Browse Source

Added a white light implementation. Firmware is now in a broken state, but transitioning to something good here.

pull/1/head
Maurice Makaay 3 years ago
parent
commit
b491252b5d
3 changed files with 323 additions and 295 deletions
  1. +6
    -6
      light.py
  2. +119
    -0
      white_light.h
  3. +198
    -289
      yeelight_bs2_light_output.h

+ 6
- 6
light.py View File

@ -28,19 +28,19 @@ def to_code(config):
yield light.register_light(var, config)
led_red = yield cg.get_variable(config[CONF_RED])
cg.add(var.set_red(led_red))
cg.add(var.set_red_output(led_red))
led_green = yield cg.get_variable(config[CONF_GREEN])
cg.add(var.set_green(led_green))
cg.add(var.set_green_output(led_green))
led_blue = yield cg.get_variable(config[CONF_BLUE])
cg.add(var.set_blue(led_blue))
cg.add(var.set_blue_output(led_blue))
led_white = yield cg.get_variable(config[CONF_WHITE])
cg.add(var.set_white(led_white))
cg.add(var.set_white_output(led_white))
master1 = yield cg.get_variable(config[CONF_MASTER1])
cg.add(var.set_master1(master1))
cg.add(var.set_master1_output(master1))
master2 = yield cg.get_variable(config[CONF_MASTER2])
cg.add(var.set_master2(master2))
cg.add(var.set_master2_output(master2))

+ 119
- 0
white_light.h View File

@ -0,0 +1,119 @@
#pragma once
#include <array>
#include <stdexcept>
namespace esphome {
namespace rgbww {
namespace yeelight_bs2 {
// Same range as supported by the original Yeelight firmware.
static const int MIRED_MAX = 153;
static const int MIRED_MIN = 588;
struct RgbwLevelsByTemperature {
float from_temperature;
float red;
float green;
float blue;
float white;
};
using RgbwLevelsTable = std::array<RgbwLevelsByTemperature, 15>;
static const RgbwLevelsTable rgbw_levels_1_ {{
{ 501.0f, 87.3f, 90.7f, 100.0f, 6.3f },
{ 455.0f, 87.3f, 89.6f, 100.0f, 6.3f },
{ 417.0f, 87.3f, 89.1f, 100.0f, 6.8f },
{ 371.0f, 87.3f, 88.0f, 100.0f, 7.0f },
{ 334.0f, 87.3f, 88.7f, 100.0f, 8.8f },
{ 313.0f, 88.2f, 90.4f, 100.0f, 12.8f },
{ 295.0f, 94.7f, 100.0f, 96.8f, 14.5f },
{ 251.0f, 99.9f, 100.0f, 100.0f, 15.5f },
{ 223.0f, 100.0f, 89.9f, 92.1f, 13.0f },
{ 201.0f, 100.0f, 87.3f, 90.8f, 11.5f },
{ 182.0f, 100.0f, 87.3f, 90.1f, 10.3f },
{ 173.0f, 100.0f, 87.3f, 90.4f, 9.4f },
{ 167.0f, 100.0f, 87.3f, 89.1f, 9.8f },
{ 154.0f, 100.0f, 87.3f, 89.4f, 9.0f },
{ 153.0f, 100.0f, 87.3f, 89.2f, 8.8f }
}};
static const RgbwLevelsTable rgbw_levels_100_ {{
{ 501.0f, 0.0f, 34.4f, 100.0f, 6.8f },
{ 455.0f, 0.0f, 23.7f, 100.0f, 9.3f },
{ 417.0f, 0.0f, 18.6f, 100.0f, 12.0f },
{ 371.0f, 0.0f, 14.9f, 100.0f, 16.7f },
{ 334.0f, 0.0f, 13.5f, 100.0f, 32.5f },
{ 313.0f, 9.7f, 31.4f, 100.0f, 74.0f },
{ 295.0f, 74.5f, 100.0f, 95.3f, 90.5f },
{ 251.0f, 100.0f, 100.0f, 100.0f, 100.0f },
{ 223.0f, 100.0f, 26.7f, 48.5f, 76.5f },
{ 201.0f, 100.0f, 0.0f, 35.5f, 60.9f },
{ 182.0f, 100.0f, 0.0f, 28.2f, 48.9f },
{ 173.0f, 100.0f, 0.0f, 31.3f, 39.2f },
{ 167.0f, 100.0f, 0.0f, 18.0f, 42.2f },
{ 154.0f, 100.0f, 0.0f, 21.8f, 36.8f },
{ 153.0f, 100.0f, 0.0f, 18.7f, 33.5f }
}};
class WhiteLight
{
public:
float red = 0;
float green = 0;
float blue = 0;
float white = 0;
void set_color(float temperature, float brightness)
{
temperature = clamp_temperature_(temperature);
brightness = clamp_brightness_(brightness);
auto levels_1 = lookup_in_table_(rgbw_levels_1_, temperature);
auto levels_100 = lookup_in_table_(rgbw_levels_100_, temperature);
red = interpolate_(levels_1.red, levels_100.red, brightness);
green = interpolate_(levels_1.green, levels_100.green, brightness);
blue = interpolate_(levels_1.blue, levels_100.blue, brightness);
white = interpolate_(levels_1.white, levels_100.white, brightness);
}
protected:
float clamp_temperature_(float temperature)
{
if (temperature < MIRED_MAX)
temperature = MIRED_MAX;
else if (temperature > MIRED_MIN)
temperature = MIRED_MIN;
return temperature;
}
float clamp_brightness_(float brightness)
{
if (brightness < 0.01f)
brightness = 0.01f;
else if (brightness > 1.00f)
brightness = 1.00f;
return brightness;
}
RgbwLevelsByTemperature lookup_in_table_(RgbwLevelsTable table, float temperature)
{
for (RgbwLevelsByTemperature& item : table)
if (temperature >= item.from_temperature)
return item;
throw std::invalid_argument("received too low temperature");
}
float interpolate_(float level_1, float level_100, float brightness)
{
auto coefficient = (level_100 - level_1) / 0.99f;
auto level = level_1 + (brightness - 0.01f) * coefficient;
return level;
}
};
} // namespace yeelight_bs2
} // namespace rgbww
} // namespace esphome

+ 198
- 289
yeelight_bs2_light_output.h View File

@ -22,313 +22,222 @@
// not be a problem.
#define TRANSITION_TO_OFF_BUGFIX
namespace esphome
{
namespace rgbww
{
static const char *TAG = "yeelight_bs2.light";
namespace esphome {
namespace rgbww {
// Same range as supported by the original Yeelight firmware.
static const int HOME_ASSISTANT_MIRED_MIN = 153;
static const int HOME_ASSISTANT_MIRED_MAX = 588;
// The PWM frequency as used by the original device
// for driving the LED circuitry.
const float PWM_FREQUENCY = 3000.0f;
static const char *TAG = "yeelight_bs2.light";
class YeelightBS2LightOutput : public Component, public light::LightOutput
{
public:
void set_red(ledc::LEDCOutput *red) { red_ = red; red_->set_frequency(PWM_FREQUENCY); }
void set_green(ledc::LEDCOutput *green) { green_ = green; green_->set_frequency(PWM_FREQUENCY); }
void set_blue(ledc::LEDCOutput *blue) { blue_ = blue; blue_->set_frequency(PWM_FREQUENCY); }
void set_white(ledc::LEDCOutput *white) { white_ = white; white_->set_frequency(PWM_FREQUENCY); }
void set_master1(gpio::GPIOBinaryOutput *master1) { master1_ = master1; }
void set_master2(gpio::GPIOBinaryOutput *master2) { master2_ = master2; }
light::LightTraits get_traits() override
{
auto traits = light::LightTraits();
traits.set_supports_rgb(true);
traits.set_supports_color_temperature(true);
traits.set_supports_brightness(true);
traits.set_supports_rgb_white_value(false);
traits.set_supports_color_interlock(true);
traits.set_min_mireds(HOME_ASSISTANT_MIRED_MIN);
traits.set_max_mireds(HOME_ASSISTANT_MIRED_MAX);
return traits;
}
// Same range as supported by the original Yeelight firmware.
static const int HOME_ASSISTANT_MIRED_MIN = 153;
static const int HOME_ASSISTANT_MIRED_MAX = 588;
// The PWM frequencies as used by the original device
// for driving the LED circuitry.
const float RGB_PWM_FREQUENCY = 3000.0f;
const float WHITE_PWM_FREQUENCY = 10000.0f;
void write_state(light::LightState *state) override
{
auto values = state->current_values;
class YeelightBS2LightOutput : public Component, public light::LightOutput
{
public:
light::LightTraits get_traits() override
{
auto traits = light::LightTraits();
traits.set_supports_rgb(true);
traits.set_supports_color_temperature(true);
traits.set_supports_brightness(true);
traits.set_supports_rgb_white_value(false);
traits.set_supports_color_interlock(true);
traits.set_min_mireds(HOME_ASSISTANT_MIRED_MIN);
traits.set_max_mireds(HOME_ASSISTANT_MIRED_MAX);
return traits;
}
void set_red_output(ledc::LEDCOutput *red) {
red_ = red;
red_->set_frequency(RGB_PWM_FREQUENCY);
}
void set_green_output(ledc::LEDCOutput *green) {
green_ = green;
green_->set_frequency(RGB_PWM_FREQUENCY);
}
void set_blue_output(ledc::LEDCOutput *blue) {
blue_ = blue;
blue_->set_frequency(RGB_PWM_FREQUENCY);
}
void set_white_output(ledc::LEDCOutput *white) {
white_ = white;
white_->set_frequency(WHITE_PWM_FREQUENCY);
}
void set_master1_output(gpio::GPIOBinaryOutput *master1) {
master1_ = master1;
}
void set_master2_output(gpio::GPIOBinaryOutput *master2) {
master2_ = master2;
}
void write_state(light::LightState *state) override
{
auto values = state->current_values;
ESP_LOGD(TAG, "B = State %f, RGB %f %f %f, BRI %f, TEMP %f",
values.get_state(),
values.get_red(), values.get_green(), values.get_blue(),
values.get_brightness(), values.get_color_temperature());
ESP_LOGD(TAG, "B = State %f, RGB %f %f %f, BRI %f, TEMP %f",
values.get_state(),
values.get_red(), values.get_green(), values.get_blue(),
values.get_brightness(), values.get_color_temperature());
// Power down the light when its state is 'off'.
if (values.get_state() == 0)
{
this->turn_off_();
// Power down the light when its state is 'off'.
if (values.get_state() == 0)
{
this->turn_off_();
#ifdef TRANSITION_TO_OFF_BUGFIX
previous_state_ = -1;
previous_brightness_ = 0;
previous_state_ = -1;
previous_brightness_ = 0;
#endif
return;
}
return;
}
auto brightness = values.get_brightness();
auto brightness = values.get_brightness();
#ifdef TRANSITION_TO_OFF_BUGFIX
// Remember the brightness that is used when the light is fully ON.
if (values.get_state() == 1) {
previous_brightness_ = brightness;
}
// When transitioning towards zero brightness ...
else if (values.get_state() < previous_state_) {
// ... check if the prevous brightness is the same as the current
// brightness. If yes, then the brightness isn't being scaled ...
if (previous_brightness_ == brightness) {
// ... and we need to do that ourselves.
brightness = values.get_state() * brightness;
}
}
previous_state_ = values.get_state();
#endif
// Leave it to the default tooling to figure out the basics.
// Because of the color interlocking, there are two possible outcomes:
// - red, green, blue zero -> the light is in color temperature mode
// - cwhite, wwhite zero -> the light is in RGB mode
float red, green, blue, cwhite, wwhite;
state->current_values_as_rgbww(&red, &green, &blue, &cwhite, &wwhite, true, false);
if (cwhite > 0 || wwhite > 0)
{
this->turn_on_in_color_temperature_mode_(
values.get_color_temperature(), brightness);
}
else
{
// The RGB mode does not use the RGB values as determined by
// current_values_as_rgbww(). The device has LED driving circuitry
// that takes care of the required brightness curve while ramping up
// the brightness. Therefore, the actual RGB values are passed here.
this->turn_on_in_rgb_mode_(
values.get_red(), values.get_green(), values.get_blue(),
brightness, values.get_state());
// Remember the brightness that is used when the light is fully ON.
if (values.get_state() == 1) {
previous_brightness_ = brightness;
}
// When transitioning towards zero brightness ...
else if (values.get_state() < previous_state_) {
// ... check if the prevous brightness is the same as the current
// brightness. If yes, then the brightness isn't being scaled ...
if (previous_brightness_ == brightness) {
// ... and we need to do that ourselves.
brightness = values.get_state() * brightness;
}
}
protected:
ledc::LEDCOutput *red_;
ledc::LEDCOutput *green_;
ledc::LEDCOutput *blue_;
ledc::LEDCOutput *white_;
esphome::gpio::GPIOBinaryOutput *master1_;
esphome::gpio::GPIOBinaryOutput *master2_;
#ifdef TRANSITION_TO_OFF_BUGFIX
float previous_state_ = 1;
float previous_brightness_ = -1;
previous_state_ = values.get_state();
#endif
void turn_off_()
{
red_->set_level(1);
green_->set_level(1);
blue_->set_level(1);
white_->turn_off();
master2_->turn_off();
master1_->turn_off();
}
// Leave it to the default tooling to figure out the basics.
// Because of the color interlocking, there are two possible outcomes:
// - red, green, blue zero -> the light is in color temperature mode
// - cwhite, wwhite zero -> the light is in RGB mode
float red, green, blue, cwhite, wwhite;
state->current_values_as_rgbww(&red, &green, &blue, &cwhite, &wwhite, true, false);
void turn_on_in_rgb_mode_(float red, float green, float blue, float brightness, float state)
if (cwhite > 0 || wwhite > 0)
{
ESP_LOGD(TAG, "Activate RGB %f, %f, %f, BRIGHTNESS %f", red, green, blue, brightness);
// The brightness must be at least 3/100 to light up the LEDs.
// During transitions (where state is a fraction between 0 and 1,
// indicating the transition progress) we don't apply this to
// get smoother transitioning when turning on the light.
if (state == 1 && brightness < 0.03f)
brightness = 0.03f;
// Apply proper color mixing around the RGB white point.
// Overall, the RGB colors are very usable when simply scaling the
// RGB channels with the brightness, but around the white point,
// the color is a bit on the red side of the spectrum. The following
// scaling was created to fix that.
// RGBW 0.432451, 0.013149, 0.556678
// R 0.57 g 1 b 0.45
auto red_w = (0.07f + brightness*(0.57f - 0.07f)) * red;
auto green_w = (0.13f + brightness*(1.00f - 0.13f)) * green;
auto blue_w = (0.06f + brightness*(0.45f - 0.06f)) * blue;
// For other colors, we can simply scale the RGB channels with the
// requested brightness, resulting in a very usable color. Not 100%
// the same as the original firmware, but sometimes even better IMO.
auto red_c = red * brightness;
auto green_c = green * brightness;
auto blue_c = blue * brightness;
// The actual RGB values are a weighed mix of the above two.
// The closer to the white point, the more the white point
// value applies.
auto level_red = (red_w * ((green+blue)/2)) + (red_c * (1-(green+blue)/2));
auto level_green = (green_w * ((red+blue)/2)) + (green_c * (1-(red+blue)/2));
auto level_blue = (blue_w * ((red+green)/2)) + (blue_c * (1-(red+green)/2));
// Invert the signal. The LEDs in the lamp's circuit are brighter
// when the pwm levels on the GPIO pins are lower.
level_red = 1.0f - level_red;
level_green = 1.0f - level_green;
level_blue = 1.0f - level_blue;
ESP_LOGD(TAG, "New LED state : RGBW %f, %f, %f, off", level_red, level_green, level_blue);
// Drive the LEDs.
master2_->turn_on();
master1_->turn_on();
red_->set_level(level_red);
green_->set_level(level_green);
blue_->set_level(level_blue);
white_->turn_off();
turn_on_in_white_mode_(values.get_color_temperature(), brightness);
}
void turn_on_in_color_temperature_mode_(float temperature, float brightness)
else
{
ESP_LOGD(TAG, "Activate TEMPERATURE %f, BRIGHTNESS %f", temperature, brightness);
// Empirically determined during programming the temperature GPIO output
// code from below, by checking how far my outputs were off from the
// original lamp firmeware's outputs. This scaler is used for correcting
// my output towards the original output.
float scaler;
float red = 1.0;
float green = 1.0;
float blue = 1.0;
float white = 1.0;
// Temperature band 370 - 588
if (temperature <= HOME_ASSISTANT_MIRED_MAX && temperature >= 371)
{
scaler = 3.23f;
float start = 371;
float end = 588;
float band = end - start;
float red_volt = 2.86f * (1.0f - brightness);
red = red_volt / scaler;
float green_1 = 2.90f + (temperature - start) * (2.97f - 2.90f) / band;
float green_100 = 0.45f + (temperature - start) * (1.13f - 0.45f) / band;
float green_volt = green_1 + brightness * (green_100 - green_1);
green = green_volt / scaler;
float white_1 = 0.28f - (temperature - start) * (0.28f - 0.19f) / band;
float white_100 = 1.07f - (temperature - start) * (1.07f - 0.22f) / band;
float white_volt = white_1 + brightness * (white_100 - white_1);
white = white_volt / scaler;
}
// Temperature band 334 - 370
else if (temperature >= 334)
{
scaler = 3.23f;
float red_volt = (1.0f - brightness) * 2.86f;
red = red_volt / scaler;
float green_volt = 2.9f - brightness * (2.9f - 0.45f);
green = green_volt / scaler;
float white_volt = 0.28f + brightness * (1.07f - 0.28f);
white = white_volt / scaler;
}
// Temperature band 313 - 333
//
// The light becomes noticably brighter when moving from temperature 334 to
// temperature 333. There's a little jump in the lighting output here.
// Possibly this is a switch from warm to cold lighting as imposed by the
// LED circuitry, making this unavoidable. However, it would be interesting
// to see if we can smoothen this out.
// BTW: This behavior is in sync with the original firmware.
else if (temperature >= 313)
{
scaler = 3.23f;
float red_volt = 2.89f - brightness * (2.89f - 0.32f);
red = red_volt / scaler;
float green_volt = 2.96f - brightness * (2.96f - 1.03f);
green = green_volt / scaler;
float white_volt = 0.42f + brightness * (2.43f - 0.42f);
float scaler_white = 3.45f;
white = white_volt / scaler_white;
}
// Temperature band 251 - 312
else if (temperature >= 251)
{
scaler = 3.48f;
float white_correction = 1.061;
float white_volt = 0.5f + brightness * (3.28f * white_correction - 0.5f);
white = white_volt / scaler;
}
// Temperature band 223 - 250
else if (temperature >= 223)
{
scaler = 3.25f;
float green_volt = 2.94f - brightness * (2.94f - 0.88f);
green = green_volt / scaler;
float blue_volt = 3.02f - brightness * (3.02f - 1.59f);
blue = blue_volt / scaler;
float white_correction = 1.024f;
float white_volt = 0.42f + brightness * (2.51f * white_correction - 0.42f);
float scaler_white = 3.36f;
white = white_volt / scaler_white;
}
// Temperature band 153 - 222
else if (temperature >= HOME_ASSISTANT_MIRED_MIN)
{
float start = 153;
float end = 222;
float band = end - start;
scaler = 3.23f;
float green_volt = 2.86f - brightness * 2.86f;
green = green_volt / scaler;
float blue_1 = 2.92f + (temperature - start) * (2.97f - 2.92f) / band;
float blue_100 = 0.62f + (temperature - start) * (1.17f - 0.62f) / band;
float blue_volt = blue_1 - brightness * (blue_1 - blue_100);
blue = blue_volt / scaler;
float white_1 = 0.28f + (temperature - start) * (0.37f - 0.28f) / band;
float white_100 = 1.1f + (temperature - start) * (2.0f - 1.1f) / band;
float white_volt = white_1 + brightness * (white_100 - white_1);
float scaler_white = 3.27f;
white = white_volt / scaler_white;
}
ESP_LOGD(TAG, "New LED state : RGBW %f, %f, %f, %f", red, green, blue, white);
master2_->turn_on();
master1_->turn_on();
red_->set_level(red);
green_->set_level(green);
blue_->set_level(blue);
white_->set_level(white);
// The RGB mode does not use the RGB values as determined by
// current_values_as_rgbww(). The device has LED driving circuitry
// that takes care of the required brightness curve while ramping up
// the brightness. Therefore, the actual RGB values are passed here.
turn_on_in_rgb_mode_(
values.get_red(), values.get_green(), values.get_blue(),
brightness, values.get_state());
}
};
}
protected:
ledc::LEDCOutput *red_;
ledc::LEDCOutput *green_;
ledc::LEDCOutput *blue_;
ledc::LEDCOutput *white_;
esphome::gpio::GPIOBinaryOutput *master1_;
esphome::gpio::GPIOBinaryOutput *master2_;
esphome::rgbww::yeelight_bs2::WhiteLight white_light_;
#ifdef TRANSITION_TO_OFF_BUGFIX
float previous_state_ = 1;
float previous_brightness_ = -1;
#endif
} // namespace rgbww
void turn_off_()
{
red_->set_level(1);
green_->set_level(1);
blue_->set_level(1);
white_->turn_off();
master2_->turn_off();
master1_->turn_off();
}
void turn_on_in_rgb_mode_(float red, float green, float blue, float brightness, float state)
{
ESP_LOGD(TAG, "Activate RGB %f, %f, %f, BRIGHTNESS %f", red, green, blue, brightness);
// The brightness must be at least 3/100 to light up the LEDs.
// During transitions (where state is a fraction between 0 and 1,
// indicating the transition progress) we don't apply this to
// get smoother transitioning when turning on the light.
if (state == 1 && brightness < 0.03f)
brightness = 0.03f;
// Apply proper color mixing around the RGB white point.
// Overall, the RGB colors are very usable when simply scaling the
// RGB channels with the brightness, but around the white point,
// the color is a bit on the red side of the spectrum. The following
// scaling was created to fix that.
// RGBW 0.432451, 0.013149, 0.556678
// R 0.57 g 1 b 0.45
auto red_w = (0.07f + brightness*(0.57f - 0.07f)) * red;
auto green_w = (0.13f + brightness*(1.00f - 0.13f)) * green;
auto blue_w = (0.06f + brightness*(0.45f - 0.06f)) * blue;
// For other colors, we can simply scale the RGB channels with the
// requested brightness, resulting in a very usable color. Not 100%
// the same as the original firmware, but sometimes even better IMO.
auto red_c = red * brightness;
auto green_c = green * brightness;
auto blue_c = blue * brightness;
// The actual RGB values are a weighed mix of the above two.
// The closer to the white point, the more the white point
// value applies.
auto level_red = (red_w * ((green+blue)/2)) + (red_c * (1-(green+blue)/2));
auto level_green = (green_w * ((red+blue)/2)) + (green_c * (1-(red+blue)/2));
auto level_blue = (blue_w * ((red+green)/2)) + (blue_c * (1-(red+green)/2));
// Invert the signal. The LEDs in the lamp's circuit are brighter
// when the pwm levels on the GPIO pins are lower.
level_red = 1.0f - level_red;
level_green = 1.0f - level_green;
level_blue = 1.0f - level_blue;
ESP_LOGD(TAG, "New LED state : RGBW %f, %f, %f, off", level_red, level_green, level_blue);
// Drive the LEDs.
master2_->turn_on();
master1_->turn_on();
red_->set_level(level_red);
green_->set_level(level_green);
blue_->set_level(level_blue);
white_->turn_off();
}
void turn_on_in_white_mode_(float temperature, float brightness)
{
ESP_LOGD(TAG, "Activate TEMPERATURE %f, BRIGHTNESS %f",
temperature, brightness);
white_light_.set_color(temperature, brightness);
ESP_LOGD(TAG, "New LED state : RGBW %f, %f, %f, %f",
white_light_.red, white_light_.green, white_light_.blue,
white_light_.white);
master2_->turn_on();
master1_->turn_on();
red_->set_level(white_light_.red);
green_->set_level(white_light_.green);
blue_->set_level(white_light_.blue);
white_->turn_on();
white_->set_level(white_light_.white);
}
};
} // namespace rgbww
} // namespace esphome

Loading…
Cancel
Save