_cast<int>(Light::Report::MqttGroup);
|
|
}
|
|
|
|
void _lightUpdateFromMqtt(LightTransition transition) {
|
|
lightUpdate(_light_save, transition, _lightMqttReportMask());
|
|
}
|
|
|
|
void _lightUpdateFromMqtt() {
|
|
_lightUpdateFromMqtt(lightTransition());
|
|
}
|
|
|
|
void _lightUpdateFromMqttGroup() {
|
|
lightUpdate(_light_save, lightTransition(), _lightMqttReportGroupMask());
|
|
}
|
|
|
|
#if MQTT_SUPPORT
|
|
|
|
bool _lightMqttHeartbeat(heartbeat::Mask mask) {
|
|
if (mask & heartbeat::Report::Light)
|
|
lightMQTT();
|
|
|
|
return mqttConnected();
|
|
}
|
|
|
|
void _lightMqttCallback(unsigned int type, const char * topic, const char * payload) {
|
|
|
|
String mqtt_group_color = getSetting("mqttGroupColor");
|
|
|
|
if (type == MQTT_CONNECT_EVENT) {
|
|
|
|
mqttSubscribe(MQTT_TOPIC_BRIGHTNESS);
|
|
|
|
if (_light_has_color) {
|
|
mqttSubscribe(MQTT_TOPIC_COLOR_RGB);
|
|
mqttSubscribe(MQTT_TOPIC_COLOR_HSV);
|
|
}
|
|
|
|
if (_light_has_color || _light_use_cct) {
|
|
mqttSubscribe(MQTT_TOPIC_MIRED);
|
|
mqttSubscribe(MQTT_TOPIC_KELVIN);
|
|
}
|
|
|
|
// Transition config (everything sent after this will use this new value)
|
|
mqttSubscribe(MQTT_TOPIC_TRANSITION);
|
|
|
|
// Group color
|
|
if (mqtt_group_color.length() > 0) mqttSubscribeRaw(mqtt_group_color.c_str());
|
|
|
|
// Channels
|
|
char buffer[strlen(MQTT_TOPIC_CHANNEL) + 3];
|
|
snprintf_P(buffer, sizeof(buffer), PSTR("%s/+"), MQTT_TOPIC_CHANNEL);
|
|
mqttSubscribe(buffer);
|
|
|
|
// Global lights control
|
|
if (!_light_has_controls) {
|
|
mqttSubscribe(MQTT_TOPIC_LIGHT);
|
|
}
|
|
}
|
|
|
|
if (type == MQTT_MESSAGE_EVENT) {
|
|
// Group color
|
|
if ((mqtt_group_color.length() > 0) && (mqtt_group_color.equals(topic))) {
|
|
lightColor(payload, true);
|
|
_lightUpdateFromMqttGroup();
|
|
return;
|
|
}
|
|
|
|
// Match topic
|
|
String t = mqttMagnitude((char *) topic);
|
|
|
|
// Color temperature in mireds
|
|
if (t.equals(MQTT_TOPIC_MIRED)) {
|
|
_lightAdjustMireds(payload);
|
|
_lightUpdateFromMqtt();
|
|
return;
|
|
}
|
|
|
|
// Color temperature in kelvins
|
|
if (t.equals(MQTT_TOPIC_KELVIN)) {
|
|
_lightAdjustKelvin(payload);
|
|
_lightUpdateFromMqtt();
|
|
return;
|
|
}
|
|
|
|
// Color
|
|
if (t.equals(MQTT_TOPIC_COLOR_RGB)) {
|
|
lightColor(payload, true);
|
|
_lightUpdateFromMqtt();
|
|
return;
|
|
}
|
|
if (t.equals(MQTT_TOPIC_COLOR_HSV)) {
|
|
lightColor(payload, false);
|
|
_lightUpdateFromMqtt();
|
|
return;
|
|
}
|
|
|
|
// Transition setting
|
|
if (t.equals(MQTT_TOPIC_TRANSITION)) {
|
|
lightTransition(strtoul(payload, nullptr, 10), _light_transition_step);
|
|
return;
|
|
}
|
|
|
|
// Brightness
|
|
if (t.equals(MQTT_TOPIC_BRIGHTNESS)) {
|
|
_lightAdjustBrightness(payload);
|
|
_lightUpdateFromMqtt();
|
|
return;
|
|
}
|
|
|
|
// Channel
|
|
if (t.startsWith(MQTT_TOPIC_CHANNEL)) {
|
|
unsigned char id;
|
|
if (!_lightTryParseChannel(t.c_str() + strlen(MQTT_TOPIC_CHANNEL) + 1, id)) {
|
|
return;
|
|
}
|
|
|
|
_lightAdjustChannel(id, payload);
|
|
_lightUpdateFromMqtt();
|
|
return;
|
|
}
|
|
|
|
// Global
|
|
if (t.equals(MQTT_TOPIC_LIGHT)) {
|
|
_lightParsePayload(payload);
|
|
_lightUpdateFromMqtt();
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void _lightMqttSetup() {
|
|
mqttHeartbeat(_lightMqttHeartbeat);
|
|
mqttRegister(_lightMqttCallback);
|
|
}
|
|
|
|
void lightMQTT() {
|
|
char buffer[20];
|
|
|
|
if (_light_has_color) {
|
|
|
|
// Color
|
|
if (getSetting("useCSS", 1 == LIGHT_USE_CSS)) {
|
|
_toRGB(buffer, sizeof(buffer), true);
|
|
} else {
|
|
_toLong(buffer, sizeof(buffer), true);
|
|
}
|
|
mqttSend(MQTT_TOPIC_COLOR_RGB, buffer);
|
|
|
|
_toHSV(buffer, sizeof(buffer));
|
|
mqttSend(MQTT_TOPIC_COLOR_HSV, buffer);
|
|
|
|
}
|
|
|
|
if (_light_has_color || _light_use_cct) {
|
|
snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_mireds);
|
|
mqttSend(MQTT_TOPIC_MIRED, buffer);
|
|
}
|
|
|
|
for (unsigned int i=0; i < _light_channels.size(); i++) {
|
|
itoa(_light_channels[i].target, buffer, 10);
|
|
mqttSend(MQTT_TOPIC_CHANNEL, i, buffer);
|
|
}
|
|
|
|
snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_brightness);
|
|
mqttSend(MQTT_TOPIC_BRIGHTNESS, buffer);
|
|
|
|
if (!_light_has_controls) {
|
|
snprintf_P(buffer, sizeof(buffer), "%c", _light_state ? '1' : '0');
|
|
mqttSend(MQTT_TOPIC_LIGHT, buffer);
|
|
}
|
|
}
|
|
|
|
void lightMQTTGroup() {
|
|
const String mqtt_group_color = getSetting("mqttGroupColor");
|
|
if (mqtt_group_color.length()) {
|
|
mqttSendRaw(mqtt_group_color.c_str(), _toCSV(false).c_str());
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Broker
|
|
// -----------------------------------------------------------------------------
|
|
|
|
#if BROKER_SUPPORT
|
|
|
|
void lightBroker() {
|
|
for (unsigned int id = 0; id < _light_channels.size(); ++id) {
|
|
StatusBroker::Publish(MQTT_TOPIC_CHANNEL, id, _light_channels[id].value);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// API
|
|
// -----------------------------------------------------------------------------
|
|
|
|
#if API_SUPPORT
|
|
|
|
template <typename T>
|
|
bool _lightApiTryHandle(ApiRequest& request, T&& callback) {
|
|
auto id_param = request.wildcard(0);
|
|
unsigned char id;
|
|
if (!_lightTryParseChannel(id_param.c_str(), id)) {
|
|
return false;
|
|
}
|
|
|
|
return callback(id);
|
|
}
|
|
|
|
void _lightApiSetup() {
|
|
|
|
if (_light_has_color) {
|
|
|
|
apiRegister(F(MQTT_TOPIC_COLOR_RGB),
|
|
[](ApiRequest& request) {
|
|
auto result = getSetting("useCSS", 1 == LIGHT_USE_CSS)
|
|
? _toRGB(true) : _toLong(true);
|
|
request.send(result);
|
|
return true;
|
|
},
|
|
[](ApiRequest& request) {
|
|
lightColor(request.param(F("value")), true);
|
|
lightUpdate();
|
|
return true;
|
|
}
|
|
);
|
|
|
|
apiRegister(F(MQTT_TOPIC_COLOR_HSV),
|
|
[](ApiRequest& request) {
|
|
request.send(_toHSV());
|
|
return true;
|
|
},
|
|
[](ApiRequest& request) {
|
|
lightColor(request.param(F("value")), false);
|
|
lightUpdate();
|
|
return true;
|
|
}
|
|
);
|
|
|
|
apiRegister(F(MQTT_TOPIC_MIRED),
|
|
[](ApiRequest& request) {
|
|
request.send(String(_light_mireds));
|
|
return true;
|
|
},
|
|
[](ApiRequest& request) {
|
|
_lightAdjustMireds(request.param(F("value")));
|
|
lightUpdate();
|
|
return true;
|
|
}
|
|
);
|
|
|
|
apiRegister(F(MQTT_TOPIC_KELVIN),
|
|
[](ApiRequest& request) {
|
|
request.send(String(_toKelvin(_light_mireds)));
|
|
return true;
|
|
},
|
|
[](ApiRequest& request) {
|
|
_lightAdjustKelvin(request.param(F("value")));
|
|
lightUpdate();
|
|
return true;
|
|
}
|
|
);
|
|
|
|
}
|
|
|
|
apiRegister(F(MQTT_TOPIC_TRANSITION),
|
|
[](ApiRequest& request) {
|
|
request.send(String(lightTransitionTime()));
|
|
return true;
|
|
},
|
|
[](ApiRequest& request) {
|
|
auto value = request.param(F("value"));
|
|
lightTransition(strtoul(value.c_str(), nullptr, 10), _light_transition_step);
|
|
return true;
|
|
}
|
|
);
|
|
|
|
apiRegister(F(MQTT_TOPIC_BRIGHTNESS),
|
|
[](ApiRequest& request) {
|
|
request.send(String(static_cast<int>(_light_brightness)));
|
|
return true;
|
|
},
|
|
[](ApiRequest& request) {
|
|
_lightAdjustBrightness(request.param(F("value")));
|
|
lightUpdate();
|
|
return true;
|
|
}
|
|
);
|
|
|
|
apiRegister(F(MQTT_TOPIC_CHANNEL "/+"),
|
|
[](ApiRequest& request) {
|
|
return _lightApiTryHandle(request, [&](unsigned char id) {
|
|
request.send(String(static_cast<int>(_light_channels[id].target)));
|
|
return true;
|
|
});
|
|
},
|
|
[](ApiRequest& request) {
|
|
return _lightApiTryHandle(request, [&](unsigned char id) {
|
|
_lightAdjustChannel(id, request.param(F("value")));
|
|
lightUpdate();
|
|
return true;
|
|
});
|
|
}
|
|
);
|
|
|
|
if (!_light_has_controls) {
|
|
apiRegister(F(MQTT_TOPIC_LIGHT),
|
|
[](ApiRequest& request) {
|
|
request.send(lightState() ? "1" : "0");
|
|
return true;
|
|
},
|
|
[](ApiRequest& request) {
|
|
_lightParsePayload(request.param(F("value")));
|
|
lightUpdate();
|
|
return true;
|
|
}
|
|
);
|
|
}
|
|
}
|
|
|
|
#endif // API_SUPPORT
|
|
|
|
|
|
#if WEB_SUPPORT
|
|
|
|
bool _lightWebSocketOnKeyCheck(const char * key, JsonVariant& value) {
|
|
if (strncmp(key, "light", 5) == 0) return true;
|
|
if (strncmp(key, "use", 3) == 0) return true;
|
|
if (strncmp(key, "lt", 2) == 0) return true;
|
|
return false;
|
|
}
|
|
|
|
void _lightWebSocketStatus(JsonObject& root) {
|
|
if (_light_has_color) {
|
|
if (getSetting("useRGB", 1 == LIGHT_USE_RGB)) {
|
|
root["rgb"] = lightColor(true);
|
|
} else {
|
|
root["hsv"] = lightColor(false);
|
|
}
|
|
}
|
|
if (_light_use_cct) {
|
|
JsonObject& mireds = root.createNestedObject("mireds");
|
|
mireds["value"] = _light_mireds;
|
|
mireds["cold"] = _light_cold_mireds;
|
|
mireds["warm"] = _light_warm_mireds;
|
|
root["useCCT"] = _light_use_cct;
|
|
}
|
|
JsonArray& channels = root.createNestedArray("channels");
|
|
for (unsigned char id=0; id < _light_channels.size(); id++) {
|
|
channels.add(lightChannel(id));
|
|
}
|
|
root["brightness"] = lightBrightness();
|
|
root["lightstate"] = lightState();
|
|
}
|
|
|
|
void _lightWebSocketOnVisible(JsonObject& root) {
|
|
root["colorVisible"] = 1;
|
|
}
|
|
|
|
void _lightWebSocketOnConnected(JsonObject& root) {
|
|
root["mqttGroupColor"] = getSetting("mqttGroupColor");
|
|
root["useColor"] = _light_has_color;
|
|
root["useWhite"] = _light_use_white;
|
|
root["useGamma"] = _light_use_gamma;
|
|
root["useTransitions"] = _light_use_transitions;
|
|
root["useCSS"] = getSetting("useCSS", 1 == LIGHT_USE_CSS);
|
|
root["useRGB"] = getSetting("useRGB", 1 == LIGHT_USE_RGB);
|
|
root["ltSave"] = _light_save;
|
|
root["ltTime"] = _light_transition_time;
|
|
root["ltStep"] = _light_transition_step;
|
|
#if RELAY_SUPPORT
|
|
root["ltRelay"] = getSetting("ltRelay", 1 == LIGHT_RELAY_ENABLED);
|
|
#endif
|
|
}
|
|
|
|
void _lightWebSocketOnAction(uint32_t client_id, const char * action, JsonObject& data) {
|
|
|
|
if (_light_has_color) {
|
|
if (strcmp(action, "color") == 0) {
|
|
if (data.containsKey("rgb")) {
|
|
lightColor(data["rgb"].as<const char*>(), true);
|
|
lightUpdate();
|
|
}
|
|
if (data.containsKey("hsv")) {
|
|
lightColor(data["hsv"].as<const char*>(), false);
|
|
lightUpdate();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (_light_use_cct) {
|
|
if (strcmp(action, "mireds") == 0) {
|
|
_fromMireds(data["mireds"]);
|
|
lightUpdate();
|
|
}
|
|
}
|
|
|
|
|
|
if (strcmp(action, "channel") == 0) {
|
|
if (data.containsKey("id") && data.containsKey("value")) {
|
|
lightChannel(data["id"].as<unsigned char>(), data["value"].as<int>());
|
|
lightUpdate();
|
|
}
|
|
}
|
|
|
|
if (strcmp(action, "brightness") == 0) {
|
|
if (data.containsKey("value")) {
|
|
lightBrightness(data["value"].as<int>());
|
|
lightUpdate();
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#if TERMINAL_SUPPORT
|
|
|
|
void _lightInitCommands() {
|
|
|
|
terminalRegisterCommand(F("LIGHT"), [](const terminal::CommandContext& ctx) {
|
|
if (ctx.argc > 1) {
|
|
if (!_lightParsePayload(ctx.argv[1].c_str())) {
|
|
terminalError(ctx, F("Invalid payload"));
|
|
return;
|
|
}
|
|
lightUpdate();
|
|
}
|
|
|
|
ctx.output.printf("%s\n", _light_state ? "ON" : "OFF");
|
|
terminalOK(ctx);
|
|
});
|
|
|
|
terminalRegisterCommand(F("BRIGHTNESS"), [](const terminal::CommandContext& ctx) {
|
|
if (ctx.argc > 1) {
|
|
_lightAdjustBrightness(ctx.argv[1].c_str());
|
|
lightUpdate();
|
|
}
|
|
ctx.output.printf("%ld\n", lightBrightness());
|
|
terminalOK(ctx);
|
|
});
|
|
|
|
terminalRegisterCommand(F("CHANNEL"), [](const terminal::CommandContext& ctx) {
|
|
if (!lightChannels()) {
|
|
return;
|
|
}
|
|
|
|
auto id = -1;
|
|
if (ctx.argc > 1) {
|
|
id = ctx.argv[1].toInt();
|
|
}
|
|
|
|
auto description = [&](unsigned char channel) {
|
|
ctx.output.printf("#%u (%s): %ld\n", channel, lightDesc(id).c_str(), lightChannel(channel));
|
|
};
|
|
|
|
if (id < 0 || id >= static_cast<decltype(id)>(lightChannels())) {
|
|
for (unsigned char index = 0; index < lightChannels(); ++index) {
|
|
description(index);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (ctx.argc > 2) {
|
|
_lightAdjustChannel(id, ctx.argv[2].c_str());
|
|
lightUpdate();
|
|
}
|
|
|
|
description(id);
|
|
terminalOK(ctx);
|
|
});
|
|
|
|
terminalRegisterCommand(F("COLOR"), [](const terminal::CommandContext& ctx) {
|
|
if (ctx.argc > 1) {
|
|
lightColor(ctx.argv[1].c_str());
|
|
lightUpdate();
|
|
}
|
|
ctx.output.printf("%s\n", lightColor().c_str());
|
|
terminalOK(ctx);
|
|
});
|
|
|
|
terminalRegisterCommand(F("KELVIN"), [](const terminal::CommandContext& ctx) {
|
|
if (ctx.argc > 1) {
|
|
_lightAdjustKelvin(ctx.argv[1].c_str());
|
|
lightUpdate();
|
|
}
|
|
ctx.output.printf("%s\n", lightColor().c_str());
|
|
terminalOK(ctx);
|
|
});
|
|
|
|
terminalRegisterCommand(F("MIRED"), [](const terminal::CommandContext& ctx) {
|
|
if (ctx.argc > 1) {
|
|
_lightAdjustMireds(ctx.argv[1]);
|
|
lightUpdate();
|
|
}
|
|
ctx.output.printf("%s\n", lightColor().c_str());
|
|
terminalOK(ctx);
|
|
});
|
|
|
|
}
|
|
|
|
#endif // TERMINAL_SUPPORT
|
|
|
|
size_t lightChannels() {
|
|
return _light_channels.size();
|
|
}
|
|
|
|
bool lightHasColor() {
|
|
return _light_has_color;
|
|
}
|
|
|
|
bool lightUseCCT() {
|
|
return _light_use_cct;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
void lightSetReportListener(LightReportListener func) {
|
|
_light_report = func;
|
|
}
|
|
|
|
void _lightReport(int report) {
|
|
#if MQTT_SUPPORT
|
|
if (report & Light::Report::Mqtt) {
|
|
lightMQTT();
|
|
}
|
|
|
|
if (report & Light::Report::MqttGroup) {
|
|
lightMQTTGroup();
|
|
}
|
|
#endif
|
|
|
|
#if WEB_SUPPORT
|
|
if (report & Light::Report::Web) {
|
|
wsPost(_lightWebSocketStatus);
|
|
}
|
|
#endif
|
|
|
|
#if BROKER_SUPPORT
|
|
if (report & Light::Report::Broker) {
|
|
lightBroker();
|
|
}
|
|
#endif
|
|
|
|
if (_light_report) {
|
|
_light_report();
|
|
}
|
|
}
|
|
|
|
void _lightReport(Light::Report report) {
|
|
_lightReport(static_cast<int>(report));
|
|
}
|
|
|
|
// Called in the loop() when we received lightUpdate(...) values
|
|
|
|
void _lightUpdate() {
|
|
if (!_light_update) {
|
|
return;
|
|
}
|
|
|
|
auto changed = _light_brightness_func();
|
|
if (!_light_state_changed && !changed) {
|
|
_light_update.reset();
|
|
return;
|
|
}
|
|
|
|
_light_state_changed = false;
|
|
|
|
_light_update.run([](bool save, LightTransition transition, int report) {
|
|
// Channel output values will be set by the handler class and the specified provider
|
|
// We either set the values immediately or schedule an ongoing transition
|
|
_light_transition = std::make_unique<LightTransitionHandler>(_light_channels, _light_state, transition);
|
|
_lightProviderSchedule(_light_transition->step());
|
|
|
|
// Send current state to all available 'report' targets
|
|
// (make sure to delay the report, in case lightUpdate is called repeatedly)
|
|
_light_report_ticker.once_ms(_light_report_delay, [report]() {
|
|
_lightReport(report);
|
|
});
|
|
|
|
// Always save to RTCMEM, optionally preserve the state in the settings storage
|
|
_lightSaveRtcmem();
|
|
if (save) {
|
|
_light_save_ticker.once_ms(_light_save_delay, _lightSaveSettings);
|
|
}
|
|
});
|
|
}
|
|
|
|
void lightUpdate(bool save, LightTransition transition, int report) {
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
|
|
if (!_light_provider) {
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (!lightChannels()) {
|
|
return;
|
|
}
|
|
|
|
_light_update.set(save, transition, report);
|
|
}
|
|
|
|
void lightUpdate(bool save, LightTransition transition, Light::Report report) {
|
|
lightUpdate(save, transition, static_cast<int>(report));
|
|
}
|
|
|
|
void lightUpdate(LightTransition transition) {
|
|
lightUpdate(_light_save, transition, Light::DefaultReport);
|
|
}
|
|
|
|
void lightUpdate(bool save) {
|
|
lightUpdate(save, lightTransition(), Light::DefaultReport);
|
|
}
|
|
|
|
void lightUpdate() {
|
|
lightUpdate(lightTransition());
|
|
}
|
|
|
|
void lightState(unsigned char id, bool state) {
|
|
if (id >= _light_channels.size()) return;
|
|
if (_light_channels[id].state != state) {
|
|
_light_channels[id].state = state;
|
|
_light_state_changed = true;
|
|
}
|
|
}
|
|
|
|
bool lightState(unsigned char id) {
|
|
if (id >= _light_channels.size()) return false;
|
|
return _light_channels[id].state;
|
|
}
|
|
|
|
void lightState(bool state) {
|
|
if (_light_state != state) {
|
|
_light_state = state;
|
|
if (_light_state_listener) {
|
|
_light_state_listener(state);
|
|
}
|
|
_light_state_changed = true;
|
|
}
|
|
}
|
|
|
|
bool lightState() {
|
|
return _light_state;
|
|
}
|
|
|
|
void lightColor(const char * color, bool rgb) {
|
|
DEBUG_MSG_P(PSTR("[LIGHT] %s: %s\n"), rgb ? "RGB" : "HSV", color);
|
|
if (rgb) {
|
|
_fromRGB(color);
|
|
} else {
|
|
_fromHSV(color);
|
|
}
|
|
}
|
|
|
|
void lightColor(const String& color, bool rgb) {
|
|
lightColor(color.c_str(), rgb);
|
|
}
|
|
|
|
void lightColor(const char* color) {
|
|
lightColor(color, true);
|
|
}
|
|
|
|
void lightColor(const String& color) {
|
|
lightColor(color.c_str());
|
|
}
|
|
|
|
void lightColor(unsigned long color) {
|
|
_fromLong(color, false);
|
|
}
|
|
|
|
String lightColor(bool rgb) {
|
|
char str[12];
|
|
if (rgb) {
|
|
_toRGB(str, sizeof(str));
|
|
} else {
|
|
_toHSV(str, sizeof(str));
|
|
}
|
|
return String(str);
|
|
}
|
|
|
|
String lightColor() {
|
|
return lightColor(true);
|
|
}
|
|
|
|
long lightChannel(unsigned char id) {
|
|
if (id >= _light_channels.size()) return 0;
|
|
return _light_channels[id].inputValue;
|
|
}
|
|
|
|
void lightChannel(unsigned char id, long value) {
|
|
if (id >= _light_channels.size()) return;
|
|
_setInputValue(id, constrain(value, Light::ValueMin, Light::ValueMax));
|
|
}
|
|
|
|
void lightChannelStep(unsigned char id, long steps, long multiplier) {
|
|
lightChannel(id, static_cast<int>(lightChannel(id)) + (steps * multiplier));
|
|
}
|
|
|
|
long lightBrightness() {
|
|
return _light_brightness;
|
|
}
|
|
|
|
void lightBrightness(long brightness) {
|
|
_light_brightness = constrain(brightness, Light::BrightnessMin, Light::BrightnessMax);
|
|
}
|
|
|
|
void lightBrightnessStep(long steps, long multiplier) {
|
|
lightBrightness(static_cast<int>(_light_brightness) + (steps * multiplier));
|
|
}
|
|
|
|
unsigned long lightTransitionTime() {
|
|
return _light_use_transitions ? _light_transition_time : 0;
|
|
}
|
|
|
|
unsigned long lightTransitionStep() {
|
|
return _light_use_transitions ? _light_transition_step : 0;
|
|
}
|
|
|
|
LightTransition lightTransition() {
|
|
return {lightTransitionTime(), lightTransitionStep()};
|
|
}
|
|
|
|
void lightTransition(unsigned long time, unsigned long step) {
|
|
bool save { false };
|
|
|
|
_light_use_transitions = (time && step);
|
|
if (_light_use_transitions) {
|
|
save = true;
|
|
_light_transition_time = time;
|
|
_light_transition_step = step;
|
|
}
|
|
|
|
setSetting("useTransitions", _light_use_transitions);
|
|
if (save) {
|
|
setSetting("ltTime", _light_transition_time);
|
|
setSetting("ltStep", _light_transition_step);
|
|
}
|
|
|
|
saveSettings();
|
|
}
|
|
|
|
void lightTransition(LightTransition transition) {
|
|
lightTransition(transition.time, transition.step);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// SETUP
|
|
// -----------------------------------------------------------------------------
|
|
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
|
|
const unsigned long _light_iomux[16] PROGMEM = {
|
|
PERIPHS_IO_MUX_GPIO0_U, PERIPHS_IO_MUX_U0TXD_U, PERIPHS_IO_MUX_GPIO2_U, PERIPHS_IO_MUX_U0RXD_U,
|
|
PERIPHS_IO_MUX_GPIO4_U, PERIPHS_IO_MUX_GPIO5_U, PERIPHS_IO_MUX_SD_CLK_U, PERIPHS_IO_MUX_SD_DATA0_U,
|
|
PERIPHS_IO_MUX_SD_DATA1_U, PERIPHS_IO_MUX_SD_DATA2_U, PERIPHS_IO_MUX_SD_DATA3_U, PERIPHS_IO_MUX_SD_CMD_U,
|
|
PERIPHS_IO_MUX_MTDI_U, PERIPHS_IO_MUX_MTCK_U, PERIPHS_IO_MUX_MTMS_U, PERIPHS_IO_MUX_MTDO_U
|
|
};
|
|
|
|
const unsigned long _light_iofunc[16] PROGMEM = {
|
|
FUNC_GPIO0, FUNC_GPIO1, FUNC_GPIO2, FUNC_GPIO3,
|
|
FUNC_GPIO4, FUNC_GPIO5, FUNC_GPIO6, FUNC_GPIO7,
|
|
FUNC_GPIO8, FUNC_GPIO9, FUNC_GPIO10, FUNC_GPIO11,
|
|
FUNC_GPIO12, FUNC_GPIO13, FUNC_GPIO14, FUNC_GPIO15
|
|
};
|
|
|
|
#endif
|
|
|
|
void _lightConfigure() {
|
|
|
|
_light_has_color = getSetting("useColor", 1 == LIGHT_USE_COLOR);
|
|
if (_light_has_color && (_light_channels.size() < 3)) {
|
|
_light_has_color = false;
|
|
setSetting("useColor", _light_has_color);
|
|
}
|
|
|
|
_light_use_white = getSetting("useWhite", 1 == LIGHT_USE_WHITE);
|
|
if (_light_use_white && (_light_channels.size() < 4) && (_light_channels.size() != 2)) {
|
|
_light_use_white = false;
|
|
setSetting("useWhite", _light_use_white);
|
|
}
|
|
|
|
if (_light_has_color) {
|
|
if (_light_use_white) {
|
|
_light_brightness_func = _lightApplyBrightnessColor;
|
|
} else {
|
|
_light_brightness_func = _lightApplyBrightnessRgb;
|
|
}
|
|
} else {
|
|
_light_brightness_func = _lightApplyBrightnessAll;
|
|
}
|
|
|
|
_light_use_cct = getSetting("useCCT", 1 == LIGHT_USE_CCT);
|
|
if (_light_use_cct && (((_light_channels.size() < 5) && (_light_channels.size() != 2)) || !_light_use_white)) {
|
|
_light_use_cct = false;
|
|
setSetting("useCCT", _light_use_cct);
|
|
}
|
|
|
|
_light_cold_mireds = getSetting("lightColdMired", Light::MiredsCold);
|
|
_light_warm_mireds = getSetting("lightWarmMired", Light::MiredsWarm);
|
|
_light_cold_kelvin = (1000000L / _light_cold_mireds);
|
|
_light_warm_kelvin = (1000000L / _light_warm_mireds);
|
|
|
|
_light_use_gamma = getSetting("useGamma", 1 == LIGHT_USE_GAMMA);
|
|
_light_use_transitions = getSetting("useTransitions", 1 == LIGHT_USE_TRANSITIONS);
|
|
_light_save = getSetting("ltSave", 1 == LIGHT_SAVE_ENABLED);
|
|
_light_save_delay = getSetting("ltSaveDelay", LIGHT_SAVE_DELAY);
|
|
_light_transition_time = getSetting("ltTime", LIGHT_TRANSITION_TIME);
|
|
_light_transition_step = getSetting("ltStep", LIGHT_TRANSITION_STEP);
|
|
|
|
}
|
|
|
|
#if RELAY_SUPPORT
|
|
|
|
void _lightRelaySupport() {
|
|
if (!getSetting("ltRelay", 1 == LIGHT_RELAY_ENABLED)) {
|
|
return;
|
|
}
|
|
|
|
if (_light_has_controls) {
|
|
return;
|
|
}
|
|
|
|
auto next_id = relayCount();
|
|
if (relayAdd(std::make_unique<LightGlobalProvider>())) {
|
|
_light_state_listener = [next_id](bool state) {
|
|
relayStatus(next_id, state);
|
|
};
|
|
_light_has_controls = true;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
void _lightBoot() {
|
|
auto channels = _light_channels.size();
|
|
if (channels) {
|
|
DEBUG_MSG_P(PSTR("[LIGHT] Number of channels: %u\n"), channels);
|
|
|
|
_lightConfigure();
|
|
if (rtcmemStatus()) {
|
|
_lightRestoreRtcmem();
|
|
} else {
|
|
_lightRestoreSettings();
|
|
}
|
|
|
|
_light_state_changed = true;
|
|
lightUpdate(false);
|
|
}
|
|
}
|
|
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
|
|
|
|
// Custom provider is expected to:
|
|
// - register a controller class via `lightSetProvider(...)`
|
|
// - use `lightAdd()` N times to create N channels that will be handled via the controller
|
|
// Once that's done, we 'boot' the provider and disable further calls to the `lightAdd()`
|
|
|
|
void lightSetProvider(std::unique_ptr<LightProvider>&& ptr) {
|
|
_light_provider = std::move(ptr);
|
|
}
|
|
|
|
bool lightAdd() {
|
|
enum class State {
|
|
None,
|
|
Scheduled,
|
|
Done
|
|
};
|
|
|
|
static State state { State::None };
|
|
if (State::Done == state) {
|
|
return false;
|
|
}
|
|
|
|
if (_light_channels.size() < Light::ChannelsMax) {
|
|
_light_channels.push_back(channel_t());
|
|
if (State::Scheduled != state) {
|
|
state = State::Scheduled;
|
|
schedule_function([]() {
|
|
_lightBoot();
|
|
state = State::Done;
|
|
});
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
#else
|
|
|
|
bool lightAdd() {
|
|
return false;
|
|
}
|
|
|
|
#endif // LIGHT_PROVIDER_CUSTOM
|
|
|
|
void _lightProviderDebug() {
|
|
DEBUG_MSG_P(PSTR("[LIGHT] Provider: "
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_NONE
|
|
"NONE"
|
|
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
|
|
"DIMMER"
|
|
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
|
|
"MY92XX"
|
|
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
|
|
"CUSTOM"
|
|
#endif
|
|
"\n"));
|
|
}
|
|
|
|
void _lightSettingsMigrate(int version) {
|
|
if (!version || (version >= 5)) {
|
|
return;
|
|
}
|
|
|
|
delSettingPrefix({
|
|
"chGPIO",
|
|
"chLogic",
|
|
"myChips",
|
|
"myDCKGPIO",
|
|
"myDIGPIO"
|
|
});
|
|
delSetting("lightProvider");
|
|
|
|
moveSetting("lightTime", "ltTime");
|
|
}
|
|
|
|
void lightSetup() {
|
|
_lightSettingsMigrate(migrateVersion());
|
|
|
|
const auto enable_pin = getSetting("ltEnableGPIO", _lightEnablePin());
|
|
if (enable_pin != GPIO_NONE) {
|
|
pinMode(enable_pin, OUTPUT);
|
|
digitalWrite(enable_pin, HIGH);
|
|
}
|
|
|
|
_light_channels.reserve(Light::ChannelsMax);
|
|
|
|
_lightProviderDebug();
|
|
|
|
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
|
|
{
|
|
_my92xx = new my92xx(MY92XX_MODEL, MY92XX_CHIPS, MY92XX_DI_PIN, MY92XX_DCKI_PIN, MY92XX_COMMAND);
|
|
for (unsigned char index = 0; index < Light::Channels; ++index) {
|
|
_light_channels.emplace_back(GPIO_NONE, getSetting({"ltMy92xxInv", index}, _lightInverse(index)));
|
|
}
|
|
}
|
|
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
|
|
{
|
|
// Initial duty value (will be passed to pwm_set_duty(...), OFF in this case)
|
|
uint32_t pwm_duty_init[Light::ChannelsMax] = {0};
|
|
|
|
// 3-tuples of MUX_REGISTER, MUX_VALUE and GPIO number
|
|
uint32_t io_info[Light::ChannelsMax][3];
|
|
|
|
for (unsigned char index = 0; index < Light::ChannelsMax; ++index) {
|
|
|
|
// Load up until first GPIO_NONE. Allow settings to override, but not remove values
|
|
const auto pin = getSetting({"ltDimmerGPIO", index}, _lightChannelPin(index));
|
|
if (!gpioValid(pin)) {
|
|
break;
|
|
}
|
|
|
|
_light_channels.emplace_back(pin, getSetting({"ltDimmerInv", index}, _lightInverse(index)));
|
|
|
|
io_info[index][0] = pgm_read_dword(&_light_iomux[pin]);
|
|
io_info[index][1] = pgm_read_dword(&_light_iofunc[pin]);
|
|
io_info[index][2] = pin;
|
|
pinMode(pin, OUTPUT);
|
|
|
|
}
|
|
|
|
// with 0 channels this should not do anything at all and provider will never call pwm_set_duty(...)
|
|
pwm_init(Light::PwmMax, pwm_duty_init, _light_channels.size(), io_info);
|
|
pwm_start();
|
|
}
|
|
#endif
|
|
|
|
_lightBoot();
|
|
|
|
#if RELAY_SUPPORT
|
|
_lightRelaySupport();
|
|
#endif
|
|
|
|
#if WEB_SUPPORT
|
|
wsRegister()
|
|
.onVisible(_lightWebSocketOnVisible)
|
|
.onConnected(_lightWebSocketOnConnected)
|
|
.onData(_lightWebSocketStatus)
|
|
.onAction(_lightWebSocketOnAction)
|
|
.onKeyCheck(_lightWebSocketOnKeyCheck);
|
|
#endif
|
|
|
|
#if API_SUPPORT
|
|
_lightApiSetup();
|
|
#endif
|
|
|
|
#if MQTT_SUPPORT
|
|
_lightMqttSetup();
|
|
#endif
|
|
|
|
#if TERMINAL_SUPPORT
|
|
_lightInitCommands();
|
|
#endif
|
|
|
|
espurnaRegisterReload(_lightConfigure);
|
|
espurnaRegisterLoop([]() {
|
|
_lightUpdate();
|
|
_lightProviderUpdate();
|
|
});
|
|
|
|
}
|
|
|
|
#endif // LIGHT_PROVIDER != LIGHT_PROVIDER_NONE
|