You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
Martin Kepplinger c40291ab85 NEWS: update the changelog summaries 6 years ago
LICENSE Initial commit 7 years ago
LICENSE.microcode README: add microcode license and link to it 6 years ago
NEWS NEWS: update the changelog summaries 6 years ago
README.md README: Add flashrom chip config section and various fixes 6 years ago
cb9f55ec38.config update config and describe current build 6 years ago
pci8086,0166.rom initial infos 7 years ago
rpi_clip.jpg README: add rpi photo 6 years ago

README.md

coreboot-x230

pre-built coreboot images and documentation on how to flash them for the Thinkpad X230

These images

  • include SeaBIOS as coreboot payload, for maximum compatibility.
  • are meant to be flashed externally (...top.rom release files)
  • ...full.rom release files are not functional entirely. Only the the top 4M are usable.
  • are compatible with Windows and Linux

Latest build (config overview and version info)

See our releases

  • Lenovo's proprietary VGA BIOS ROM is executed in "secure" mode

coreboot

  • We simply take coreboot's current state in it's master branch at the time we build a release image. That's the preferred way to use coreboot. The git revision we use is always included in the release.

Intel microcode

SeaBIOS

  • version 1.11.0 from 2017-11-10 (part of coreboot upstream)

When do we do a release?

Either when

  • There is a new SeaBIOS release,
  • There is a new Intel microcode release (for our CPU model),
  • There is a coreboot issue that affects us, or
  • We change the config

TL;DR

Download a released image, connect your hardware SPI flasher to the "upper" 4MB chip in your X230, and do

 flashrom -p linux_spi:dev=/dev/spidev0.0,spispeed=128 -c "MX25L3206E" -w x230_coreboot_seabios_example_top.rom

where linux_spi: is the example of using your SPI pins of, for example, a Raspberry Pi. A Bus Pirate with buspirate_spi or others connected to the host directly should be fine too.

Flashing for the first time

flashrom chip config

We use flashrom for flashing. Run flashrom -p <your_hardware> (for example flashrom -p linux_spi:dev=/dev/spidev0.0,spispeed=128 for the Raspberry Pi) to let flashrom detect the chip. It will probably list a few you need to choose from when flashing (by adding -c "<chipname>"). While there might be specific examples in the commands below, please review the chip model for your device. In case you are unsure what to specify, here's some examples we find out there:

4MB chip

  • MX25L3206E seems to mostly be in use

8MB chip

  • MX25L3206E/MX25L3208E is seen working with various X230 models.
  • MX25L6406E/MX25L6408E is used in this guide
  • EN25QH64 is used sometimes

EC firmware (optional)

Enter Lenovo's BIOS with F1 and check the embedded controller (EC) version to be 1.14 and upgrade using the latest bootable CD if it isn't. The EC cannot be upgraded when coreboot is installed. (In case a newer version should ever be available (I doubt it), you could temporarily flash back your original Lenovo BIOS image)

me_cleaner (optional)

The Intel Management Engine resides on the 8MB chip. We don't need to touch it for coreboot-upgrades in the future, but while opening up the Thinkpad anyways, we can save it and run ifdtool and me_cleaner on it:

  flashrom -p linux_spi:dev=/dev/spidev0.0,spispeed=128 -c "MX25L6406E/MX25L6408E" -r ifdmegbe.rom
  flashrom -p linux_spi:dev=/dev/spidev0.0,spispeed=128 -c "MX25L6406E/MX25L6408E" -r ifdmegbe2.rom
  diff ifdmegbe.rom ifdmegbe2.rom
  git clone https://github.com/corna/me_cleaner.git && cd me_cleaner
  ./me_cleaner.py -S -O ifdmegbe_meclean.rom ifdmegbe.rom
  ifdtool -u ifdmegbe_meclean.rom
  flashrom -p linux_spi:dev=/dev/spidev0.0,spispeed=128 -c "MX25L6406E/MX25L6408E" -w ifdmegbe_meclean.rom.new

save the 4MB chip

(internally, memory of the two chips is mapped together, the 8MB being the lower part, but we can essientially ignore that)

For the first time, we have to save the original image, just like we did with the 8MB chip. It's important to keep this image somewhere safe:

  flashrom -p linux_spi:dev=/dev/spidev0.0,spispeed=128 -c "MX25L3206E" -r top1.rom
  flashrom -p linux_spi:dev=/dev/spidev0.0,spispeed=128 -c "MX25L3206E" -r top2.rom
  diff top1.rom top2.rom

Flashing the coreboot / SeaBIOS image

When upgrading to a new version, for example when a new SeaBIOS version is available, only the "upper" 4MB chip has to be written.

Download the latest release image we provide here and flash it:

 flashrom -p linux_spi:dev=/dev/spidev0.0,spispeed=128 -c "MX25L3206E" -w x230_coreboot_seabios_example_top.rom

How to flash

We flash externally, using a "Pomona 5250 8-pin SOIC test clip". You'll find one easily. This is how the X230's SPI connection looks on both chips:

    Screen (furthest from you)
             __
      MOSI  5 --|  |-- 4  GND
       CLK  6 --|  |-- 3  N/C
       N/C  7 --|  |-- 2  MISO
       VCC  8 --|__|-- 1  CS

       Edge (closest to you)

Example: Raspberry Pi 3

We run Raspbian and have the following setup

  • Serial connection using a "USB to Serial" UART Adapter and picocom or minicom

  • Yes, in this case you need a second PC connected to the RPi over UART

  • in the SD Cards's /boot/config.txt file enable_uart=1 and dtparam=spi=on

  • For flashrom we put spi_bcm2835 and spidev in /etc/modules

  • Connect to a wifi or to network over ethernet to install flashrom

  • only use the ...top.rom release file

  • connect the Clip to the Raspberry Pi 3:

  • use linux_spi as flashrom programmer name

         Edge of pi (furthest from you)
                     (UART)
       L           GND TX  RX                           CS
       E            |   |   |                           |
       F +---------------------------------------------------------------------------------+
       T |  x   x   x   x   x   x   x   x   x   x   x   x   x   x   x   x   x   x   x   x  |
         |  x   x   x   x   x   x   x   x   x   x   x   x   x   x   x   x   x   x   x   x  |
       E +----------------------------------^---^---^---^-------------------------------^--+
       D                                    |   |   |   |                               |
       G                                   3.3V MOSIMISO|                              GND
       E                                 (VCC)         CLK
         Body of Pi (closest to you)
    

Now you should be able to copy the image over to your Rasperry Pi and run the mentioned flashrom commands. One way to copy, is convertig it to ascii using uuencode (part of Debian's sharutils package) described below. This is a very direct, shady and slow way to copy file. Another way is of course using a USB Stick or scp :) (but you need even more hardware or a network).

    (convert)
host$ uuencode coreboot.rom coreboot.rom.ascii > coreboot.rom.ascii
    (transfer)
rpi$ cat > coreboot.rom.ascii
host$ pv coreboot.rom.ascii > /dev/ttyUSBX
    (wait)
rpi$ (CTRL-D)
    (convert back)
rpi$ uudecode -o coreboot.rom coreboot.rom.ascii
    (verify)
host$ sha1sum coreboot.rom
rpi$ sha1sum coreboot.rom

Raspberry Pi at work

Example: internal

NOT YET AVAILABLE HERE

  • make sure you have your backups

  • You have to have your 8MB chip flashed externally after ifdtool -u ifdmegbe.rom before this, once

  • according to the flashrom manpage this is very dangerous!

  • very convenient - you don't need any additional hardware

  • here you'll use the ...full.rom release file

  • Boot Linux with the iomem=relaxed boot parameter (for example set in /etc/default/grub)

  • use internal as flashrom programmer name

  • create the following file (named x230-layout.txt):

      0x00000000:0x007fffff ifdmegbe
      0x00800000:0x00bfffff bios
    

flashrom -p internal --layout x230-layout.txt --image bios -c "MX25L3206E" -w x230_coreboot_seabios_example_full.rom

You may have to set programmer options internal:laptop=force_I_want_a_brick,spispeed=128 or parts of it, or other settings...

How we build

  • Everything necessary to build coreboot (while only the top 4MB are usable of course) is included here
  • The task of building coreboot is not too difficult
  • When doing a release here, we always try to upload to coreboot's board status project
  • If we add out-of-tree patches, we always post them for review upstream

Why does this work?

On the X230, there are 2 physical "BIOS" chips. The "upper" 4MB one holds the actual bios we can generate using coreboot, and the "lower" 8MB one holds the rest that you can modify yourself once, if you like, but strictly speaking, you don't need to touch it at all. What's this "rest"? Mainly a tiny binary used by the Ethernet card and the Intel Management Engine.

Alternatives

  • Heads also releases pre-built flash images for the X230 - with way more sophisticated functionality.